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The global pandemic of coronavirus disease 2019 (COVID-19) has chal-
lenged healthcare systems worldwide. Lockdown, social distancing, and
screening are thought to be the best means of stopping the virus from
spreading and thus of preventing hospital capacity from being overloaded.
However, it has also been suggested that effective outpatient treatment can
control pandemics. We adapted a mathematical model of the beneficial
effect of lockdown on viral transmission and used it to determine which
characteristics of outpatient treatment would stop an epidemic. The data
on confirmed cases, recovered cases, and deaths were collected from Santé
Publique France. After defining components of the epidemic flow, we
used a Morris global sensitivity analysis with a 10-level grid and 1000 trajec-
tories to determine which of the treatment parameters had the largest effect.
Treatment effectiveness was defined as a reduction in the patients’ conta-
giousness. Early treatment initiation was associated with better disease
control—as long as the treatment was highly effective. However, initiation
of a treatment with a moderate effectiveness rate (5%) after the peak of the
epidemic was still better than poor distancing (i.e. when compliance with
social distancing rules was below 60%). Even though most of today’s
COVID-19 research is focused on inpatient treatment and vaccines, our
results emphasize the potentially beneficial impact of even a moderately
effective outpatient treatment on the current pandemic.
1. Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
infected more than 192 million people worldwide (COVID-19) since January
2020, and more than 4 million of the latter have died from coronavirus disease
2019 (COVID-19) [1]. Although around 85% [2] of cases of COVID-19 are mild,
severe forms of the disease necessitate hospital admission and (often) intensive
care—placing severe strain on health structures and systems.

To limit the influx of patients and to avoid exceeding hospital capacity, lock-
down, social distancing and screening strategies are thought to be the best
means of stopping viral transmission. Indeed, several recent studies showed
the effectiveness (but also the limitations) of these strategies [3–6].

Most of the ongoing therapeutic research is focused on developing vaccines,
decreasing the severity of COVID-19 or treating severe forms of the disease
requiring intensive care; by contrast, only 5% of registered clinical trials are
looking at outpatients with COVID-19, and even fewer are focusing on how
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Figure 1. A compartmental representation of the model. Blue arrows describe the infection flow and green arrows describe the treatment. The purple arrow
indicates death.
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to reduce contagiousness in this context. The lack of studies
of contagiousness is slowing attempts to reduce the spread
of the virus at a time when outpatients should be the primary
target of therapeutic research on COVID-19.

Mathematical modelling can predict the course of the
COVID-19 pandemic as a function of various factors and
strategies. Recently, we modelled the beneficial effect of lock-
down on viral transmission [7]. Here, we used an adapted
model, made of six nonlinear differential equations with
delay, to determine which features of a drug treatment
would have a greater effect than social distancing on pan-
demic control. This approach has been used to model the
Ebola epidemic [8].

Nowadays, many mathematical models have been pro-
posed to help control the epidemic. Most of them deal with
non-pharmaceutical methods. For example, one widely
relied upon (Flaxman et al. [9]), individual-based model,
suggested how isolation and quarantine might mitigate the
epidemic spread. Boulmezaoud [10] proposed alternate
strict and moderate lockdown periods based on a discrete
SIR model. Liu et al. [11] studied the impact of school closure
and movement restrictions through a statistical analysis.
Mammeri [12] proposed a spatially explicit model to measure
localized restrictions. A review of models proposed for non-
pharmaceutical interventions during the COVID-19 has
been written by Perra [13].

Concerning pharmaceutical interventions, most of the
models deal with the vaccination. In Dashtbali & Mirzaie
[14], Giordano et al. [15], Moore et al. [16] or Xu et al. [17],
vaccination is modelled in a new compartment of SIR-type
by considering that susceptible individuals are vaccinated
without delay.

To the best of our knowledge, the present work is the first
to model the effects of various features of treatment on the
progression of the pandemic. Our result showed that treat-
ment start and compliance with treatment are the most
important factors for reducing the transmission. Even a com-
pliance with treatment as low as 25% with an effectiveness
rate of 20% would be better than the current social distancing
strategy. Minimal effectiveness was provided and may be of
paramount importance to develop drugs for treating
ambulatory patients with COVID-19.
2. Material and methods
2.1. Data on confirmed cases and deaths
The data on confirmed cases, recovered cases and deaths came
from the publicly available COVID-19 dataset curated by Santé
Publique France (https://www.data.gouv.fr/fr/organizations/
sante-publique-france/). These anonymized data are collected
from the public health authorities, and so ethical approval was
not required.
2.2. The mathematical model
We focused on six components of the epidemic (figure 1): sus-
ceptible (S), a person who is at risk of contracting the disease;
exposed (E), a person who has been exposed to the disease;
symptomatic infected individual (Ic), a confirmed positive case
of infection with SARS-CoV-2 symptoms; outpatient treatment
(T), a confirmed infected individual with mild symptoms and
who can receive ambulatory treatment; unreported infected
(Iu), an asymptomatic or symptomatic infected individual who
have not been reported; removed (R), a person whose disease
has been cured and who is therefore removed from the model.
The number of deaths due to the disease is denoted by D and
satisfies D’(t) = μIc(t).

We first assumed that a susceptible individual can be
infected by exposed individuals, confirmed symptomatic
infected individuals and unreported infected individuals. We
further assumed that only confirmed infected individuals with
symptoms can be treated. The system is governed by six ordinary
differential equations, as follows:

S0(t) ¼ �v(t)(beEþ bcIc þ buIu)
S
N

E0(t) ¼ v(t)(beEþ bcIc þ buIu)
S
N

� dE

I0u(t) ¼ (1� p)dE� gIu
I0c(t) ¼ pdE� (gþ m)Ic � nrIc(t� t)
T0(t) ¼ nrIc(t� t)� gT
R0(t) ¼ g(Iu þ Ic þ T):

8>>>>>>>>>><
>>>>>>>>>>:

The model’s parameters are described in electronic sup-
plementary material, figure S1. The parameter ω is the average
contact rate, βe, βc and βu, are the probability transmission due
to the exposed, confirmed infected, unreported infected individ-
uals, respectively. The latency period is equal to 1/δ, while the
recovery period is equal to 1/γ. The probability of being
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Figure 2. The treatment start date tstart is the most influential parameter
regarding the maximum confirmed infected individuals, compliance with
treatment ρ is also influential, and the onset of action τ and the drug’s effec-
tiveness ν are less influential. The absolute mean value μ* versus the
standard deviation σ of elementary effects, with the maximum number of
confirmed infected individuals as the output between 24 January and 8 Sep-
tember 2020 (green stars for the first lockdown period), and afterwards (red
dots for the second lockdown period). The uppermost parameters (i.e. those
with large σ values) correspond to nonlinear and interaction effects, while
the rightmost parameters (i.e. those with large μ* values) correspond to
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confirmed symptomatic is p, and the probability of being
unreported is 1− p. The death rate is denoted by μ.

Given that treatment is not instantaneous, a differential
equation with τ is used to account for the time interval between
treatment initiation and the onset of the drug’s effectiveness.
Here, N corresponds to the total living population. It is note-
worthy that the mean number of contacts ω varies with time,
in order to account for the start and end of lockdown.

Details about parameter calibration and model resolution can
be found in the electronic supplementary material.

2.3. Treatment features
Four crucial parameters determine how effectively outpatient
treatment can control an epidemic: the drug’s effectiveness (ν,
defined here as the ability to reduce a patient’s contagiousness),
the compliance with the treatment (ρ, defined here as the fraction
of infected individuals who are compliant with treatment), its
onset of action (τ, i.e. the time delay between a treatment’s
initiation and its effectiveness) and the treatment start date (tstart)
relative to the start of the epidemic.

We used a Morris global sensitivity analysis with a 10-level
grid and 1000 trajectories to determine which of the treatment
parameters had the largest effect [18]. The tested parameter
ranges were 0 to 1 for the compliance with treatment ρ, 0.05 to
0.35 for the drug’s effectiveness ν, 5 to 10 days for the time
delay τ. The treatment start date tstart ranges from 52nd day to
198th day for the first simulation, i.e. from 16 March to
11 June. For the second simulation, the treatment start date
tstart ranges from 52nd day to 163rd day again, i.e. from the
30 October to 17 March.
linear and additive effects. The sensitivity analysis’s output was the maximum
confirmed infected individuals.
3. Results
3.1. The treatment initiation date
The most influential parameters (as judged by the absolute
mean tendency (μ*) and the standard deviation (σ) of the
elementary effects) are shown in figure 2. The further a par-
ameter is from the origin, the more influential it is. The
uppermost parameters (i.e. those with large σ values) cor-
respond to nonlinear and interaction effects, while the
rightmost parameters (i.e. those with large μ* values) cor-
respond to linear and additive effects. The treatment start
date (tstart) had the greatest influence on the epidemic
peak (green stars in figure 2); the earlier the treatment
was initiated, the flatter the peak—even when the drug’s
effectiveness (ν) was low and/or its onset of action (τ)
was long. Once the first wave had passed, the onset of
action had less influence, and effectiveness became a
more influential parameter. The compliance with treat-
ment (ρ) became an important driver of the epidemic
(red dots in figure 2).

3.2. Treatment versus infection multiplier
Here, we assumed that the treatment’s onset of action was
5 days, and that the treatment had been initiated when the
lockdowns had ended.

Concerning the time period 24 January 2020 to 8 Septem-
ber, we determined the number of confirmed infections as a
function of compliancewith social distancing rules (figure 3a),
the treatment’s effectiveness (figure 3b) and as a function of
compliance with treatment (figure 3c). In mathematical
terms, the drug’s effectiveness ν is set to 0 for the absence
of treatment, and the infection rate multiplier η varies
between 0 and 0.36 (figure 3a). For treated patients with
full compliance with treatment (ρ = 1), the drug’s effective-
ness ν varies between 0.05 and 0.35 (figure 3b). For treated
patients with altered compliance with treatment, the drug’s
effectiveness ν is set to 0.2 and the compliance with treatment
ρ varies between 0 and 1 (figure 3c). In both cases, the
infection rate multiplier η is set to 0.36, which corresponds
to the worst-calibrated scenario. It corresponds to 67% of
compliance with the distancing rule.

We found that with an effectiveness rate of 16% 5 days
after administration with full compliance with treatment, out-
patient treatment is as good as a distancing compliance rate
of 71%. For an effectiveness rate of 20% 5 days after adminis-
tration, 79% compliance with treatment is as good as a
distancing compliance rate of 71%. If the distancing compli-
ance rate is 70% or less, treatment always offers better
results—even when the effectiveness rate is only 5%, or
when the compliance rate is only 25%. By way of an example,
the number of confirmed infected cases in France at
8 September (the red dotted line in figure 3) corresponds to
a compliance rate of 67%, and an effectiveness rate of only
5% flattens the epidemic curve in this scenario (figure 3b),
as well as a compliance rate of 25% (figure 3c).

Concerning the time period 8 September 2020 to 20 March
2021, because of the emergence of new strains, we determined
the number of confirmed infections as a function of infection
multiplier (figure 3a), the treatment’s effectiveness (figure 3b)
and the compliance with treatment (figure 3c). In mathemat-
ical terms, the drug’s effectiveness ν is set to 0 for the
absence of treatment, and the infection rate multiplier η
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varies between 0 and 1.25 (figure 3a). For treated patients with
full compliancewith treatment (ρ = 1), the drug’s effectiveness
ν varies between 0.05 and 0.35 (figure 3b). For treated patients
with altered compliance with treatment, the drug’s effective-
ness ν is set to 0.2 and the compliance with treatment ρ
varies between 0 and 1 (figure 3c). In both cases, the infection
rate multiplier η is set to 1.25, which corresponds to the
worst-calibrated scenario.
We found that with an effectiveness rate of 16% 5 days
after administration with full compliance with treatment, out-
patient treatment is as good as reducing the infection
transmission by 25%. For an effectiveness rate of 20%
5 days after administration, 79% compliance of treatment is
as good as good as reducing the infection transmission by
25%. If the multiplier rate reduction is 24% or less, treatment
always offers better results—even when the effectiveness rate
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is only 5%, or when the compliance rate is only 25. By way of
an example, the number of confirmed infected cases in France
on 20 March (the red dotted line in figure 3) corresponds to
an increasing of 125% of the infection rate, and an effective-
ness rate of only 5% flattens the epidemic curve in this
scenario (figure 3b), as well as a compliance rate of 25%
(figure 3c).

3.3. Optimal effectiveness
We next sought to determine the minimum effectiveness rate
(parameter minimums are symbolized with *) required to
produce a target number of confirmed symptomatic infected
individuals (Ic*) at a given time t* (figure 4).

By way of an example, we assumed that the objective is
set in the number of confirmed infected individuals as Ic* =
10 000, 30 days after treatment initiation (which corresponds
to more than a 10-fold reduction relative to the absence of
treatment). Figure 4a shows that the relative decrease in the
peak number of confirmed infected individuals depends on
the treatment start date: the longer one waits to introduce
treatment, the more effective that treatment needs to be
(figure 4b). Indeed, a drug administered during the beginning
of the epidemic could be less effective (an effectiveness rate of
18%, if treatment starts day 69, i.e. 30 days before the first epi-
demic peak), whereas nowadays it must be more effective (an
effectiveness rate of 57% if treatment starts day 400).

A lower effectiveness rate is less problematic during the
lockdowns. The rate goes from 18% to 14% during the first
lockdown, and the rate goes from 41% to 38% during the
second lockdown.
4. Discussion
To the best of our knowledge, the present study is the first to
have determined which features of a candidate treatment
have the greatest influence on stopping the COVID-19 pan-
demic. We showed that to reduce the number of infected
individuals by a factor of 10 000, starting treatment early is
the best option. We showed that lower effectiveness is
required when combining with the lockdown. Our findings
on minimal effectiveness may be of value for pharmaceutical
companies repurposing old drugs or developing new drugs
for treating ambulatory patients with COVID-19 during a
putative ‘wave’.

Most importantly, our study’s key finding is that a treat-
ment with an effectiveness rate as low as 5% would be
better than the current social distancing strategy (or rather
the current rate of compliance with distancing rules) for redu-
cing the transmission of COVID-19. Our result showed that
compliance with treatment is one of the most important fac-
tors determining the success of reducing the transmission
(figures 2 and 3). Even a compliance with treatment as low
as 25% would be better than the current social distancing
strategy. France were facing a plateau ‘wave’ or even a new
‘wave’. Social distancing rules are not sustainable, and new
strains of the virus are emerging. Our model shows that a
compliance rate of over 60% would have prevented a
second wave; however, the value in France was gradually
falling below that threshold. Hence, finding a treatment that
would help to slow down—even a little—or stop the epi-
demic is imperative. These findings are likely to be of value
to clinical trial investigators, who usually seek a clinically
meaningful effect of at least 20% [19].

The concept of curative treatment of outpatients has not
previously been applied to the control of infectious disease
epidemics. For example, curative treatment of influenza has
been reserved for symptomatic individuals, and prophylactic
treatment has been reserved for at-risk patients (i.e. for
non-infected asymptomatic patients) [20]. In cholera out-
breaks, only hospitalized patients and those with
moderate-to-severe disease are treated, and prophylaxis
is not recommended.

However, three issues (safety, testing and follow-up) arise
when considering the large-scale treatment of outpatients.
First, the candidate drug(s) must be very safe in a population
with no signs of disease. Given that the drug will be widely
distributed, side effects must be very rare and non-serious;
otherwise, the risk–benefit ratio will not be acceptable, and
any potential epidemiological benefits will be lost. Second,
this strategy requires large-scale testing and thus significant
laboratory resources. However, the population is now
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accustomed to testing, and most countries have already
implemented point-of-care screening. Furthermore, treatment
after testing will probably be better received than the current
self-isolation and sick leave measures. The introduction of
rapid tests (less than 30 min) allows for wide expansion.
Lastly, follow-up procedures must be easy to perform and
reliable. The treatment should not require repeated blood
tests, and the preferred use of telemedicine applications
might help to avoid overloading the healthcare system. The
lack of a need for follow-up would be better still because
the patient would be rapidly and definitively cured.

The candidate drug’s onset of action is an important epi-
demiological and medical parameter in the putative
ambulatory treatment of patients with COVID-19—notably
with regard to transmission control and potential disease
aggravations [21]. We tested a value of between 5 and 10
days in our model. Although such a long onset of action
would be unlikely, even then outpatient treatment would be
very effective. Our model voluntarily underestimated treat-
ment efficacy based on that parameter but nevertheless
highlighted the treatment’s ability to control the epidemic.

Delay differential equations are widely used in epidemiol-
ogy in general and in the field of infectious disease in
particular [22,23]. They have been used to describe the propa-
gation of influenza, severe acute respiratory syndrome,
hepatitis B virus and even COVID-19 [24–27]. However, the
time interval in these models was related to the time delay
for disease transmission or the latency period. Here, the
time interval corresponded to a drug’s onset of action.

Our study had several limitations. First, our comparison
of social distancing and efficacy did not take account of
uncertainties in compliance with distancing rules, e.g. behav-
ioural shifts with regard to wearing masks. Second, the
compliance with treatment could be more sophisticated to
account patient’s behaviour. Third, we assumed that all
tested patients would be treated and did not calculate the
number of patients to treat required to achieve control. How-
ever, our results prove that outpatient treatment must be a
primary research focus if the epidemic is to be controlled.
However, and since most of the patients arriving in the
Amiens University Hospital are symptomatic, only con-
firmed individuals are treated in our model. As noted by
Wiseman et al. [28], it would be interesting to be able to
perform this very early treatment of exposed individuals.

The number of asymptomatic people with COVID-19 has
been certainly largely underestimated [2,29]; if this is true,
then the 24 million individuals infected since January 2020
represent the tip of the iceberg. Controlling the pandemic
will require the treatment of a huge number of people.
However, in view of the global economic crisis caused by
SARS-CoV-2, ending the epidemic is essential.
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