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The Melatonin Analog IQM316 May
Induce Adult Hippocampal Neurogenesis
and Preserve Recognition Memories
in Mice

Joana Figueiro-Silva1,2,3, Desireé Antequera1,2,3, Consuelo Pascual1,2,3,
Mario de la Fuente Revenga4, Huayqui Volt5, Darı́o Acuña-Castroviejo5,
Marı́a Isabel Rodrı́guez-Franco4, and Eva Carro1,2,3

Abstract
Neurogenesis in the adult hippocampus is a unique process in neurobiology that requires functional integration of newly
generated neurons, which may disrupt existing hippocampal network connections and consequently loss of established
memories. As neurodegenerative diseases characterized by abnormal neurogenesis and memory dysfunctions are increasing,
the identification of new anti-aging drugs is required. In adult mice, we found that melatonin, a well-established neurogenic
hormone, and the melatonin analog 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) were able to
induce hippocampal neurogenesis, measured by neuronal nuclei (NeuN) and 5-bromo-20-deoxyuridine (BrdU) labeling. More
importantly, only IQM316 administration was able to induce hippocampal neurogenesis while preserving previously acquired
memories, assessed with object recognition tests. In vitro studies with embryonic neural stem cells replicated the finding that
both melatonin and IQM316 induce direct differentiation of neural precursors without altering their proliferative activity.
Furthermore, IQM316 induces differentiation through a mechanism that is not dependent of melatonergic receptors (MTRs),
since the MTR antagonist luzindole could not block the IQM316-induced effects. We also found that IQM316 and melatonin
modulate mitochondrial DNA copy number and oxidative phosphorylation proteins, while maintaining mitochondrial function
as measured by respiratory assays and enzymatic activity. These results uncover a novel pharmacological agent that may be
capable of inducing adult hippocampal neurogenesis at a healthy and sustainable rate that preserves recognition memories.
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Introduction

The brain is capable of generating new neurons every day

and throughout lifespan in the process of adult neurogen-

esis.1 The main neurogenic regions of the brain are the sub-

ventricular zone (SVZ) of the lateral ventricles, where new

neurons are generated and then migrate to the olfactory bulb

to become interneurons; and the subgranular zone (SGZ) in

the dentate gyrus (DG) of the hippocampus, where new neu-

rons differentiate and integrate into the local network as

dentate granule cells.2,3 Since the hippocampus is a key

structure for memory formation, many studies have focused

on how new neurons contribute to memory. Hippocampal

neurogenesis has been suggested to enhance memory forma-

tion by improving pattern separation4,5 and completion6 as

well as memory resolution.7 Yet, recent studies found
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evidence that adult neurogenesis interferes with existing

memories, leading to forgetting,8,9 suggesting that adult hip-

pocampal neurogenesis impacts old and new memories dif-

ferently. Adult hippocampal neurogenesis can be modulated

by a variety of physiological and pathological factors.10 An

enriched environment and physical exercise have been shown

to promote neurogenesis and are associated with improved

performance on hippocampus-dependent tasks.11,12 In con-

trast, acute and chronic diseases, and genetic or epigenetic

mutations, reduce adult neurogenesis and are associated with

impaired performance on tests of hippocampus-dependent

learning and memory.12–15 Extracellular signaling molecules

have also been shown to regulate neurogenesis in the adult

DG including g-Aminobutyric acid (GABA), WNT, insulin

growth factor (IGF), and the neurohormone melatonin.2,3

Melatonin (N-acetyl-5-methoxytryptamine) was first

discovered as the hormone of the pineal gland and has now

been shown to be produced by many organs.16 It has pleio-

tropic neurobiological functions (reviewed in Hardeland

et al.17) including modulation of adult hippocampal neuro-

genesis and mitochondrial function. Moreover, melatonin

modulates proliferation in the DG of early postnatal rats,18

promotes neurogenesis in the DG of pinealectomized rats,19

and enhances cell survival and dendrite maturation of new

neurons in the hippocampus of adult mice.20,21 In vitro

studies also confirmed that melatonin influenced prolifera-

tion and differentiation of embryonic and adult rat midbrain

neural stem cells (NSCs).22,23 Due to the wide array of

functions that melatonin displays,24 pharmaceutical

research has focused on the development of new agents

derived from melatonin.25 Recently, we developed a new

family of melatonin-based compounds in which the aceta-

mido group of melatonin was replaced by several bioisos-

teric groups and we tested their neurogenic effects in

vitro.26 Among these melatonin derivatives, 2-(2-(5-meth-

oxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole

(IQM316) was chosen for further preclinical studies,

namely, modulation of adult neurogenesis, recognition

memory, and mitochondrial function, to delineate its ther-

apeutic usefulness.

Materials and Methods

Materials

5-Bromo-20-deoxyuridine (BrdU), dimethyl sulfoxide

(DMSO), free fatty acid bovine serum albumin (BSA),

poly-D-Lysine (PDL), laminin, 40,6-diamidino-2-

phenylindole (DAPI), all-trans-retinoic acid, melatonin, and

luzindole were purchased from Sigma-Aldrich (Madrid,

Spain). IQM316 was synthesized as previously described26

(IQM316 is referred as compound 16).

Animals

The 3-mo-old C57BL/6j male mice were obtained from Jan-

vier (France). A total of 48 mice were divided into 6 groups

(8 mice per group). They were housed in standard laboratory

cages under 12-h light/12-h dark cycles. The animals had

access to food and water ad libitum. All animals were

handled and cared for according to the Council Directive

2010/63/UE of September 22, 2010.

Treatments

IQM316 and melatonin stock solutions were initially dis-

solved in a minimum amount of DMSO. Working solutions

at a concentration of 2 mg/kg body weight were prepared by

diluting stock solutions in phosphate buffered saline (PBS)

(pH 7.2). The final volume of DMSO in working solutions

was less than 1%. Vehicle solution was prepared with an

equivalent amount of the PBS/DMSO fluid only. Tubes con-

taining the solutions were wrapped in aluminum foil to pre-

vent light-induced degradation.

Animals were injected intraperitoneally (i.p.) with

IQM316, melatonin, or vehicle at zeitgeber time ZT11

(ZT0 corresponds to the beginning of the light phase of the

daily cycle). For acute treatment, animals were administered

2 mg/kg body weight of either IQM316 or melatonin or

vehicle solution for 7 d, whereas for chronic treatment, ani-

mals were administered for 28 d. The thymidine analog

BrdU (50 mg/kg body weight) was also injected i.p. daily

for the first 7 d. All animals were sacrificed 29 d after the

beginning of treatment.

Novel Object Recognition Test

The novel object recognition test is based on the innate

tendency of rodents to explore novel objects over familiar

ones; thus, a rodent that remembers the familiar object will

spend more time exploring the novel object. Mice were

placed into an open-field (OF) box consisting of a quad-

rangular area (60 cm wide � 60 cm long � 60 cm high) and

were habituated for 15 min. The next day, the training trial

(familiarization phase) was performed by placing the ani-

mals in the same OF box with the first object (object A;

yellow marble) for a period of 10 min. The testing trial (the

test phase) was performed either 3 or 24 h later, by includ-

ing a novel object (object B, red dice) placed together with

the first object (object A), and the animals were left in the

OF box for 10 min. The exploration of the objects was

considered when sniffing or deliberate contact occurred

with the objects or when the animal’s snout was directed

toward the object at a distance <1 cm. The exploration time

for the familiar (TF) or the novel object (TN) during the test

phase was recorded by hand by an observer blind to the

treatment status of the mice, and the discrimination index

(DI) was calculated as the difference in exploration time

between novel and familiar objects, dividing this value

by the total amount of exploration of both objects, DI ¼
(TN � TF)/(TN þ TF).27
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Tissue Preparation

After completion of the novel object recognition test, ani-

mals were deeply anesthetized with isoflurane, transcar-

dially perfused with 0.9% saline, and brains were

immediately removed. One hemisphere of the brain fixed

in phosphate-buffered 4% paraformaldehyde, pH 7.4, at 4
�C for immunohistochemical studies. The hippocampus

from the other hemisphere was dissected and immediately

stored at �80 �C until its use for further analysis.

Immunohistochemistry and Imaging

Immunohistochemistry for BrdU and NeuN was done on

free-floating sections. Briefly, fixed brains were cut on a

vibratome (Leica Microsystems) at 30 mm, and tissue sec-

tions were collected in cold phosphate buffer (PB) (0.1 M).

DNA was denatured by incubation with 2 N HCl for 30

min at room temperature (RT). Nonspecific staining was

blocked with 10% horse serum and 0.5% Triton X-100 in

(0.1 M PB) for 1 h at RT and then incubated overnight

with primary antibodies at 4 �C. Primary antibodies were

mouse anti-BrdU (1:15,000, Hybridoma Bank, Iowa City,

IA, USA) and rabbit anti-NeuN (1:1,000, Merck Millipore,

Darmstadt, Germany). Then, secondary fluorescent antibo-

dies Donkey Anti-Mouse Alexa Fluor 488 Conjugate and

Goat Anti-Mouse and Goat Anti-Rabbit Texas Red Con-

jugate (both 1:1,000, Thermo Fisher Scientific, Madrid,

Spain) were incubated for 1 h at RT. Sections were

mounted with FluorSave reagent (Merck Millipore) onto

gelatinized slides. The estimated total number of BrdU-

positive cells or BrdU/NeuN-positive cells per granule cell

layer of the DG was counted in a 1-in-6 series of sections

(180 mm apart) from each mouse. The resulting numbers

were multiplied by 6. The entire DG was scanned under a

Zeiss confocal microscope at a magnification of 40� and

Z-stacks were acquired to confirm the double-positive

cells, as previously described.28

RNA, DNA, and Protein Extraction

Mouse hippocampi were homogenized in TRIzol (Thermo

Fisher Scientific) and total RNA, DNA, and protein were

extracted according to the manufacturer’s instructions.

RNA integrity was verified by 260/280 optical density

ratios. DNA was further precipitated by sodium acetate/

ethanol, and DNA integrity was verified by 260/280 opti-

cal density ratios. For increased efficiency of protein

extraction, the last step of protein elution was slightly

modified as described in Simoes et al.’s study.29 Briefly,

protein pellets from TRIzol extraction were solubilized in

1% SDS/8 M urea, sonicated 5 times for 15 s, with 30 s

pauses in ice and centrifuged at 3,200g for 10 min. Pro-

tein concentration was measured using the Pierce BCA

Protein Assay Kit (Thermo Fisher) and 6-fold dilutions to

prevent BCA reaction inhibition by urea and SDS. NSCs

cultured in an adherent monolayer under differentiation

for 12 d were homogenized in TRIzol, and total RNA was

extracted according to the manufacturer’s instructions.

Real-Time Quantitative Polymerase Chain Reaction
(RT-qPCR)

Mitochondrial DNA (mtDNA) was quantified in triplicates

using 1 ng of DNA extracted from the hippocampus and

performed with SsoAdvanced Universal SYBR Green

Supermix (Bio-Rad, Madrid, Spain). mtDNA was amplified

using primers for murine 12S ribosomal RNA gene

(mtDNA), whereas nuclear DNA (nDNA) was amplified

using primers for murine 18S ribosomal RNA gene.30 The

values of mtDNA levels were normalized by nDNA, and the

data expressed relative to vehicle-treated mice.

Mitochondrial biogenesis genes RT-qPCR was run in tri-

plicates using 50 ng of RNA extracted from the hippocampus

and performed with an iTaq Universal SYBR Green One-

Step Kit (Bio-Rad). The mRNA expression levels were nor-

malized using the hypoxanthine guanine phosphoribosyl-

transferase gene as the reference gene.

The relative expression levels were calculated with the

2�DDCT equation.31 Calibrators consisting of standard con-

trols were run in the same reaction to verify amplification

efficiencies of each experiment as well as melting curve

analysis to confirm the specificity of amplification and lack

of primer dimers. All real-time PCR was performed in a

LightCycler 480 II (Roche Life Science, Barcelona, Spain)

using the primers listed in Table 1.

Western Blot

Protein samples were separated by polyacrylamide gel

electrophoresis and transferred to polyvinylidene difluor-

ide (PVDF) membranes (Merck Millipore). Blots were

blocked with 5% nonfat dry milk in tris-buffered saline

containing 0.05% Tween-20 (TBST) for 1 h and then

incubated with primary antibodies. The following antibo-

dies were used: mouse anti-MTCO1 (1:2,000, Abcam,

Cambridge, UK), mouse anti-complex IV subunit (COX

IV; 1:2,000, Abcam), mouse anti-ATPB (1:2,000,

Abcam), Total Oxidative Phosphorylation (OXPHOS)

Human WB Antibody Cocktail (1:200, Abcam), mouse

anti-VDAC1/Porin (1:1,000, Abcam). Peroxidase-

conjugated goat antimouse IgG (1:10,000, Bio-Rad) and

antirabbit IgG (1:5,000, Bio-Rad) were used as secondary

antibodies. To control for the amount of protein loaded,

we used a mouse anti-glyceraldehyde 3-phosphate

dehydrogenase (GAPDH)-GAPDH-loading control anti-

body (1:10,000, Abcam). Immunoreactive proteins were

visualized using an enhanced chemiluminescence detec-

tion system (Clarity ECL, Bio-Rad), and bands were

detected with an ImageQuant LAS 4000 Imaging System

(GE Healthcare Life Sciences, Barcelona, Spain).
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Isolation of Functional Hippocampal Mitochondria

Functional mitochondria for respiratory measurements were

isolated from the hippocampus using “method C” described

in Sims and Anderson’s study.32 The mitochondrial pellet

was gently resuspended in respiration medium (see below)

with 1% fatty acid free-BSA and kept on ice for up to 2 h

until the experiments were performed. The hippocampus

from 3 mice in a given group was combined for a single

homogenate and then assayed in triplicate.

Measurement of Mitochondrial Respiratory Activity

Oxygen consumption was measured polarographically at

25 �C using 1.0 to 2.5 mg protein from the hippocampal

mitochondrial fraction in respiration medium consisting

of 20 mM KCl, 5 mM MgCl2, 10 mM KH2PO4, 10

mM tris–HCl, 5 mM 4-(2-hydroxyethyl)-1-piperazi-

neethanesulfonic acid (HEPES), and 225 mM sucrose,

at pH 7.4, using a Clark-type electrode. Five mM gluta-

mate and malate were added as the respiratory substrates,

and the mitochondrial respiration was initiated by adding

50 nmol adenosine-5-diphospate (ADP). Oxygen con-

sumption measured in the presence of added ADP was

defined as state III respiration, while that measured fol-

lowing the consumption of ADP was defined as state IV

respiration. The respiration control ratio (RCR) was cal-

culated as the ratio of state III respiration to state IV

respiration and used as a marker of mitochondrial respira-

tory activity. The ADP/O ratio was calculated as the ratio

of the added ADP concentration to the consumption of

oxygen during state III respiration. Mitochondrial respira-

tion was calculated as nanomoles of O2 per min per milli-

gram of protein. Mitochondrial protein was determined by

the Pierce BCA Protein Assay Kit using BSA as standard

and 10-fold dilutions to prevent reaction inhibition.

Determination of Mitochondrial Complex Activities

After sacrifice, mouse hippocampi were immediately

removed, excised, washed with cold saline, and processed

as described for mitochondrial preparation.33 The activities

of mitochondrial complexes II, III, and IV were measured on

mitochondrial pellets as previously described.34

Mouse NSC Culture

Neurospheres isolated from mouse embryonic day 14 cor-

tices (Stem Cell Technologies, Grenoble, France) were

expanded in adherent monolayer cultures. NSCs were plated

on PDL (100 mg/mL)/laminin (10 mg/mL)-coated tissue cul-

ture dishes and cultured in proliferation medium: Neurobasal

medium supplemented with B27 and Glutamax (Thermo

Fisher Scientific), containing 20 ng/mL of human epidermal

growth factor (EGF) and 20 ng/mL of human basic fibroblast

growth factor (hbFGF; PeproTech, London, UK). Half of the

medium was changed every 2 to 3 d with fresh medium and

growth factors added to a final concentration of 20 ng/mL

each. Cells were maintained in a humidified incubator at 37
�C and 5% CO2.

Cell Proliferation Assays

For proliferation studies, NSCs were plated at a density of 2

� 104 cells/cm2 in adherent monolayer and treated for 48 h

with different concentrations of IQM316, melatonin, or vehi-

cle. Cell proliferation was measured with the Cell Prolifera-

tion Kit II (XTT; Roche Life Science) according to the

manufacturer’s instructions. Cell proliferation was also mea-

sured by DAPI staining and cells were counted using an

inverted microscope with a 20� objective. All measure-

ments were from 3 independent experiments and performed

in duplicate.

Table 1. Primers Used for Real-Time Polymerase Chain Reaction.

Gene Accession Number Sequence (50-30)

12S
Ribosomal RNA

NC_005089.1 CTAGCCACACCCCCACGGGA
CGTATGACCGCGGTGGCTGG

18S Ribosomal RNA NR_003278.3 ACCTGGTTGATCCTGCCA
GCCATTCGCAGTTTCACTGT

PGC-1a NM_008904.2 TCTCAGTAAGGGGCTGGTTG
AGCAGCACACTCTATGTCACTC

Nrf1 NM_001164226.1 CATGGGCGGGAGGATCTTTT
TACCAACCTGGATGAGCGAC

Tfam NM_009360.4 GGGAATGTGGAGCGTGCTAA
GACAAGACTGATAGACGAGGGG

Hprt NM_013556.2 GTTGGGCTTACCTCACTGCT
TAATCACGACGCTGGGACTG

Dcx NM_001110222.1 TCGTAGTTTTGATGCGTTGCT
GCTTTCCCCTTCTTCCAGTTC

NeuN NM_001039167.1 GCGTTCCCACCACTCTCTTG
TAGCCTCCATAAATCTCAGCACC
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Cell Differentiation Assays

For differentiation studies, NSCs were plated on PDL (100

mg/mL)/laminin (15 mg/mL)-coated tissue culture dishes at a

density of 4 � 104 cells/cm2 and maintained in proliferation

medium. After 48 h, differentiation was initiated by switch-

ing the medium to Neurobasal medium supplemented with

B27 and Glutamax, containing 5 ng/mL of hbFGF and 0.5

mM all-trans-retinoic acid. After 48 h (differentiation day 2),

the medium was changed to Neurobasal medium supplemen-

ted with B27 and Glutamax (no growth factors). Half of the

medium was changed every 2 to 3 d until day 12 of differ-

entiation. To study the effect of IQM316, melatonin, or vehi-

cle on differentiation, different concentrations were added to

the medium and replaced every 2 to 3 d.

Immunocytochemistry and Imaging

After 12 d of differentiation, NSCs were briefly rinsed in

PBS and fixed in 4% paraformaldehyde (PFA) at 4 �C for 20

min. Cells were permeabilized in 0.3% Triton X-100 for 30

min and blocked for in 1% BSA/PBS for 1 h at RT. Incuba-

tion with primary antibody goat anti-Doublecortin (1:250,

Santa Cruz, Sc-8066) diluted in 0.1% BSA/0.2% Triton X-

100 was performed overnight at 4 �C. The secondary anti-

body Alexa Fluor antigoat-555 (1:1,000; Thermo Fisher Sci-

entific) was incubated for 1 h at RT followed by DAPI

staining (1:20,000) for 10 min. Coverslips were mounted

on glass slides using FluorSave reagent (Merck Millipore).

Images were acquired using a 63 oil immersion objective

(numerical aperture 1.4) on a Zeiss confocal microscope.

The number and length of neuronal processes were measured

using the NeuronJ plugin of ImageJ (ImageScience).

Statistical Analysis

Results are expressed as mean + standard error of the mean

(SEM). Statistical analysis was performed using GraphPad

Prism 6 software (GraphPad Software Inc.). The statistical

significance of differences among multiple groups was

assessed by one-way analysis of variance (ANOVA) fol-

lowed by Bonferroni post hoc tests.

Results

Effect of IQM316 and Melatonin on Adult
Hippocampal Neurogenesis

We first tested whether melatonin or IQM316 administration

at a concentration of 2 mg/kg body weight was able to induce

adult neurogenesis in vivo. Adult mice were administered

i.p. with either IQM316 or melatonin daily for 7 (acute) or

28 (chronic) d, and brains were examined 29 d after the first

injection. New neurons that were able to differentiate into

their mature phenotypes were identified by BrdU and

NeuN double labeling. Acute IQM316 administration signif-

icantly increased the number of BrdUþ/NeuNþ cells per DG

section when compared to vehicle-treated mice (*349%,

P < 0.001; Fig. 1A; from 150.0 + 20.5 to 577.5 + 84.0

in the entire DG, *385%). Acute melatonin administration

also increased significantly the number of BrdUþ/NeuNþ

cells per DG section when compared to vehicle-treated mice

(*243%, P < 0.001; Fig. 1A; from 150.0 + 20.5 to 465.0 +
37.8 in the entire DG, *310%). When comparing IQM316

and melatonin, IQM316-treated mice showed a significantly

higher number of BrdUþ/NeuNþ cells per DG section (P <

0.01). Representative photomicrographs are shown in Fig.

1B. Chronic IQM316 administration also increased signifi-

cantly the number of BrdUþ/NeuNþ cells per DG section

(*259%, P < 0.001; from 214.3 + 39.0 to 480.0 + 78.6 in

the entire DG, *224%) as well as chronic melatonin admin-

istration (*194%, P < 0.01; from 214.3 + 39.0 to 437.1

+ 42.9 in the entire DG, *204%) when compared to

vehicle-treated mice (Fig. 1C). When comparing IQM316

and melatonin, although IQM316-treated mice showed a

higher number of BrdUþ/NeuNþ cells, this difference did

not reach statistical significance (P ¼ 0.06), indicating

that they have similar chronic efficacies. These data show

that both IQM316 and melatonin administrations promote

adult hippocampal neurogenesis by stimulating neuronal

differentiation.

Effect of IQM316 and Melatonin on Memory

Recent reports have shown that hippocampal neurogenesis in

adulthood induces loss of established memories.8,9 There-

fore, we tested whether neurogenesis induced by chronic

administration of either IQM316 or melatonin could inter-

fere with existing memories. We performed the novel object

recognition test at the beginning (day 1) and at the end of

treatment (day 29; Fig. 2A), this is, prior to the commence-

ment of treatment stimulating neurogenesis. We found that

the DI at day 29 of IQM316-treated mice was significantly

increased (*2 fold) when compared to the vehicle-treated

group (0.51 + 0.07 vs. 0.22 + 0.06; P < 0.05; Fig. 2B),

indicating that they recalled the familiar object and therefore

explored the novel object more. The DI of melatonin-treated

mice was slightly increased when compared to vehicle (0.39

+ 0.04 vs. 0.22 + 0.06), but it did not reach statistical

significance. Then, we analyzed the ratio of time spent

exploring the object during the familiarization phase at day

29 comparing it to day 1, and we did not find any differences

between the vehicle and melatonin-treated mice (ratio: 1.18

+ 0.17 and 0.87 + 0.15, respectively; Fig. 2C). In contrast,

IQM316-treated mice had a significantly smaller ratio when

compared to the vehicle-treated mice (0.46 + 0.07 vs. 1.18

+ 0.17; P < 0.001), indicating that they spent approximately

half of the time exploring the object at day 29 (Fig. 2C). The

average time spent exploring the objects was not different

across treatments (vehicle vs. IQM316 vs. melatonin; P >

0.05), indicating that the treatments did not alter exploratory

interest. These data show that IQM316-treated mice were

able to recall the object from day 1. Taken together, these
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results suggest that adult neurogenesis induced by IQM316

occurs at a sustainable and healthy rate, allowing for newly

generated neurons to integrate into the hippocampus without

disrupting previously acquired memories.

We also performed the novel object recognition test,

involving a retention interval of 24 h between the familiar-

ization and testing phase, a time frame typically used to

evaluate rodent long-term memory, at day 29 (Fig. 2D) to

study newly acquired memories (after neurogenesis has

occurred). There were no significant differences in the DI

between vehicle-treated mice and IQM316 or melatonin, in

either acute (0.32 + 0.06 vs. 0.39 + 0.05 or 0.34 + 0.09,

respectively) nor chronic treatments (0.43 + 0.07 vs. 0.41

+ 0.10 or 0.46 + 0.08, respectively; Fig. 2E). These data

indicate that neither IQM316 nor melatonin administration

(acute or chronic) alter long-term memory of newly

acquired memories.

Effect of IQM316 and Melatonin on Mitochondria

Recent studies have shown that mitochondrial function is

important in neuroplasticity, including neural proliferation

and differentiation.35–37 Given that mitochondrial function

has been shown to be regulated by melatonin (reviewed by

Hardeland et al.17), we studied the effect of IQM316 and

melatonin on hippocampal mitochondrial function.

Fig. 1. Effect of acute and chronic 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) or melatonin administration
on adult hippocampal neurogenesis. Animals were treated with vehicle (Vhc), IQM316 (IQM), or melatonin (Mel) for 7 (acute) or 28 d
(chronic). (A) Quantification of the percentage of 5-bromo-20-deoxyuridine (BrdU) and neuronal nuclei (NeuN) double-labeling positive
cells per dentate gyrus (DG) section upon acute administration. Both IQM316 and melatonin acute administrations induce neurogenesis,
with being IQM316 more potent than melatonin. (B) Representative confocal images of BrdU (green) and NeuN (red) immunohistochem-
istry of the DG quantified in A. BrdU and NeuN double labeling is shown in yellow (merged images). Higher magnification insets of double
labeled neurons are displayed on the right. Scale bar is 25 mm. (C) Quantification of the percentage of BrdU and NeuN double-labeling
positive cells per DG section upon chronic administration. Both IQM316 and melatonin chronic administrations induce neurogenesis with
similar efficacies. Data are mean + SEM, n ¼ 7 animals per group. **P < 0.01, ***P < 0.001, significantly different from vehicle, Bonferroni
post hoc test.
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Fig. 2. Effect of acute and chronic 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) or melatonin administration
on long-term recognition memory. Animals were treated with vehicle (Vhc), IQM316 (IQM), or melatonin (Mel) for 7 (Acute) or 28 d
(Chronic). (A) Experimental design of drug administration and novel object recognition test analyzed in B and C. (B) Discrimination
index (DI) quantified at day 29. Chronic IQM316 administration increased the DI, indicating that the animals recalled the object, whereas
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Effect on OXPHOS Proteins

We measured the levels of OXPHOS proteins in the hippo-

campus by Western blot analysis. We found that when com-

pared to vehicle, acute administration of both IQM316 and

melatonin significantly increased the protein levels of succi-

nate dehydrogenase complex, subunit B of complex II

(SDHB; 192 + 19%, P < 0.001 and 178 + 16%, P <

0.05, respectively) and cytochrome c oxidase I, a COX I

(181 + 19%, P < 0.01 and 191 + 34%, P < 0.05, respec-

tively). However, IQM316 and melatonin administrations

significantly reduced protein levels of COX IV (68 +
10% and 61 + 10%, P < 0.05, respectively) and ATP-5b
(64 + 6% and 53 + 5%, P < 0.001, respectively; Fig. 3A

and B). On the contrary, chronic IQM316 or melatonin

administration significantly increased the protein levels of

NDUFB8 when compared to the vehicle (177 + 20%, P <

0.01, and 159 + 12%, P < 0.05, respectively; Fig. 3C

and D).

Effect on mtDNA Copy Number

We analyzed the COX I/COX IV ratio and found that it was

significantly increased by IQM316 (224 + 25%, P < 0.01)

and melatonin (247 + 73%, P < 0.05) acute administration

when compared to vehicle-treated mice (Fig. 4A). Chronic

administration did not alter the COX I/COX IV ratio (Fig.

4A). Since COX I is an mtDNA-encoded subunit whereas

COX IV is an nDNA-encoded subunit, these data suggest

that IQM316 and melatonin acute administration activates

mtDNA replication or translation. So, we next quantified the

mtDNA copy number by quantitative PCR, in DNA

extracted from mouse hippocampi IQM316 acute adminis-

tration significantly increased by 228% the mtDNA copy

number when compared to the vehicle (2.35 + 0.48 vs.

1.03 + 0.10, P < 0.05). Acute melatonin administration

slightly increased the ratio when compared to vehicle (1.52

+ 0.44 vs. 1.03 + 0.10), but it did not reach statistical

significance (Fig. 4B). Chronic administration of either com-

pound did not alter the mtDNA/nDNA ratio when compared

to the control (Fig. 4B).

Effect on Mitochondrial Biogenesis

To ascertain whether the increase in mtDNA copy number

was due to activation of mitochondrial biogenesis, we

measured mRNA levels of key players of this process: the

peroxisome proliferator-activated receptor gamma coactiva-

tor-1a (PGC-1a), nuclear respiratory factor 1 (Nrf1), and

mitochondrial transcription factor A (Tfam).38 We found

that acute administration of either compound did not alter

the expression of PGC-1a, nor Tfam, or Nrf1 (Fig. 4C),

indicating that mitochondrial biogenesis was not activated

at the time point studied. We also measured the voltage-

dependent anion-selective channel protein 1 (VDAC1) lev-

els, an outer mitochondrial membrane protein. We did not

find any changes on VDAC1 levels after IQM316 or mela-

tonin acute administration (Fig. 4D), indicating that mito-

chondrial biogenesis was not changed.

Effect on Mitochondrial Respiratory Activity

In order to evaluate whether the change on the levels of

OXPHOS proteins (Fig. 3) affected mitochondrial function,

we measured the activities of respiratory complexes II, III,

and IV of the mitochondrial respiratory chain in isolated

hippocampal mitochondria fractions obtained from mice

administered acute and chronically with each compound

(data not shown). We did not observe any significant

changes in the activity of these complexes meaning that

despite the change in the proteins levels, overall the com-

plexes remained active.

Additionally, we performed respiratory measurements

and found that state III respiration and state IV respiration

levels remained unchanged between IQM316 and melatonin

and vehicle-treated mice. Furthermore, no significant differ-

ences between treatments were observed in the RCR mean-

ing that the tightness of the coupling between respiration and

phosphorylation was not altered. Also, the ADP/O ratio

which measures the efficiency of the mitochondrial phos-

phorylative system remained unchanged between treatments

(data not shown).

Effect of IQM316 and Melatonin on NSCs

We performed in vitro studies using mouse embryonic NSCs

to study the influence of IQM316 or melatonin on cell pro-

liferation and differentiation. First, under proliferating con-

ditions (in the presence of growth factors) we performed a

dose–response curve (101, 100, 10�1, 10�2, and 10�3 mM) for

both compounds. Measurement of cell proliferation using a

XTT-based kit showed that neither compound altered cell

proliferation (Fig. 5A) at the concentrations tested. These

results were further confirmed by DAPI staining and cell

counting (Fig. 5B). Next, in order to evaluate the neurogenic

potential of each compound, we performed a dose–response

curve (100, 10�1, 10�3, 5 � 10�4, and 10�4 mM) for both

compounds under differentiation conditions and measured

the relative mRNA levels of doublecortin (Dcx), a marker

for immature neurons, and NeuN, a marker for mature

Fig. 2. (continued). melatonin administration did not alter it (C) Ratio of object exploration time as day 29 versus day 1, during the
familiarization phase. IQM316-treated mice spent less time exploring at day 29, suggesting that they recalled the object from day 1.
Melatonin-treated mice displayed similar exploration times at both days 1 and 29. (D) Experimental design of drug administration and
novel object recognition test analyzed in E. (E) DI quantified at day 29, after acute and chronic administration. Neither acute nor chronic
administration of IQM316 or melatonin modified short-term recognition memory. Data are mean + SEM, n ¼ 8 animals per group. *P <
0.05, **P < 0.01, significantly different from vehicle, Bonferroni post hoc test.
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neurons. We found that at a 10�3 mM concentration, IQM316

and melatonin were able to significantly increase Dcx

mRNA expression when compared to the vehicle (from

1.05 + 0.10 to 1.88 + 0.23, P < 0.01 and 1.75 + 0.20,

P < 0.05, respectively; Fig. 5C). However, NeuN mRNA

expression remained unaltered for all concentrations tested

(data not shown). To ascertain whether the neurogenic effect

of IQM316 depended on melatonergic receptors (MTRs)

MT1 and MT2, we induced differentiation of NSCs with

vehicle, or 10�3 mM IQM316 or 10�3 mM melatonin, in

the presence or absence of the MTR antagonist luzindole

(0.2 mM). We found that luzindole was able to completely

block the increase in Dcx mRNA expression induced by

melatonin, whereas the IQM316-induced increase in Dcx

Fig. 3. Effect of acute and chronic 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) or melatonin administration
on hippocampal oxidative phosphorylation (OXPHOS) protein levels. Animals were treated with vehicle (Vhc), IQM316 (IQM), or mela-
tonin (Mel). Quantitative analysis of the effect of acute (A) and chronic (C) administrations on hippocampal OXPHOS protein levels.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used for normalization. Representative Western blots for acute (B) and chronic
(D) administrations quantified in A and C, respectively. Acute administration of either IQM316 or melatonin significantly increased subunit B
of complex II and complex I subunit (COX I) protein levels but reduced COX IV and ATP-5b. Nonetheless, chronic IQM316 or melatonin
administration only increased the protein levels of NDUFB8. Data are mean + SEM, n ¼ 8 animals per group. *P < 0.05, **P < 0.01, ***P <
0.001, significantly different from vehicle, Bonferroni post hoc test.
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was not altered, when compared to vehicle-treated cells (Fig.

5D). Finally, we performed immunocytochemistry to label

NSCs that were able to differentiate into Dcxþ expressing

cells, in the presence of vehicle, or 10�3 mM IQM316 or

10�3 mM melatonin (Fig. 5E). When analyzing morphologi-

cal features of Dcxþ cells, we found that both IQM316 and

melatonin significantly increased the number of dendrites

when compared to the vehicle (from 100.0 + 8.5 to 145.2

+ 9.5, P < 0.01 and 134.6 + 8.5, P < 0.05, respectively; Fig.

5F). In agreement with the previous data, luzindole

completely blocked the effect of melatonin, whereas the

IQM316-induced increase in dendritic density was not

blocked (Fig. 5F). Other features such as dendritic length,

axonal length, and number of axonal branches were not

modulated (data not shown). Taken together, these results

reinforce the finding that both IQM316 and melatonin

induce direct differentiation of neural precursor cells without

affecting cell proliferation and more importantly that

IQM316 is neurogenic through a melatonin receptors MT1

and MT2 independent pathway.

Fig. 4. Effect of acute 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) or melatonin administration on mitochon-
drial biogenesis. Animals were treated with vehicle (Vhc) or IQM316 (IQM) or melatonin (Mel). (A) Quantitative analysis of the complex I
subunit (COX I)/COX IV protein level ratio upon acute and chronic administrations. Acute administration of either IQM316 or melatonin
increased the COXI/COXIV ratio, suggesting activation of mitochondrial DNA replication or translation. Chronic administration had no
effect on the ratio. (B) Quantification of the mitochondrial DNA/nuclear DNA ratio upon acute and chronic administrations. Acute
administrations increased the ratio, whereas chronic administrations did not. (C) Quantification of relative mRNA expression levels of
peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1a), mitochondrial transcription factor A (Tfam), and nuclear
respiratory factor 1 (NRF-1) upon acute administration. Expression levels were normalized to hypoxanthine guanine phosphoribosyltrans-
ferase and relative to vehicle. Acute administration of either compound did not activate the expression mitochondrial biogenesis genes. (D)
Quantitative analysis and representative Western blots of Voltage-dependent anion-selective channel 1 (VDAC1) protein levels upon acute
administration. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as the normalization control. Acute administration of
either compounds did not alter the mitochondrial protein levels, indicating that mitochondrial biogenesis was not affected. Data are mean +
SEM, n ¼ 8 animals per group. *P < 0.05, **P < 0.01, significantly different from vehicle, Bonferroni post hoc test.
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Fig. 5. Effect of 2-(2-(5-methoxy-1H-indol-3-yl)ethyl)-5-methyl-1,3,4-oxadiazole (IQM316) or melatonin on embryonic neural stem cell
(NSC) proliferation and differentiation. (A, B) Dose–response effect of IQM316 or melatonin on cell proliferation, showing no effect of
either compound. (A) Cell proliferation quantified by XTT assay. (B) Cell proliferation quantified by 40,6-diamidino-2-phenylindole (DAPI)
staining and cell counting. (C, D) Quantification of doublecortin (Dcx) relative mRNA expression levels under differentiation conditions.
Expression levels are normalized to hypoxanthine guanine phosphoribosyltransferase and relative to the vehicle. (C) Dose–response effect
of IQM316 or melatonin on Dcx relative mRNA expression levels. Both IQM316 and melatonin treatments increase Dcx mRNA levels,
indicating activation of neuronal differentiation and therefore neurogenic potential. (D) Cells were differentiated and treated with either
IQM316 or melatonin 10�3 mM, in the presence or absence of luzindole (0.2 mM). The MT1 and MT2 antagonist luzindole was able to fully
block neuronal differentiation induced by melatonin but did not block the effect of IQM316. (E) Representative confocal images of Dcx (red)
and DAPI (blue) immunocytochemistry, with higher inset below showing the detailed morphology (Dcx, black) of NSCs differentiated in the
presence of vehicle, IQM316 or melatonin 10–3 mM. Scale bar is 20 mm. (F) Cells under the same conditions as described in D. Quantification
of dendritic density. NSCs differentiated in the presence of either IQM316 or melatonin display a higher number of dendritic processes. The
effect of melatonin is completely blocked by luzindole, whereas the IQM316-induced effect is not. IQM316 induces neuronal differentiation
independently of melatonergic receptors MT1 and MT2. Data are mean + SEM, n¼ 3 independent experiments. *P< 0.05, **P < 0.01, ***P <
0.001, significantly different from vehicle, Bonferroni post hoc test.
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Discussion

The present study demonstrates that melatonin and the mel-

atonin analog, IQM316, increase neurogenesis in the DG of

healthy adult mice. Melatonin has been previously shown to

promote adult hippocampal neurogenesis, but usually at a

range of 8 to 10 mg/kg.18–21 Here, we used C57BL/6J mice,

which are considered to be “melatonin depleted” due to the

low level of pineal melatonin synthesis when compared to

other mouse strains39,40 and lower drug concentrations, (2

mg/kg). The finding that both acute (7 d) and chronic (28 d)

administrations were able to significantly increase the

number of BrdU and NeuN double-labeled positive cells

on the DG, a marker of adult neurogenesis, indicates that

IQM316 and melatonin stimulate precursor cells to differ-

entiate into neurons. It is worth noting that acute IQM316

administration was more potent than melatonin, whereas

chronic administration of either compound displayed sim-

ilar efficacies. These data suggest that IQM316 and mel-

atonin induce neurogenesis through different mechanisms,

since at a short period (acute �7 d) IQM316 is more

potent and at a longer period (chronic �28 d), they are

similar.

Consistent with in vivo results, proliferation and differ-

entiation studies using NSCs showed that IQM316 and mel-

atonin induce direct differentiation of neural precursors

without altering their proliferative activity. We found that

at the 10�3 mM concentration, both IQM316 and melatonin

significantly increased Dcx mRNA expression. Our results

are in agreement with previous studies that found that phy-

siological concentrations of melatonin did not affect prolif-

eration of embryonic NSCs but enhanced neuronal

differentiation.20,22,23 During neuronal differentiation, neu-

roblasts committed to the neuronal lineage express Dcx but

as neuronal maturation occurs, Dcx expression is downregu-

lated as NeuN is upregulated.41,42 Therefore, we also mea-

sured NeuN mRNA levels to ascertain the level of neuronal

maturation but found no significant differences between

treatments. This suggests that at the time point studied (12

d of in vitro differentiation), NSC differentiation induced by

either IQM316 or melatonin, only reached the stage of

immature neurons.

Adult neurogenesis can be considered a unique form of

circuit plasticity. The hippocampus is able to adapt to envi-

ronmental changes by generating new adult-born neurons

that will establish synaptic connections within preexisting

neuronal networks where they participate in hippocampus-

dependent learning and memory recall processes. Previous

studies aimed at examining the role of new adult-born neu-

rons in new hippocampus-dependent memories have shown

that neurogenesis stimulation can enhance spatial pattern

separation in mice5,43 as well as various forms of contextual

and spatial learning.12 However, the role of neurogenesis in

old memories seems contradictory. Theoretical computa-

tional models44,45 and recent reports8,9,46 have suggested that

when new neurons integrate into mature hippocampal

network, where they either coexist with, or even replace

by competing with established synapses and thus contribute

to loss of previously acquired memories and forgetting. We

have found that chronic IQM316 administration, but not

melatonin, was able to preserve previously acquired mem-

ories as tested by the object recognition paradigm. We sup-

port the hypothesis that neurogenesis and forgetting are

correlated and hence, the right rate of neurogenesis would

not interfere with memory.47 Also, we believe that IQM316

is capable of inducing a healthy rate of neurogenesis, con-

trary to melatonin, precisely by not acting on melatonin

receptors MT1 and MT2. In fact, IQM316 has a very low

binding affinity when compared to melatonin for MT1 (709

+ 10 nM vs. 0.09 + 0.01 nM) and MT2 (190 + 8 nM vs.

0.15 + 0.07 nM) receptors, and it is barely able to stimulate

the activation of melatonin receptors (�30% relative intrin-

sic activity) as measured by iodomelatonin displacement

assays.26 Furthermore, our in vitro results showed that luzin-

dole, a melatonergic antagonist, did not block neuronal dif-

ferentiation of NSCs induced by IQM316, whereas it fully

blocked melatonin action. Since IQM316 is a melatonin

analog, it is very lipophilic and able to cross biological bar-

riers 26 and possibly subcellular compartments. This means

that it could be acting directly at the nucleus regulating

transcription factors or epigenetic regulators; binding to

cytosolic proteins or activating signaling pathways that have

been implicated in adult neurogenesis, such as Wnt/b-cate-

nin, Notch, and Sonic hedgehog.3 We have previously

reported that IQM316 did not interact with several receptors

such as cannabinoid receptors 1 and 2, serotonin receptors

subtype 1A, 2A, 2B, 2C (5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C),

serotonin transporter, retinoic acid receptor-a, a, peroxisome

proliferator–activated receptor gamma (PPAR-g), and gly-

cogen synthase kinase 3b (GSK-3b), thereby excluding the

implications of these receptors in the IQM316 neurogenic

pathways.26 However, further studies are needed to ascertain

the mechanism of IQM316-induced adult neurogenesis, and

how it allows the preservation of old established memories.

In addition, neither IQM316 nor melatonin altered long-term

memory of newly acquired memories, which is in agreement

with other reports where mice with neurogenesis stimulated

by running displayed normal object recognition.5 Despite

previous studies reporting that melatonin administration

improves learning and memory impairments, these are

effects induced under pathological conditions, such as in

mouse models of Down syndrome 48 or Alzheimer’s dis-

ease.49–51 Furthermore, chronic (30 d) administration of mel-

atonin (0.1–10 mg/kg, subcutaneously) to young mice (3 mo

of age) had no effect on either short-term working memory

nor on spatial long-term memory.52 These observations

together with our present work show that in young and

healthy animals, melatonin or IQM316 administration does

not improve memory.

Here, we also studied the effect of IQM316 or melatonin

administration on mitochondrial function. Neurons are

high-energy, demanding cells that critically depend on
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mitochondria for ATP production through OXPHOS and

regulate mtDNA copy number in order to maintain cellular

energy requirements.53,54 We found that acute IQM316 or

melatonin administration increased mtDNA copy number,

suggesting either that the number of mitochondria was

increased or that mtDNA replication was being activated.

Mitochondrial biogenesis was not altered (no changes in

mRNA relative expression of key factors of this process:

PGC1-a, Nrf1, and Tfam) nor the mitochondrial protein

VDAC1, indicating that the number of mitochondria was not

changed, and therefore, hippocampal mitochondria have

more copies of mtDNA by local activation of mtDNA repli-

cation. Neuronal differentiation has been associated with

increased mitochondrial mass,35,37 and despite mitochon-

drial number not being altered, mitochondrial morphology

(volume or length) could be increased with the net result of

increased mass. However, the finding that mitochondrial

function (respiratory measurements and complex activities)

remained stable suggests that mitochondrial mass is not

affected. Therefore, we infer that upregulation of mtDNA

replication and transcription, as evidenced by the increased

in mtDNA copy number and COX I protein levels, was

indeed a mechanism to counterbalance the decrease in the

OXPHOS proteins COX IV and ATP-5b observed upon

IQM316 or melatonin acute administrations. Furthermore,

SDHB, an enzyme that participates in both the respiratory

chain and the citric acid cycle, was also increased probably

as a compensatory mechanism to provide further energy.

Given that neurogenesis is critically regulated by the redox

balance in the neurogenic microenvironment,55–57 we

hypothesize that IQM316 or melatonin acute administration

for 7 d, followed by withdrawal of an antioxidant drug and

reactive oxygen species (ROS)/radical scavenger such as

melatonin,58 for 3 wk, activated adult neurogenesis mechan-

isms but left neurons unprotected from the subsequent

increase in ROS levels. This could explain the observed

disturbance in OXPHOS proteins levels. This hypothesis

was further supported by the finding that chronic adminis-

tration for 28 d prevented the disruption of OXPHOS pro-

teins observed with acute treatment. Nonetheless, we found

that chronic administration increased NDUFB8 protein lev-

els. NDUFB8 is a nuclear-encoded accessory subunit of the

mitochondrial membrane respiratory chain NADH dehydro-

genase (complex I), that is believed not to be involved in

catalysis.59 However, it has been shown to be necessary for

mitochondrial function in endothelial cells.60 In the present

work, despite the increase in NDUFB8 levels, we did not

observe any significant changes in hippocampal mitochon-

dria respiratory measurements using complex I substrates.

Overall, we can only speculate that the changes in OXPHOS

proteins are the result of a compensatory mechanism, so that

mitochondrial function remains stable. Furthermore, the dif-

ferences observed between acute and chronic treatments sug-

gest that chronic treatment allows for better compensation

and global energetic balance and stability between newly

generated neurons and the existing hippocampal network.

Moreover, it suggests that adult neurogenesis is energetically

healthier if induced and maintained, in the presence of

IQM316 or melatonin.

An important issue that should always be kept in mind is

to ensure comparable levels of brain bioavailability of

IQM316 and melatonin. Future experiments are needed to

address this issue since in the present study, despite all our

efforts, we were not able to reliably quantify their hippocam-

pal levels. Since we administered the animals with a very

low amount of IQM316 or melatonin (approximately 50

micrograms), when we tried to quantify them by high-

performance liquid chromatography followed by fluores-

cence emission or mass spectrometry, the levels were below

1 pg/mL and therefore not reliable for quantification or

publication.

These findings open the possibility of using IQM316 as a

pharmacological agent to stimulate adult hippocampal neu-

rogenesis in neurodegenerative diseases, where the genera-

tion of new neurons is especially important due to the

gradual loss of different neuronal populations associated

with these pathologies.
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