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Abstract

Background: During the last decade, there has been a surge towards computational
drug repositioning owing to constantly increasing -omics data in the biomedical
research field. While numerous existing methods focus on the integration of
heterogeneous data to propose candidate drugs, it is still challenging to substantiate
their results with mechanistic insights of these candidate drugs. Therefore, there is a
need for more innovative and efficient methods which can enable better integration
of data and knowledge for drug repositioning.

Results: Here, we present a customizable workflow (PS4DR) which not only
integrates high-throughput data such as genome-wide association study (GWAS)
data and gene expression signatures from disease and drug perturbations but also
takes pathway knowledge into consideration to predict drug candidates for
repositioning. We have collected and integrated publicly available GWAS data and
gene expression signatures for several diseases and hundreds of FDA-approved
drugs or those under clinical trial in this study. Additionally, different pathway
databases were used for mechanistic knowledge integration in the workflow. Using
this systematic consolidation of data and knowledge, the workflow computes
pathway signatures that assist in the prediction of new indications for approved and
investigational drugs.

Conclusion: We showcase PS4DR with applications demonstrating how this tool can
be used for repositioning and identifying new drugs as well as proposing drugs that
can simulate disease dysregulations. We were able to validate our workflow by
demonstrating its capability to predict FDA-approved drugs for their known
indications for several diseases. Further, PS4DR returned many potential drug
candidates for repositioning that were backed up by epidemiological evidence
extracted from scientific literature. Source code is freely available at https://github.
com/ps4dr/ps4dr.
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Bioinformatics

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03568-5&domain=pdf
http://orcid.org/0000-0002-9820-6925
mailto:mohammad.asif.emon@scai.fraunhofer.de
mailto:mohammad.asif.emon@scai.fraunhofer.de
mailto:daniel.domingo.fernandez@scai.fraunhofer.de
mailto:daniel.domingo.fernandez@scai.fraunhofer.de
mailto:daniel.domingo.fernandez@scai.fraunhofer.de
https://github.com/ps4dr/ps4dr
https://github.com/ps4dr/ps4dr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Emon et al. BMC Bioinformatics (2020) 21:231 Page 2 of 21

Background

De novo drug discovery remains a time-consuming, costly, and failure-prone process,
despite advances in high-throughput data generation techniques and analytical ap-
proaches. On average, it takes approximately 10 to 15 years and 1.5 billion dollars to
bring a drug to market [1]. While traditional drug discovery research is able to propose
numerous candidate drugs, the majority of them fail in clinical trials due to lack of effi-
cacy or undesired effects in these trials [2]. Therefore, drug repositioning has emerged
as an alternative in drug discovery research [3] that hinges on identifying new indica-
tions for investigational or approved drugs in order to reduce the time and cost of pre-
clinical development and primary stages of clinical trials.

Computational drug repositioning methods have recently become popular due to the
increased availability of drug-related -omics data through sources like CMap (Connect-
ivity Map [4]) and LINCS (Library of Integrated Network-Based Cellular Signatures [5])
(see Tanoli et al. [6] for a review on databases and methods). In recent years, they have
evolved to accommodate and utilize novel high-throughput data such as genetic [7],
chemical [8], pharmacological [9], and clinical [10]. Computational drug repositioning
methods can be categorized as (i) drug-based, where knowledge comes from the chem-
ical or pharmaceutical perspective, or (ii) disease-based, where the strategy focuses on
different aspects of the disease, such as symptomatology or pathology [11]. Following,
we outline methods from both categories that involve the usage of transcriptomics and
GWAS data for drug repositioning purposes.

Transcriptomics data has historically been used to unravel the molecular mechanisms
of complex diseases [12—14]. Accordingly, numerous drug repositioning approaches
have relied on contrast experiments of transcriptomics readouts such as disease sam-
ples, drug perturbed cells and animal models to identify drugs that revert the signature
of the disease and eventually its pathogenic phenotype to ultimately predict new indica-
tions for existing drugs [4, 15, 16]. To facilitate novel approaches that could systematic-
ally exploit this concept, Lamb et al. [4] developed a comprehensive catalog of small
molecule perturbed gene expression signatures called CMap. They demonstrated that
gene expression signatures can be used to identify drugs with shared mechanisms of ac-
tion (MoAs), discover unknown MoAs of drugs, and propose potential new therapeu-
tics. Furthermore, a variant of the CMap method was later used by Sirota et al. [16] to
compare disease gene signatures against drug-induced gene expression signatures to
score each drug-disease pair based on their similarity profile for drug repositioning.

However, the high dimensionality of gene expression signatures has motivated the
use of network-based analysis to assist in the interpretation of biological processes
which are perturbed by a given drug. Not only are these analyses instrumental in deter-
mining relevant molecular signatures as markers of phenotypes but also in garnering
novel mechanistic insights into various biological functions and disease. For example,
Iorio et al. [15] used Gene Set Enrichment Analysis (GSEA [17]) to build a drug simi-
larity network from the distances of the GSEA scores for each drug pair in order to in-
vestigate the biological processes enriched in a set of drug subnetworks to identify
compounds with similar MoAs. Suthram et al. [18] integrated disease gene expression
signatures with large scale protein-protein interaction networks to identify disease simi-
larities. They discovered a set of common pathways and processes which were dysregu-
lated in most of the investigated diseases and that could be targeted by the drugs
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indicated for other diseases. Keiser et al. [19] showed that drug-target interaction net-
works could be used to predict off-targets for known drugs by comparing the similarity
of the ligands that bind to the corresponding targets.

Single nucleotide polymorphisms (SNPs) have gained attention in biomedical re-
search due to the impact of genetic variations in numerous complex diseases. Although
the majority of SNPs do not have an effect on the phenotypic outcome, some might be
directly involved in disease etiology by affecting the associated gene’s function depend-
ing on their occurrence in the genomic loci. Therefore, identifying disease-associated
SNPs via genetic studies (e.g., GWAS) and targeting the corresponding genes has be-
come a common practice for generating hypotheses to investigate molecular mecha-
nisms of disease. Accordingly, new methods are being developed to incorporate GWAS
knowledge in the drug repositioning domain. For instance, Sanseau et al. [7] collected
disease-associated genes from the GWAS Catalog [20] and evaluated whether these
genes were targeted by drugs. In their post hoc analysis, they observed that these genes
were more likely to be a drug target than housekeeping genes. They mapped GWAS
genes to the genes which were targeted by drugs listed in the pharmaprojects database
(http://www.pharmaprojects.com/) and later proposed that drugs with indications dif-
ferent from the GWAS traits could be of potential drug repositioning interest. In an-
other instance, Lencz and Malhotra [21] used the results from large scale GWAS
conducted by the Psychiatric Genomics Consortium—Schizophrenia Workgroup (PGC—
SCZ) [22] to predict drug repositioning candidates in schizophrenia. First, they identi-
fied the overlap between the known drug targets from Rask-Andersen et al. [23] and
potential schizophrenia candidate genes from GWAS. Next, they characterized the
MoA of drugs targeting the overlapped genes to propose drugs for schizophrenia treat-
ment. Further, Zhang et al. [24] illustrated another strategy to use GWAS data for pri-
oritizing candidate genes from the GWAS identified loci for drug repositioning. They
prioritized genes by scoring them with seven criteria such as cis-eQTL, text mining,
and functional enrichment to propose new targets for colorectal cancer drug
treatments.

While studies have leveraged transcriptomics and genetics data for prioritizing drug
repositioning candidates independently, recent approaches have started to utilize them
in combination with other data types. So et al. [25] proposed a framework for drug re-
positioning by combining GWAS-imputed transcriptome signatures and drug-induced
changes in gene expression (CMap) in the field of psychiatric disorders. They imputed
gene expression signatures from GWAS summary statistics instead of using expression
data from microarray or RNA-sequencing studies and compared them with drug-
induced expression changes. Zhang et al. [26] demonstrated another drug repositioning
workflow by mining -omics data such as GWAS, proteomics, and metabolomics from
publicly available sources to find diabetic risk proteins and then filtered them to drug-
gable targets. They further analyzed the pathogenicity of these prioritized targets and
found several drugs for these targets that have the potential for diabetic treatments.
Later, Ferrero and Agarwal [27] presented a systematic approach which integrated
GWAS data and gene expression signatures from diseases and drugs perturbation to
generate drug repositioning hypotheses. They demonstrated that (i) GWAS-associated
genes in disease are more likely to be differentially expressed in the same disease, and
(i) drug perturbed genes in disease are enriched for GWAS-associated genes in the
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same disease. They eventually proposed statistically significant drug-disease pairs from
the latter analysis could be used for drug repositioning.

Above we surveyed the state-of-the-art in silico strategies for drug repositioning by
using transcriptomics and GWAS data. However, there is a lack of systematic ap-
proaches that can integrate mechanistic knowledge from pathways with data from mul-
tiple modalities to ultimately provide a better understanding of the drug’s mechanism
of action in the disease context. Therefore, we introduce PS4DR, a multimodal and in-
tegrative workflow that uses multiple data modalities (i.e., GWAS and transcriptomics)
together with pathway knowledge to predict approved drugs in new indications. Finally,
we show that our workflow is able to identify FDA-approved drugs for their known in-
dications and predict new indications for existing drugs using publicly available
datasets.

Results

We developed PS4DR, an automated workflow that enables the integration of multi-
modal datasets together with pathway information from different canonical pathway
databases to predict drug repositioning candidates in different diseases (Fig. 1). We
showcase PS4DR using real-world gene expression signatures (i.e, Open Targets [28]
and LINCS) and GWAS data (i.e, GWASdb [29], GWAS Catalog [20], GRASP [30],
and PheWAS [31]). First, the workflow filters disease and drug transcriptomics (i.e.,
gene expression signatures) with the help of GWAS data. The next step involves calcu-
lating pathway signatures for diseases and drugs via pathway enrichment analysis with
the filtered dataset. Finally, PS4DR performs an anti-correlation analysis by calculating
correlation scores between the pathway signatures of drugs and diseases to prioritize
drugs for each disease. Below, we show the utility of the workflow with three applica-
tions on how this tool can serve to i) identify drug repositioning candidates, ii)
prioritize drug combinations, and 1iii) propose drugs that simulate disease

dysregulations.

Identifying drug repositioning candidates

As a first application, we explored the list of 26 diseases for which our workflow pre-
dicted drug repositioning candidates. While our workflow predicted plenty of drug can-
didates, we considered two criteria to prioritize predicted drugs. First, we prioritized all
drugs in each disease based on their negative correlation scores. However, a drug could
have a negative correlation score by only reverting a minority of the pathways dysregu-
lated in the disease. Therefore, we also consider the relative number of the dysregulated
pathways reverted by a drug for the prioritization process. While this prioritization ap-
proach facilitated narrowing down the candidate lists, we are aware that each of the
drugs exhibiting negative correlation scores might have the potential to revert the dis-
ease condition even if they alter very few dysregulated pathways.

The distribution and Q-Q plots for the majority of the diseases that output drug pre-
dictions demonstrate that the correlation scores follow a normal distribution (Add-
itional file: Fig. S1 and Fig. S2). Hence, we applied an arbitrary threshold to the
correlation score to prioritize the proposed candidate drugs in each disease. We would
like to point out that we used the same threshold for all diseases since we are exploring
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Fig. 1 An overview of the PS4DR workflow. The workflow requires three different datasets as inputs, (i)
disease perturbed gene expression signatures, (i) genome-wide association study (GWAS) data, and (iii)
drug perturbed gene expression signatures. The first and optional part of the workflow involves different
filtering steps based on gene set intersection operations that enable the identification of genes in the gene
expression signatures that have also been identified in a GWAS of the studied disease. To retain the
maximum flexibility in the workflow, users can decide which of the filtering steps they wish to apply, if any.
The next step uses the transcriptomics datasets, filtered or not, to conduct pathway enrichment analysis
and evaluate the direction of perturbation for each affected pathway in a particular disease context. While
the dotted lines in the figure represent all possible combinations of the filtering steps that can be applied
and lead to the pathway enrichment step, solid lines show the option we chose to demonstrate the
workflow. Finally, the last step uses the correlation of the pathway scores calculated by the previous step to
prioritize drugs that are predicted to invert the pathway signatures observed in a given disease context

multiple indications; however, this threshold could be selected individually for each dis-
ease based on their underlying correlation score distributions. The applied threshold
discarded drugs with a correlation score greater than — 0.4 or drugs which did not
cover more than 50% of the affected pathways in the disease. This filtering step,
intended to reduce the number of hits and facilitate the manual investigation of the re-
sults, returned a list of predicted drug candidates for 19 diseases (Additional file 1:
Table S1). We further investigated the proposed drugs for five conditions to see
whether PS4DR was able to identify FDA-approved drugs for their known indications
and predict new indications for existing drugs in the prioritized list.

First, we focused on the predicted drug list for melanoma. We searched DrugBank
[32] and scientific literature to collect evidence for the proposed drugs and summarized
our findings in Table 1. Seven of nine predicted drugs are either already being used as
cancer drugs or currently being studied in different clinical trials. This motivates fur-
ther investigation of these drugs as repositioning candidates for the treatment of
melanoma.

The topmost drug in our predicted shortlist, Crizotinib, a non-small cell lung cancer
(NSCLC) drug, has been reported for its positive effect on melanoma by two studies
[33, 34]. While Surriga et al. [33] suggested that Crizotinib could be used in adjuvant
therapy for uveal melanoma due to its c-Met activity inhibition, recent research
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Table 1 Drug repositioning candidates for Melanoma. Drugs showing a negative correlation score
less than or equal to — 0.40 and affecting more than 50% of the dysregulated pathways in
melanoma. The last column outlines the current uses of the given drug in other conditions
according to DrugBank and scientific literature

Drug DrugBank Correlation  Affected Description
D Score Pathways
(%)
Crizotinib DB08865  —0.64 7407 Used for the treatment of locally advanced or
metastatic non-small cell lung cancer (NSCLQ).
Olmesartan DB00275  —0.85 55.56 Used for the treatment of hypertension.
Sepantronium - -0.21 74.07 Clinical trials in advanced non-small-cell lung cancer.
Bortezomib DB00188  —0.52 62.96 Used for the treatment of multiple myeloma.
Fluspirilene DB04842  —0.5 55.56 Used for the treatment of schizophrenia.
Vistusertib DB11925 —-044 66.67 Under investigation for the treatment of Advanced
Gastric Adenocarcinoma.
Olaparib DB09074  —044 66.67 A poly (ADP-ribose) polymerase (PARP) inhibitor
indicated for the treatment of Ovarian and Breast
Cancer.
Tivozanib DB11800 044 66.67 Used in trials for the treatment of solid tumors, Ovarian

Cancer, Glioblastoma, Prostate Cancer among others.

Belinostat DB05015  —043 55.56 Used for the treatment of patients with relapsed or
refractory peripheral T-cell lymphoma (PTCL).

reported strong kinase fusion association with different melanoma subtypes [35] and
encouraged the testing of kinase fusion inhibitor Crizotinib for melanoma treatment
[34]. The third drug, Sepantronium, a selective small-molecule survivin suppressant,
was reported to reduce the accumulation of survivin in G2/M mitotic arrest and induce
apoptosis in human malignant melanoma cells in combination therapy with docetaxel
[36, 37]. The following drug in Table 1, Bortezomib, is an approved drug for multiple
myeloma that was suggested as a treatment for melanoma in combination therapy with
temozolomide due to its ability to induce apoptosis and autophagic formation in hu-
man melanoma tumors [38, 39]. Another FDA approved drug Olaparib (for breast and
pancreatic carcinoma), was also found to be effective against melanoma by inhibiting
repair of single-strand DNA breaks in different combination therapies [40, 41].

The last two approved drugs in the list (i.e., Tivozanib for renal cell carcinoma and
Belinostat for peripheral T-cell lymphoma) have been positively associated with a better
response in melanoma [42, 43]. Moreover, another mTOR inhibitor drug, Vistusertib
(AZD-2014), currently in phase II clinical trial for meningioma, was reported to have a
positive impact by mTORC1/2 inhibition of the resistance to MAPK pathway inhibitors
in melanomas with high oxidative phosphorylation [44, 45]. Interestingly, we also have
two drugs, Olmesartan, for hypertension, and Fluspirilene, for schizophrenia, from very
different therapeutic areas in our shortlist. While no reports of their potential role in
melanoma treatment have been found yet, numerous studies have suggested their ap-
plicability in different cancer treatments [46-49].

We have found three drugs in breast carcinoma (Additional file 1: Table S1). The first
drug, AT-7519, a selective inhibitor of specific Cyclin-Dependent Kinases (CDKs), is
under investigation for the treatment of leukemia, lymphoma, myelodysplastic syn-
drome, and solid tumors [32]. This is in concordance with the study by Yu et al. [50]
describing how a subgroup of breast cancer patients benefited from the treatment of
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CDK4 kinase inhibitors. The next drug, Omacetaxine Mepesuccinate, used for chronic
myeloid leukemia, is in a clinical trial (NCT01844869) for treating advanced solid tu-
mors (i.e., breast, lung, colorectal and melanoma). Finally, Rigosertib has shown potent
antitumor activity in various preclinical models such as breast cancer and pancreatic
cancer xenografts and is currently under clinical trial [51].

Similarly, we found that six out of eight drugs proposed for pancreatic carcinoma are
either already being used in different cancers or have been suggested in the literature,
as we discuss below (Additional file 1: Table S1). The first drug, Fenofibrate, an antili-
pemic agent, was reported to inhibit pancreatic cancer cell proliferation via activation
of p53 mediated by upregulation of MEG3 [52]. The next drug, Menadione, was found
to induce reactive oxygen species to promote apoptosis via redox cycling in pancreatic
cells [53, 54]. Fluoxetine, originally an antidepressant agent, was also reported to work
as a chemosensitizer and acts with other cancer drugs to overcome multidrug resist-
ance in cancer cells [55]. An investigational cancer drug, Tosedostat, was found to be
well-tolerated and clinically active against pancreatic ductal adenocarcinoma patients in
phase I/II clinical trial ([56]; NCT02352831). Another drug, AZD-6482, a selective
PI3KP inhibitor, could be useful in pancreatic cancer treatment because of its apoptotic
effect in cancer cell lines [57]. Praziquantel was reported to inhibit cancer cell growth
when used synergistically with paclitaxel via downregulating the expression of X-linked
inhibitor of apoptosis protein (XIAP) [58].

While our workflow showed very promising results in cancer, we wanted to explore
the results in complex disorders with no available treatments, such as Alzheimer’s dis-
ease (AD) and multiple sclerosis (MS). In the case of AD, the workflow provided four-
teen shortlisted candidates (Table 2). The top drug on the list is Sirolimus (rapamycin),
an immunosuppressant, already proposed for the treatment of AD by different studies
[59-61]. It has been suggested that the therapeutic effect of this drug is due to the re-
duction of amyloid-beta levels caused by its inhibition of the mTOR signaling pathway

Table 2 Drug repositioning candidates for Alzheimer's disease (AD). Drugs showing a negative
correlation score less than or equal to —0.40 and affecting more than 50% of the dysregulated
pathways in AD

Drug DrugBank ID Correlation Score Affected Pathways (%)
Sirolimus (Rapamycin) DB00877 -0.69 66.67
Pevonedistat DB11759 —0.66 6061
Nilotinib DB04868 -0.64 60.61
Terfenadine DB00342 -0.57 57.58
Doxylamine Succinate DB00366 -0.57 54.55
Halcinonide DB06786 -0.57 51.52
Promazine Hydrochloride DB00420 -0.53 66.67
Mosapride DB11675 -045 60.61
Pimozide DB01100 —-045 57.58
Ritanserin DB12693 —-045 5758
Betamethasone DB00443 —044 66.67
Cinacalcet Hydrochloride DB01012 -043 7273
Methapyrilene Hydrochloride DB04819 -043 7273

Trametinib DB08911 -040 60.61

Page 7 of 21
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[61]. Another compound, Pimozide, an antipsychotic agent, was recently suggested as a
potential AD therapeutic which was reported to reduce toxic forms of tau protein by
enhanced autophagy activity via AMPK-ULK1 axis stimulation [62]. Interestingly, we
have two cancer drugs, Pevonedistat and Nilotinib, which could have potentially posi-
tive effects on AD treatment ([63—65]; NCT02947893). Pevonedistat, a neddylation in-
hibitor, could prevent neuronal damage and ameliorates cognitive deficits by
preventing NRF2 protein degradation via inhibiting neddylation [63, 65]. Nilotinib, a
tyrosine kinase inhibitor, has also been found to be very promising to delay the pro-
gression of AD by enhanced amyloid-beta clearance ([64]; NCT02947893).

Animal studies have demonstrated that the blockade of muscarinic receptors results
in increased levels of acetylcholine and improve cognition [66]. Therefore, another pro-
posed drug, Terfenadine which is a muscarinic receptor antagonist and has not yet
been linked to AD, could be a potential repositioning candidate. Similarly, several 5-
HT6R antagonists have advanced to different phases of clinical trials ([67];
NCT02258152; NCT02580305) as treatments for AD. The results also suggest another
drug in the list, Ritanserin, that has not been directly indicated for AD. The high score
proposed by our workflow to this serotonin receptor antagonist may be explained by its
regulation of the neuronal cholinergic and glutamatergic pathways, both dysregulated
in AD. Furthermore, there is increasing evidence showing that neuroinflammation sig-
nificantly contributes to AD pathogenesis [68, 69]. Hence, it is not surprising to find
two anti-inflammatory agents in our list (i.e., Betamethasone and Halcinonide) that
could be worth investigating as potential repositioning drugs. Finally, Doxylamine Suc-
cinate, a neurotransmitter agent and histamine antagonist, is also a promising candidate
since the beneficial effects of histamine antagonists in AD have been reported in mul-
tiple studies [70-72].

Finally, we investigated the top ranked drugs proposed by PS4DR for multiple scler-
osis (MS). Ranked at the top of the list, PS4DR successfully recovered methylpredniso-
lone, a corticosteroid with anti-inflammatory action prescribed to treat acute
exacerbations in patients with MS [73] (Additional File 1: Table S1).

Prioritizing drug combinations

Although we have illustrated that our workflow is able to identify candidate compounds
for drug repositioning, combining multiple drugs can provide more benefits since the
number of affected pathways can be increased by taking advantage of their synergistic
effects. Therefore, we applied our workflow to all drug pair combinations in all diseases
in order to identify therapies that could have a greater effect than single-drug treat-
ments. For this application, we exclusively considered combinations of two drugs for
two reasons: i) application of multiple drugs is usually counterproductive since it in-
creases the number of side effects and ii) calculation time increases exponentially with
an increasing number of drugs.

We investigated the predictions of our workflow in breast cancer to verify if we have
more drugs with a good negative correlation score and affected pathways (%). While we
had three drugs from our single-drug prediction approach, we were able to retrieve 489
drug pairs from the drug combination approach with the same thresholds. To facilitate

manual investigation, we increased our threshold of correlation score to less than or
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equal to - 0.50 and affected pathways greater than or equal to 80% and were still able
to retrieve 34 drug pairs (Additional file 1: Table S2). Here, all 19 new drugs in these
34 pairs are partnered with one of the top two drugs, AT-7519 or Omacetaxine Mepe-
succinate, from the single-drug approach. Fourteen of the new drugs have partnered
with both AT-7519 or Omacetaxine Mepesuccinate. While we have found literature
evidence for the beneficial role of seven of these new drugs in the treatment of breast
cancer, another six drugs are reported to have positive effects in other solid tumor
based cancer treatment as described below. The third drug from the single-drug ap-
proach, Rigosertib, which was reported to have antitumor activity in breast cancer cell
lines [51], has partnered with both AT-7519 or Omacetaxine Mepesuccinate. BGJ-398,
a fibroblast growth factor receptor inhibitor in the list, significantly prevented the out-
growth of tumor organoids in metastatic breast cancers [74]. An approved cancer drug,
Erlotinib Hydrochloride, epidermal growth factor receptor inhibitor, has shown a very
positive response rate when treated combinedly with Capecitabine and Docetaxel in ad-
vanced breast cancer patients [75]. Another drug Selumetinib, a tyrosine kinase inhibi-
tor, is currently being tested in several clinical trials (i.e., NCT03162627;
NCT03742102; NCT02503358) for different cancer types, including breast cancer.
TAK-715 is a p38 MAP kinase inhibitor in the list that cross-reacts with casein kinase
¢ (CKle). Since CKle mutations have been linked with the proliferation of different
breast cancer cell lines, this drug could be explored to repurpose it for breast cancer
treatment [76]. Another investigated drug, Tivantinib, has also shown positive effect on
breast cancer model by reducing the metastasis via ¢-MET inhibition [77]. Megestrol
Acetate, a progesterone receptor agonist, is under various clinical trials either alone or
in combination with other cancer drugs for breast cancer treatment (ie.,
NCT03306472 and NCT03024580).

AZD-1775, a drug that inhibits the G2-M cell-cycle checkpoint gatekeeper WEE1
kinase, has been used in multiple trials studying the treatment of lymphoma, ovarian
cancer, and adult glioblastoma [32, 78]. Another drug, Axitinib, a selective vascular
endothelial growth factor receptor (VEGER) inhibitor, is under investigation in different
clinical trials for various cancer types (ie, NCT02129647; NCT03494816;
NCT03472560). Moreover, four other drugs ie., BMS-777607, PF-04217903, R-406,
and Isotretinoin are reported to have positive effects in different solid tumor cancer
types in different studies [32, 79-81].

Proposing drugs that simulate disease pathway signatures

While we have initially focused on the drugs with the most negative correlation scores,
we also anticipated a potential utility for drugs showing positive correlations. Well-
characterized drugs with high positive correlation scores can provide information about
how pathways or targets could be implicated in the molecular basis of the disease.
Hence, as an extended application, the workflow may be used additionally as a
prioritization tool to identify drugs that could be potentially employed to generate in-
vitro or in-vivo models. By investigating the correlation scores (Fig. 2), researchers can
readily identify drugs that could be used for this purpose. Our workflow predicted in-
duction of disease pathway signatures for Pevonedistat in diabetes mellitus, Alvocidib
in Crohn’s disease, and Entinostat and panobinostat in systemic lupus erythematosus
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Combined Scatter Plots of Drug's Correlation Scores and Affected Pathways (%) in each Disease
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Fig. 2 Combined scatter plots of the drug’s correlation scores against affected pathways (%) in each
disease. The relative number of target pathways affected by the drug in the disease context is plotted
along the x-axis and correlation scores on the y-axis. Drugs in the top-right corner of the plot might be
interesting for developing in vitro disease models since this group of drugs shows positive correlation
scores, covering a broad range of the affected pathways. The circles represent drugs and the color coding
indicates their respective disease indication, as shown at the bottom

(SLE) through very high positive correlation scores in addition to their broad coverage
of affecting disease pathways. We see the need for further investigations of all the drugs
with both high positive correlation scores and a high percentage of affected pathways
for their use in potential disease model development.

Discussion
Numerous innovative and interesting methods are constantly being developed to ex-
ploit high-throughput biological data in drug discovery research. However, there is still
an urgent need for reproducible approaches which could systematically combine mech-
anistic knowledge with high-throughput data for drug repositioning purposes. In this
work, we propose PS4DR, a drug repositioning workflow that combines data- and
knowledge-driven information for predicting novel indications for prescribed drugs.
We demonstrate the workflow using publicly available databases for disease and drug
-omics data and employing pathway knowledge from various canonical pathway data-
bases. The results show how PS4DR provides a comprehensive overview of the targeted
pathways by drug or drug combinations and how this information can be useful to
identify drug repositioning candidates. Finally, we validated the results of the workflow
with epidemiological evidence extracted from the scientific literature to demonstrate
that the workflow also prioritizes already approved drugs for numerous conditions.
However, our work is not without limitations, which we plan to address in future re-
search. The connection between drug perturbed gene expression signatures, GWAS
data, and disease-specific gene expression signatures is based on statistics derived from
gene overlap. While the two latter datasets are disease-specific, drug-derived informa-
tion is not contextualized. The linkage across the datasets could be more informative if
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there would be datasets available with drug perturbed gene expression signatures from
disease models. Moreover, using advanced techniques such as deep learning [82] or
network-based [83] methods to bridge different data modalities by inferring the associ-
ation between heterogeneous features (i.e., genes, diseases) could also be viable alterna-
tive approaches to contextualize the data. Additionally, our workflow is limited to the
availability of summarized disease- and drug- perturbed gene expression signatures. Fi-
nally, we would like to mention that the drug combination strategy approach is agnos-
tic to other important processes such as kinetics, whether target genes are expressed in
the tissue and whether the proposed drugs can be delivered to the tissue.

Although we applied the workflow to 43 diseases and 547 FDA approved and 126 in-
vestigational drugs (clinical trial phase I-III), the flexible design of the workflow allows
for it to be run using any disease or drug for which GWAS and transcriptomics data is
available. Similarly, other pathway databases could be used in the pathway enrichment
step instead of the ones we are proposing. Therefore, we plan to use other datasets in
the future such as DSigDB for drug-induced gene expression [84] as well as other path-
way databases such as WikiPathways [85]. We also anticipate that incorporating new
data modalities such as proteomics and eQTLs could be another prospect for enhance-
ment of the workflow. While we have not considered drug side effects in our current
work, integrating side effect information in a future extension could lead to better pre-
dictions. Moreover, we purposely restricted our analysis to exclusively approved drugs
and those under clinical trial since our study was focused on finding repositioning drug
candidates. However, the presented workflow could be applied to all LINCS drug per-
turbed gene expression signatures for drug discovery purposes. Running the workflow
with novel datasets not only will provide new insights on candidate drugs but also allow
to evaluate the reproducibility of the findings presented in this work.

Conclusions

Here, we have presented PS4DR, a reproducible drug repositioning workflow that ex-
ploits multimodal datasets to predict drug candidates with the help of pathway know-
ledge. We have demonstrated how integrating pathway knowledge with transcriptomics
and GWAS data can elucidate a drug’s mode of action in a disease condition as well as
identify potential new applications for a drug. Our workflow predicted numerous drug
candidates for several diseases which were validated with epidemiological evidence ex-
tracted from the literature and clinical trials. In addition, the modular design of the
workflow enables investigators to choose any dataset from proprietary or public data-
bases which suit their experimental needs. While the increased amount and dimension-
ality of personalized health data are improving health care, we hope our systematic
approach to integrate contextual knowledge with data will pave the way towards
mechanism-based drug repositioning in precision medicine research.

Methods

Previous work from Ferrero and Agarwal [27] demonstrated that genes associated with
a disease have a tendency to be differentially expressed both in a disease and drug con-
text. Following their hypothesis, we propose a new workflow, PS4DR, that can exploit
transcriptomics and GWAS data together with pathway knowledge to predict the drugs
that best revert the pathway dysregulations observed in a given pathophysiological
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context. We compared the results generated using the PS4DR workflow with the drug-
disease associations presented by Ferrero and Agarwal [27]. These results can be found
in Additional file 1: Text Section 3.

In the following subsections, we describe our modular and flexible workflow (Fig. 1).
We begin by introducing the different data modalities (e.g., GWAS, gene expression
signatures, etc.) and the resources used in the workflow in the application scenario,
followed by the data preprocessing steps. Finally, we discuss in detail the different com-
ponents of the workflow, its implementation, and how it can be adapted to other soft-

ware tools.

Data modalities

PS4DR uses two different data modalities: GWAS and transcriptomics data. This sec-
tion describes the datasets used for each modality for the case scenario. While we used
various publicly available datasets as described below, users can use any other public or
proprietary datasets of their preference in the workflow.

GWAS data

We have collected genetic association data from different publicly available GWAS
datasets (i.e., GWASdb, GWAS catalog, GRASP, and PheWAS). We integrated these
datasets by using the Systematic Target OPportunity assessment by Genetic Association
Predictions (STOPGAP) [86] analysis pipeline that enables merging different GWAS
datasets and calculating their linkage disequilibrium (LD) to capture a wider spectrum
of relevant genetic signals. While STOPGAP offers already processed datasets, we have
used the pipeline in our workflow to process the most recent datasets from the above-
mentioned sources. All the data processed with STOPGAP were downloaded on 2nd
March 2019.

Gene expression data

We have used two different sources i.e., (i) LINCS and (ii) Open Targets to collect gene
expression datasets for drug perturbations and diseases in our workflow, respectively.
The LINCS dataset is a collection of gene expression signatures obtained by exposing
cells to a wide variety of known and novel perturbing agents following the L1000 assay.
This dataset was retrieved from the Harmonizome database [87] since it provides an
already processed version of the original datasets with more convenient attribute tables
that define significant associations between genes and attributes such as cell lines,
drugs, and dose information. Furthermore, we made use of Open Targets, a platform
that brings together multiple data types by comprehensive and robust data integration
from many public databases. It has been widely used for investigations on target identi-
fication and prioritization. We have retrieved gene expression signatures data for differ-
ent diseases using the Open Target’'s RESTful API on the 5th of March, 2019. Finally,
to demonstrate the scalability of PS4DR, we provide the source code to run the work-
flow with CREEDS [88], an analogous dataset to the two used as case scenarios in the

manuscript (https://github.com/ps4dr/ps4dr/tree/master/data/creeds).
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Data preprocessing

Since the workflow utilizes a large number of datasets coming from multiple resources
in the two data modalities (i.e., genome-wide association data and gene expression sig-
natures) used in the workflow, a series of preprocessing steps were required to
harmonize the data to make them interoperable (Fig. 3).

We harmonized Medical Subject Headings (MeSH) [89] concepts used in
GWAS studies to facilitate interoperability with the DEG data from Open Tar-
gets that exclusively uses the Experimental Factor Ontology (EFO [90]) to cata-
log disorders. Similarly, we used Ensembl identifiers as the overarching
nomenclature that harmonizes all different gene identifiers (e.g., HGNC, Entrez
Gene, etc.) in the multiple datasets. The mappings from MeSH to EFO terms
were performed using the EFO ontology (version: 2.105). The conversion from
different gene identifiers to Ensembl IDs was conducted with the Ensembl
release 97 with the biomaRt R package [91]. Finally, LINCS compound identi-
fiers were mapped to PubChem compound identifiers using the mapping table
provided by the Ma’ayan Laboratory (http://amp.pharm.mssm.edu/static/hdfs/har
monizome/data/lincscmapchemical/gene_attribute_edges.txt.gz) and then from
PubChem compound identifiers to ChEMBL identifiers using UniChem’s RESTful
API [92].

These preprocessing steps enabled us to retrieve a total of 174,648 associations
between 17,959 genes in 613 diseases from GWAS data. We have used EFO identi-
fiers of these 616 diseases to retrieve their corresponding gene expression signa-
tures in Open Targets using its APIL Finally, DEG signatures were fetched for 183
diseases with 259,594 associations between 23,998 genes. Moreover, we also re-
trieved 17,074 associations between 1060 diseases and 2103 drugs from Open Tar-
gets which were at least in clinical trial phase I. Finally, we obtained 1,427,757
associations between 8107 genes and 2700 perturbing agents from the LINCS

dataset.

GWAS Data

l
\ \ \ |

{ GWAS DB { GWAS Catalog } [ PHEWAS ]

DEGs Data

Open Targets

P
[2]
2
7]
T

\—_—)

2,107,916 associations
between 8,347 Genes for
3,924 Drug compounds

ENTREZ IDs to
ENSEMBL IDs
LINGS IDs to
PubChem IDs
PubChem IDs to
CHEMBL IDs
1,427,757 associations

between 8,107 Genes for
2,700 Drug compounds

Data Type
Data Source

288,007 associations
between 19,937 Genes
for 1,638 MeSH terms

Merging Tool
Mapping
Entity Numbers

MeSH to EFO
Gene Symbols to
ENSEMBL IDs

174,648 associations
between 17,959 Genes
for 613 EFO IDs

259,594 associations
between 23,998 Genes
for 183 Diseases

Fig. 3 Data preprocessing workflow. This workflow describes the preprocessing of gene expression
signatures (left side) and GWAS data (right side) to make them interoperable, as well as the primary and
final outcome after the preprocessing. Preprocessing steps include multiple intermediary mappings to get
common identifiers for Genes (ENSEMBL identifiers), chemicals (ChEMBL identifiers) and diseases

(EFO identifiers)
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Filtering via gene set enrichment

The PS4DR workflow contains a series of optional filtering steps that enable identifying
the genes in the transcriptomics data that have also been reported in GWAS for the
same disease. While this step adds the disease context [27] to the gene expression sig-
natures, we leave the possibility for users to omit this step and directly proceed to the
pathway enrichment analysis step. Following, we describe each of the filtering steps that
are based on calculating the significance of the overlap between the gene sets of the
transcriptomics and GWAS data using Fisher’s Exact test.

Disease gene expression signatures and GWAS data

This filtering step is based on calculating the significance of the overlap between gene
sets from disease gene expression signatures and GWAS data for each disease pair
using Fisher’s Exact test. To adjust for multiple testing, p-values were corrected with
the Benjamini-Hochberg correction [93], and gene sets with a corrected p-value above
0.05 were removed. We obtained 26,214 significantly overlapped disease pair gene sets
among all the diseases, while 43 of these gene sets originated from the same diseases.
These are the ‘disease-specific gene sets’ from 43 diseases, which are both genetically
associated and differentially expressed in the same disease. As previously reported by
Ferrero and Agarwal [27], we also observed gene sets from GWAS and transcriptomics
data of the same disease are more likely to show a significant overlap compared to gene
sets from different diseases (Additional file 1: Fig. S3).

Drug gene expression signatures and GWAS data
Using the same strategy as the previous step, we filtered drug perturbed gene expres-
sion signatures using GWAS data to retain significantly overlapped gene sets. Here, a

10 \vas used to

more stringently adjusted p-value threshold of less than or equal to le”
limit the false positive associations since the drug perturbed data do not have any direct
disease context. However, we used additional drug-disease associations retrieved from
Open Targets to give disease context, to an extent, to the drug perturbed gene expres-
sion signatures. Finally, we obtained 22,551 significantly overlapped gene sets which are
genetically associated with a particular disease and also differentially expressed by drug

perturbations in the same disease context.

Disease gene expression signatures, drug gene expression signatures, and GWAS data

The final step involves further filtering of the resulting gene sets of the two previ-
ous filtering steps by applying the same strategy. The aim of this final filtering step
is to retrieve drug perturbed differentially expressed gene sets in a disease which
are also genetically associated with that same disease. In our case scenario, we ob-
tained 14,631 unique drug-disease pairs with significant gene sets (g-value > 0.05)
from all possible drug-disease pairs (total number of pairs). These two gene sets
(i.e., disease-specific and drug-specific gene sets) will be used in the next step for
each disease to identify the drugs that revert the signatures observed in the disease
condition.
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Pathway enrichment analysis

We next use pathway enrichment analysis in each disease to calculate the sign of path-
way dysregulation (i.e., up- or down-regulation) in both of the input datasets (i.e.,
disease-specific gene sets and drug-specific gene sets) using one or multiple pathway
databases of reference. By running pathway enrichment analysis, we obtain two vectors,
one for each input dataset, indicating the sign of dysregulation for each pathway (ie.,
up- or down-regulated and no change). Here, it is important to note that pathway en-
richment acts as a dimensionality reduction technique by narrowing down the genetic
space (on the scale of thousands) to the pathway space (on the scale of hundreds)
(Additional file 1: Text Section 4). Although numerous pathway enrichment methods
can be applied to the workflow (e.g., GSEA, Signaling Pathway Impact Analysis (SPIA)
[94]), the method applied must ultimately provide the sign of pathway dysregulation
since this information will be used in the following step for drug prioritization.

Here, we demonstrate the workflow using one of the most popular topology-based
enrichment methods, SPIA, on three pathway databases (i.e., KEGG [95]; Reactome
[96]; and Biocarta [97]). Since SPIA requires the pathway input files in a specific binary
matrix format, we have used two different tools to prepare pathway datasets for SPIA
input. The SPIA package already provides a function to prepare the pathway input file
for KEGG’s KGML files. Therefore, we have downloaded the latest KGML files from
KEGG'’s ftp site on 27 June 2019 and used the SPIA function ‘makeSPIAdata’ to convert
them to the SPIA required input format. However, this function only works with the
KGML file format, which is a modified XML used by KEGG. Therefore, we used graph-
ite (v 1.30.0 - release 2019-04-17) [98] to create additional pathway input files for SPIA
calculations. First, we retrieved the Reactome and Biocarta pathway files by using the
graphite function ‘pathways’ and then we prepared SPIA input files of these two data-
bases by using another function, ‘prepareSPIA’. Both these data sets were time-stamped
with 2019-04-17. However, as previously mentioned, the workflow could be adapted to
employ other pathway enrichment analysis methods such as GSEA (Additional file 1:
Text Section 2). First, we performed SPIA on 43 ‘disease-specific gene sets’ in order to
evaluate signed pathway dysregulation in a disease context. Next, we conducted SPIA
for ‘drug-specific gene sets in disease’ which gives signed pathway dysregulation for all
available approved drugs and those under clinical trial in each of 43 diseases. Moreover,
to evaluate whether SPIA results can be statistically significant, we performed SPIA
with the simulated pathways created using the genes from KEGG, Reactome, and Bio-
carta. The results of SPIA from these randomly simulated pathway constructs rarely
yielded significant up- or down-regulated pathways for any of the diseases we tested;
thus, this confirms that true pathways are biologically meaningful (Fig. 4).

Drug prioritization: correlation score

The final part of the workflow uses the results of pathway enrichment methods to
prioritize drugs based on how well they can counteract the overall pathway signatures
on each disease. First, only the statistically significant pathways (g-value < 0.05) which
are up- or down-regulated in drug and diseases contexts are considered. Next, to facili-
tate calculating the correlation scores, each affected pathway is assigned with +1 or - 1
depending on whether it is up- or down-regulated, respectively. Finally, Pearson’s
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a p-value = 8.26e-102 b  pvalue =3.05e-114 € p-value =8.01e-09
12

KEGG Pathways Simulated KEGG Pathways Reactome Pathways ~ Simulated Reactome Pathways Biocarta Pathways  Simulated Biocarta Pathways
Di of the p-values from SPIA of True and Pathways

Fig. 4 Distributions of the p-values resulting from SPIA true and simulated pathways represented as violin
plots for a) KEGG, b) Reactome, and c) Biocarta pathway databases. Mann-Whitney U test confirmed that
the distributions are significantly different for all three pathway databases (KEGG: p-value = 8.26¢ "%
Reactome: p-value =3.05e ', Biocarta: p-value =8.01e~ %), These results demonstrate that while true
pathways yield meaningful results (i.e, lower p-values), simulated pathways are rarely significantly enriched

correlation coefficient is calculated using the drug pathway signature vectors against
the disease pathway signature vectors. This step results in a list of 26 diseases, while
some of the diseases did not have any drugs with a correlation score as the standard
deviation was zero for both vectors. Alternatively, Levenshtein distance [99] was also
used to calculate the dissimilarity score between the drug and disease pathway signa-
ture vectors. We selected arbitrary thresholds for correlation scores (i.e., less than or
equal to - 0.4) and affected pathways (i.e., greater than or equal to 50%) to reduce the
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Fig. 5 ROC curve of PS4DR predicted drugs. ROC curve with 95% confidence interval obtained using
existing clinical trials for predicted drugs as positive labels and correlation scores as the ranking metric
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number of drug candidates in each disease for further manual investigation. However,
users can decide the threshold according to their preferences. As a validation step, we
generated the ROC curve (Fig. 5) for the predicted drug-disease associations by using
the correlation scores as predictors and their available clinical trial evidence as labels.
The resulting AUC of 0.69 demonstrates that PS4DR can prioritize several drugs for
given diseases that are already on clinical trials. While we achieved a slightly higher
AUC-ROC than Ferrero et al. (AUC-ROC = 0.64), we must note some subtle methodo-
logical differences. First, we used a dataset that is 2 years newer than Ferrero et al.
(2019 versus 2017). Second, we used anti-correlation scores as the predictor instead of
adjusted p-values from Fisher’s test for significantly overlapped genesets. Third, we
used the same methodology to calculate the AUC, but because of our prioritization,
had a smaller number of drug-disease pairs. This was reflected in our wider confidence
intervals (0.59-0.82).

Software and code

R 3.5.1 was used for all data processing and analysis. All code is publicly available at
https://github.com/ps4dr/ps4dr under the Apache 2.0 License. Dependencies of the
modules used by the workflow and their specific versions are outlined in the repository.
Furthermore, we packaged the workflow into a single shell script that can run all the
steps with a single command, thus, enabling the reproducibility of the results in the fu-
ture. Finally, the README file includes an introduction and a tutorial on how to use
PS4DR and how to add or modify modules within the workflow.
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Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-03568-5.
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