
International  Journal  of

Environmental Research

and Public Health

Article

Improved Prediction of Harmful Algal Blooms in
Four Major South Korea’s Rivers Using Deep
Learning Models

Sangmok Lee and Donghyun Lee * ID

Department of Business Administration, Korea Polytechnic University, 237, Sangidaehak-ro, Siheung-si,
Gyeonggi-do 15073, Korea; tkdahr1331@gmail.com
* Correspondence: madeby2@gmail.com; Tel.: +82-031-8041-0761

Received: 7 April 2018; Accepted: 21 June 2018; Published: 24 June 2018
����������
�������

Abstract: Harmful algal blooms are an annual phenomenon that cause environmental damage,
economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking,
thus, the best option for counteracting the effects of algal blooms is to improve advance warnings
(predictions). However, existing physical prediction models have difficulties setting a clear coefficient
indicating the relationship between each factor when predicting algal blooms, and many variable data
sources are required for the analysis. These limitations are accompanied by high time and economic
costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly
common in scientific research; attempts to apply the long short-term memory (LSTM) model to
environmental research problems are increasing because the LSTM model exhibits good performance
for time-series data prediction. However, few studies have applied deep learning models or LSTM
to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore,
we employed the LSTM model for algal bloom prediction in four major rivers of South Korea.
We conducted short-term (one week) predictions by employing regression analysis and deep learning
techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools
on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network,
RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy
for algal activity. The results were compared to those from OLS (ordinary least square) regression
analysis and actual data based on the root mean square error (RSME). The LSTM model showed the
highest prediction rate for harmful algal blooms and all deep learning models out-performed the
OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and
deep learning.
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1. Introduction

1.1. Overview

Harmful algal blooms are a phenomenon in which the water in rivers and lakes turns dark green
because of excessive algal growth [1]. They can affect areas used as water sources, potentially causing
harm to humans and animal, e.g., acute or chronic liver damage when the contaminated water is
ingested [2,3]. Moreover, water contaminated by harmful algal blooms looks unappealing and contains
a water-soluble neurotoxic component [4]. The effects of harmful algal blooms on rivers and lakes have
been experienced and reported worldwide, including the large-scale death of fish [5]. For example,
the 11 US health and environment departments funded by the National Center for Environmental
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Health (NCEH) received a total of 4534 reports on animal disease outbreaks, deaths, and human
diseases related to the occurrence of harmful algal blooms from 2007 to 2011 [6], with damages in the
US alone estimated at more than 2.2 billion dollars per annum [7]. Therefore, harmful algal blooms
are of worldwide concern due to their potential for human and environmental harm along with
economic losses [8].

Although environmental authorities worldwide are taking precautions to eliminate such blooms,
finding a fundamental solution to the recurring problem is difficult. In South Korea, for instance,
the Ministry of Environment sends out alerts via local algae warning and water quality forecasting
systems. The algae warning system is based on field survey data for 28 major water sources, lakes,
and rivers. The water quality forecasting system is based on actual data such as water temperature
and weather observations for 16 dammed pools on four major rivers. Such systems measure the
concentrations of cyanobacteria (actual) and chlorophyll-a (predicted) in the water.

Models traditionally used for predicting water quality include QUAL2E (United States
Environmental Protection Agency, Washington, WA, USA), CE-QUAL-W2 (2-D Hydrodynamic Water
Quality Model, The U.S. Army Corps of Engineers, Washington, WA, USA) and others. As such models
are based on actual measurements, variations and changes can be checked through mathematical
calculations of each element [9]. However, it is expensive and time-consuming to build and operate
these models. It is also difficult to set a clear coefficient indicating the relationship between each factor
when using such physical models.

Although QUAL2E has 15 water quality parameters that can be simulated, there are some
limitations. For example, the measured value for an increase in biological oxygen demand
(BOD) is limited due to the production and death of algae, so that it is not possible to simulate
a large-scale river [10]. CE-QUAL-W2 considers water level, flow, water temperature, and many
other water quality factors while also considering the total amount of sediment, ammonia-nitrogen,
and phosphate-phosphorus. In other words, this model needs to calculate ~20 derived components
including pH and carbonate species [11]. Thus, for these models to be effective, many variable data
sources are required for analysis, which can limit the application of the model, so recent research has
focused on the use of machine learning techniques that can overcome these limitations [12].

Machine learning (and its sub-method, deep learning) can analyze and learn a vast amount of
untapped big data, extracting important patterns from the datasets and providing insight into specific
research questions or problems [13]. In addition, deep learning’s capacity to determine the most
important features can efficiently provide data scientists with concise and reliable analysis results.
Consequently, deep learning has improved research techniques dramatically in fields such as speech
recognition and genetics [14], and its use in various fields is increasing. For example, Song et al. [15]
used deep learning to predict gastrointestinal infection rates using an environmental context because
it is difficult to deal with such complex predictive problems due to the many influential indicators
and unknown probabilistic relationships between indicators and disease. Li et al. [16] used the
long short-term memory (LSTM) model to predict the spatio-temporal patterns of fine particulate
(PM2.5) pollution in China. Previous studies have revealed an increase in the use of deep learning
models in environmental studies. In the study of rainfall–runoff modeling, the MLP model was
compared with a traditional statistical model, and showed better performance [17]. Recently, the LSTM
model has been applied to time-series prediction, for example, wind power prediction [18] and PM2.5

pollution risk prediction [16]. For PM2.5 prediction, the model showed higher prediction precision
than other time-series prediction models (support vector machine, SVM; and autoregressive moving
average, ARMA) and a traditional neural network for feature representation (time delay neural
network, TDNN) [16].

In South Korea, although algal blooms occur consistently [19–21], the deep learning model has
not often been used in water quality research, despite its proven performance. Therefore, in this study,
we used machine learning (specifically the deep learning method) to build a water quality prediction
model for harmful algal blooms. Existing deep learning models include the multi-layer perceptron
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(MLP) network and the Elman neural network, a type of recurrent neural network (RNN). We also
employed the LSTM model, which is optimized to handle time series data better than other models [22].
For example, when the amount of data increases in an RNN model, past data values of the algorithm
are lost at a high rate through the calculation process. However, the LSTM model solves this problem
and minimizes such data loss [23], potentially allowing it to more accurately estimate the time of algal
bloom occurrence and help prevent them, reducing possible damage. Applying this deep learning
model to water quality prediction can therefore reduce the loss of time and money related to harmful
algal blooms, aiding research development in this field and contributing to a fundamental solution to
this environmental problem.

In this study, we aimed to build a more precise prediction model that would facilitate pre-emptive
action to prevent or mitigate the effects of harmful algal blooms in South Korea. First, we selected
variables affecting the occurrence of harmful algal blooms through a regression analysis of water
quality and quantity data provided by the South Korean Ministry of Environment and the Ministry of
Land, Infrastructure and Transport. Second, we constructed and compared the MLP, RNN, and LSTM
deep learning models. Data collected by the Ministry of Environment and local units were used
for the analysis to ascertain both dependent variables and independent variables. Through this
process, we found that deep learning models generated more accurate predictions than traditional
evaluation models.

1.2. Literature Review

Various factors can cause harmful algal blooms, such as an increase in nutrients from an influx
of anthropogenic contaminants produced by households, factories, farmland, or other sources [24].
These nutrient increases create a favorable environment for algal growth [25]; other contributing factors
include water temperature and insolation [26]. Cyanobacteria, which are the main cause of harmful
algal blooms, are known to reproduce optimally at a water temperature of 25 ◦C [27]. The flow and
circulation of water can also contribute to algal blooms [28]; when water circulation is inadequate,
algae remain in the upper layer of the water after bloom occurrence, leading to abnormal residence
times and the reoccurrence and rapid spread of algal blooms [29]. However, sufficient flow and
circulation creates an environment in which algae cannot breed in one place, reducing the occurrence
of blooms [30].

In other words, algal blooms occur because of eutrophication [31]. For example, Florida Bay in
the southwestern United States is disturbed frequently by large and dense algal blooms resulting from
the sediments and nutrients in the water. Although eutrophication here is most likely caused by the
algal biomass, it is difficult to measure this biomass directly, so chlorophyll-a is used as a measure
of eutrophication. Chlorophyll-a is an indicator of phytoplankton, is sensitive to excessive nutrients,
and can be monitored continuously. In addition, an appropriate limit relevant to chlorophyll-a has been
set, which can be utilized as an indicator of water pollution. Similarly, a factor analysis on the Taihu
River (China) determined the cause of algal occurrence by using chlorophyll-a as an indicator [32],
showing that temperature, pH, total nitrogen (TN), total phosphorus (TP), and other environmental
factors (as well as anthropogenic pollution) affected the growth of algae.

In addition, changes in the chlorophyll-a concentration in relation to water quantity and flow rate
are also factors in the formation of algal blooms, as shown by an analysis of water level fluctuations
in Xiangxi Bay (China) [28]. These results suggested that raising the water level could modulate
the occurrence of harmful algal blooms, as the eutrophication stratum became vertically blended
when more water was introduced, reducing the time the algae remained on the surface. In this way,
algal propagation can be reduced because of dilution and dispersion of the nutrients.

In summary, increases in chlorophyll-a can be caused by several significant water quantity and
quality factors. In this study, we used chlorophyll-a as an indicator for water quality (and thus
algal blooms) and considered factors such as temperature, pH, biochemical oxygen demand (BOD),
COD, DO, cyanobacteria, water level, and pondage in combination with water quality and quantity
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data in our analysis of the causes of harmful algal blooms. Various studies have demonstrated the
use of deep learning models to predict water quality, such as by predicting dissolved oxygen (DO),
TN, and TP concentrations using an Elman neural network [33]. However, as described above, we used
an LSTM model that can better analyze these data and potentially reduce or prevent the damage
caused by harmful algal blooms by achieving more accurate predictions of their occurrence.

This paper is structured as follows: Section 2 presents the scope of the research and the necessary
background information on the MLP, RNN, and LSTM models, as well as a description of the variables
used in the experiments. Section 3 explains the setup of the experiments, and presents and discusses
the results. Section 4 provides the conclusions of this study.

2. Methodology

2.1. Scope and Composition of Research

In this study, we aimed to identify the cause of harmful algal blooms and construct a suitable
prediction model to facilitate preemptive action. We used ordinary least square (OLS) regression with
the MLP, RNN, and LSTM models to build our prediction model. The study’s three-stage framework
is shown in Figure 1.
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Figure 1. Research framework showing the three stages used to compare deep learning models.

First, we investigated the measurement criteria and causative factors for harmful algal blooms
and assessed previous attempts to use machine learning models for water quality prediction. Second,
we constructed our dataset by combining water quality and quantity data, then performed OLS
regression analysis, which is typically used in empirical analysis. The analysis determined the influence
of the independent variable on the dependent variable and whether it was positive or negative through
correlation coefficients [34]. The results identifies the variables with the potential to have a significant
effect on chlorophyll-a prediction. In addition, we used the combined water quality and quantity
dataset to compare the deep learning model with the predicted values. Finally, we constructed
a combined model that could offer one-week predictions, using data from 16 dammed pools on 4
major river basins and the MLP, RNN, and LSTM models.

For the effective prevention of algal blooms, we built a model that could predict results one-week
in advance. The one-week prediction period was chosen with reference to past research indicating that
harmful algal blooms are characterized by rapid breeding when the environmental requirements are
met [35]. As a comparative indicator, the accuracy of prediction between the models was examined by
comparing the RMSE values commonly used as a measure of model performance [36]. It is determined
by the difference between the predicted and actual values measured by the model and is a good
indicator of the average error [17,37,38]. The final goal was a deep learning model that could predict
harmful algal blooms in the four major rivers of South Korea.
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2.2. Analytical Model

We used OLS linear regression analysis to identify the factors that could contribute to harmful
algal blooms by analyzing their effects on chlorophyll-a; this approach determines the most basic linear
relationship between dependent and independent variables. The variables for deep learning analysis
and multiple regression analysis were chosen by backwards elimination to select a meaningful value
that could satisfy the assumption in multiple regression analysis. The multicollinearity verification
results for these variables were all lower than the variance inflation factor (VIF) of 10, and were also
used in the MLP, RNN, and LSTM models. The formula for the regression analysis was:

Chlorophyll–a = β0 + β1(temperature) + β2(pH) + · · ·+ β8(pondage) + εi,
i = 1, . . . n

(1)

Regression analysis showed that the cyanobacteria had larger standard deviations than the other
variables. If these data were used as-is, the maximum-minimum normalization would be performed
on all selected variables, as data with large values could have a more significant effect on the result
than other data. The maximum-minimum normalization transformed the distribution of the values
from 0 to 1, using the maximum and minimum values of the data.

We compared and analyzed the deep learning model based on the RNN and LSTM models
(that mostly use sequential data) and the MLP model. The nonlinear activation function was used in
the MLP, except for the input layer.

In the MLP model, after performing the feed-forward calculation to determine the weight for each
node, the error was reduced by learning the optimal weight and bias through the back-propagation
algorithm, which reduced the error by sending the error between the predicted value and the actual
value of the error backward [39]. Through back-propagation, the neuron weights are updated by
a gradient descent method in response to errors between neural networks to determine the weights
that minimize errors. This has the advantage of adjusting parts that are difficult to adjust using human
intuition in a complex system [40].

The existing RNN model was used to develop the LSTM model. Comparing the RNN, LSTM,
and MLP models, the MLP model ignored the time sequence and judged only the current data because
the input data pass once through all the nodes. However, the RNN and LSTM models are used
widely in time series analysis, as they simultaneously consider both present and past input data.
One disadvantage of the RNN model is that the weight of the initial data decreases as the distance
between the input data and the nodes utilizing the data increases. The LSTM model improves on this
by continuously updating the weights of the important parts of the input values by using four steps in
the model. Compared with the conventional RNN model used in water quality research, the LSTM
model used in our study had superior prediction accuracy.

The LSTM model derives its values through four steps: forget, input, update, and output.
The forget step chooses which information to discard from the old and new incoming data.
This decision is determined by the sigmoid layer in the LSTM cell. At this stage, a value between 0
and 1 is sent, which is the criterion for how much information to pass: if the value is 0, no information
is transmitted; if the value is 1, all information is transmitted. In the input step, the model chooses
whether to save the new information. As in the previous step, the sigmoid layer determines which
values to update. Then, the tanh layer creates new results and adds information from the two layers
to update the information. In the update step, the previous cell state is updated using the values
determined in the previous step. Finally, the output stage determines the output value (which of the
filtered values should be exported through the above process). This structure minimizes the loss of
previously learned information and yields results [41].

We conducted comparative analysis using the above model. The detailed hyperparameters in
the deep learning model in the instance of the activation function are those of the commonly used
rectified linear unit (ReLU) function. In this study, we employed the Adam optimizer, which has
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the following advantages: it is straightforward to carry out, computationally effective, has minimal
memory requirements, is unchangeable to diagonal rescaling of the gradients, and is suited for
problems that have large amounts of data and/or parameters. This method is also appropriate for
non-stationary purposes and problems with very noisy and/or sparse gradients [42]. The model has
three hidden layers, a batch size of 100, and an epoch of 100. With regards to the epoch, values of 100,
300, 500, and 700 were used in the pilot analysis. The LSTM model epoch was set to 100 as it was
optimal in terms of time and results. The MLP model epoch was set to 500, which had a lower RMSE
value than the other epoch. In addition, a time lag of 1 was specified to construct a model that could
predict the results a week in advance.

Figure 2 shows the structure of the deep learning model, consisting of nine input variables,
three hidden layers, and one output layer (all layers were fully connected). The first layers of the
hidden layer contained 32 nodes while the second and third layers contained 64 nodes. The same
structure was used for the LSTM, RNN, and MLP for proper comparison between the three models.

To compare the prediction values between models, 60% of the data were used as training data,
20% as validation data, and 20% as test data. Figure 3 shows the prediction process, in which predicted
chlorophyll-a (t point) was a predictor variable for the learning of nine variables in one week (t-1 point).
One week in advance was chosen as the prediction timescale for algal blooms because it showed the
best balance between prediction accuracy and an effective prediction period for preventing algal bloom
damage. The test data were used to predict chlorophyll-a and compare with existing data. The RMSE
was used as an evaluation index by comparing the predicted value with the actual value:

RMSE =

√
mean(Σ(target − prediction)2) (2)

This indicator implies that the lower the value, the closer the predicted data are to the actual value.
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2.3. Data

2.3.1. Data preprocessing

We obtained data from 16 dammed pools on four major rivers in South Korea. Before using
these data, the missing values in the water quality data were replaced with values obtained through
linear interpolation. As the date and time of the data differed according to the week and day, we set
a standard interval of six days. In addition, the water quality data were measured weekly while the
water quantity data were measured daily, so we recalculated the water quantity data to a weekly unit.
In this way, weekly algal research data were generated from 27 August 27 2012 to 25 December 2017.

2.3.2. Dependent Variable

After data preprocessing, chlorophyll-a was used as a dependent variable in water quality
data from the Ministry of Environment. As a harmful algal bloom progresses, an increase in the
number of cyanobacteria cells on the water surface causes the release of harmful toxins. An increase in
chlorophyll-a indicates eutrophication of the water as a result of the algal bloom. Along with measuring
chlorophyll-a, we intended to measure the number of cyanobacteria cells producing harmful toxins,
but this was difficult to analyze owing to a large amount of missing data. Therefore, only chlorophyll-a
was used as a dependent variable in this study.

2.3.3. Control and Independent Variables

The data from the branch units of the Ministry of Environment and Ministry of Land,
Infrastructure and Transport were collected and used for analysis as control variables and independent
variables. The Ministry of Environment data included temperature, pH, conductivity, DO,
BOD, COD, T-P, and cyanobacteria. Ministry of Land data included water level, pondage, and
amount of precipitation. We then used backward elimination to select the most meaningful
variables. Non-significant variables were eliminated sequentially using the p-value of t. Finally,
we selected the following variables: temperature, pH, BOD, COD, DO, cyanobacteria, water level,
and pondage (Table 1).

We used nine selection variables and 4464 weekly data points over a period of six years.
The amount of DO was used as an indicator of water quality, representing the amount of oxygen
pollution. The BOD and COD levels indicated whether the microorganisms needed oxygen to
decompose organic matter: the higher these two indices, the more organic matter was present.
The water level indicates the surface level of each dammed pool, while pondage indicates the total
volume of water.
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Table 1. Variables used in model tests and their basic statistical descriptions.

Variable Name Variable Description Source Number of Data Average Standard Deviation Minimum Value Maximum Value

temperature water temperature (◦C)

Ministry of Environment

4464 17.40 8.16 0.30 34.30
pH potential of hydrogen 4464 8.00 0.54 5.70 9.70
DO dissolved oxygen (mg/L) 4464 10.70 2.66 2.20 19.20

BOD biochemical oxygen demand (mg/L) 4464 2.00 1.26 0.30 9.60
COD chemical oxygen demand (mg/L) 4464 5.80 1.82 1.80 19.50

cyanobacteria cyanobacteria cell number 4464 4041 20,695 0 556,740
chlorophyll chlorophyll-a 4464 23.76 23.15 0.10 177.90

water level water level (el.m) Ministry of Land,
Infrastructure and Transport

4464 19.49 13.78 1.50 47.52
pondage pondage (million m3) 4464 43.67 30.64 4.829 205.58

Number of Data: 279 × 16 Dammed Pools.
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3. Results and Discussion

As shown in Table 2, five variables (temperature, pH, DO, BOD, and COD) were positively
correlated with the change in chlorophyll-a, i.e., when chlorophyll-a increased, these parameters also
increased. This matches the results of past research showing that an increase in water temperature to
25 ◦C results in algae growth [27]. The positive regression coefficients for DO, BOD, and COD indicate
that, when x increased 1 point, y increased by the coefficient value. With respect to DO, as the algae
are photosynthetic and produce oxygen, increasing algae produce more DO [12]. BOD is an important
parameter for assessing water pollution; the higher the BOD concentration, the higher the increase in
organic matter and chlorophyll-a, as shown by a previous study finding that the correlation between
BOD and chlorophyll-a in Ham Nghi Lake (Vietnam) in 2013 produced an R2 value of 0.97 [43].
Finally, COD has a strong correlation with BOD and is used when determining the pollution level
of a water body because measurements of COD are more accurate than those of BOD, which is
significantly affected by carbon assimilation in the presence of algae [44]. Our regression analysis
indicated a positive correlation between DO, BOD, and COD, in accordance with previous research.

In contrast, the water level, pondage, and cyanobacteria variables were negatively correlated with
changes in chlorophyll-a, i.e., when x increased 1 point, y decreased by the coefficient value. However,
changes in water level could lead to a decrease as well as an increase in chlorophyll-a, as a previous
study indicated that the prevention of algal blooms was augmented when the rising period of the
water level increased [28]. These results confirmed that temperature, cyanobacteria, pH, DO, BOD,
and COD were variables affecting chlorophyll-a, in addition to both water quantity and quality.

The results of the MLP and LSTM models are shown in Figure 4, in which the chlorophyll-a data
were predicted one week in advance. The RMSE value was lower in the LSTM model than in the MLP
model, demonstrating the superior accuracy of the LSTM model. Although the MLP’s predictions
were superior in some cases, in most instances it did not follow the trend well.

Table 2. Multiple linear regression analysis results.

Variable Name Coefficient Standard Error p > t

temperature 3.262 × 10−1 5.918 × 10−2 3.74 × 10−8 ***
pH 3.218 × 10−1 6.706 × 10−1 6.31 × 10−1

DO 1.466 1.912 × 10−1 2.13 × 10−14 ***
BOD 2.222 3.455 × 10−1 1.39 × 10−10 ***
COD 2.580 2.635 × 10−1 2 × 10−16 ***

cyanobacteria −6.105 × 10−5 1.46 × 10−5 2.93 × 10−5 ***
water level −4.891 × 10−1 2.85 × 10−2 2 × 10−16 ***

pondage −1.260 × 10−1 1.076 × 10−2 2 × 10−6 ***
_cons −4.18 4.692 3.73 × 10−1

p > F 2.2 × 10−16

R2 0.3032
adjusted R2 0.302

number of observations 4464

Significance level: *** p < 0.001.

For example, at the Sejongbo site (a dammed pool used for irrigation) on the Geum River,
the RMSE value of the MLP model was 33.48, slightly higher than that of the LSTM model. In case of
Sejongbo, MLP model predicted values did not increase sharply with a rise in the actual value;
however, the LSTM predicted values closely followed the peak points of actual values. A similar result
occurred at the nearby Gongjubo site (a dammed pool used for irrigation). In contrast, for Gangjeong
goryeoungbo (a dammed pool for irrigation), the MLP model peak point was closer to actual values
than that of the LSTM model. However, in other intervals, the predicted values deviated significantly
from the actual values, indicated by higher RMSE values than for the LSTM model. At this site,
the maximum value of the Y-axis was 40; lower than the other peak. In this case, the MLP model
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prediction line followed the actual line well. However, for the other two points, the maximum value of
the Y-axis was more than 100. In this instance, the MLP model prediction line remained between 60
and 70 and did not follow the trend, while the LSTM model followed the trend well regardless of the
size of the value. This limitation of the MLP model appears to explain why its RMSE value was higher
than that of the LSTM model.Int. J. Environ. Res. Public Health 2018, 15, 1322  10 of 15 
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Table 3 shows the results of RMSE comparisons after executing 100, 300, 500, and 700 epochs.
We performed analyses to determine the appropriate epoch for each model. As a result, in the MLP
model, the sum of RMSE values seemed to decrease gradually as the epochs increased, but increased
again from epochs of 500 or more. For the LSTM model, the RMSE values increased continuously after
the 100th epoch. Consequently, for a comparison between the two models, it was necessary to compare
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the RMSE values in the optimal epoch. Therefore, we selected epoch 100 and 500 for the LSTM and
MLP models, respectively. These results suggest that parameter adjustment is required to increase
the accuracy of the two models and that increasing the amount of data would also help improve the
accuracy. Table 4 shows the results of the RMSE comparison between OLS regression analysis, MLP,
RNN, and LSTM.

Table 3. Results of RMSE comparison by epoch.

Measuring Point MLP LSTM

Epoch 100 300 500 700 100 300 500 700

Ipo 7.84871 8.42762 9.2777 10.7004 7.67382 8.31658 8.73067 9.06951
Yeoju 5.49547 5.6166 6.07492 4.49033 5.61138 5.73774 5.81824 6.13268

Gangcheon 3.64954 3.99566 4.431429 35.5032 3.60946 3.83244 3.86594 3.86588
Sejong 39.6119 35.9101 33.4814 10.3041 30.8273 31.0018 30.9622 31.7447
Gongju 42.7369 35.3198 33.7732 12.2273 31.9164 31.9498 32.1146 33.1228
Baekje 36.477 27.7607 26.5994 12.7383 27.3673 27.1477 27.1138 27.0187
Sangju 14.7071 14.0804 14.0761 26.0294 14.4853 14.4771 14.2902 14.1571

Nakdan 9.96028 10.4088 10.5436 14.0869 9.84722 9.50639 10.137 10.0699
Gumi 11.0802 10.2963 10.1364 32.6677 10.5159 10.2251 10.0779 10.2275

Chilgok 10.3898 10.2936 9.80221 29.1884 11.0027 10.5753 10.2638 10.204
Gangjeong goryeoung 9.2862 8.20598 9.2837 5.8793 7.85588 8.00324 8.78411 8.99846

Dalseong 10.2755 11.3021 11.7977 9.91085 12.6251 12.7122 13.1197 13.4175
Hapcheon 15.0435 13.9717 13.9468 27.4545 14.1113 13.9893 14.1398 13.9613

Changnyeong haman 12.1064 12.2411 12.0053 12.288 13.2302 12.6724 12.501 12.416
Seungchon 36.0572 29.4183 29.0971 9.44017 30.4663 36.1613 37.7719 40.2004

Juksan 29.7646 28.017 28.4197 14.114 26.3498 26.865 26.9653 26.7871
Sum of RMSE 294.4903 265.2658 262.7467 267.0229 257.4954 263.1734 266.6562 271.3935

Table 4. Results of RMSE comparison.

Measuring Point OLS MLP RNN LSTM

Ipo 13.21 9.28 7.93 7.67
Yeoju 9.13 6.07 5.60 5.61

Gangcheon 6.50 4.43 3.58 3.61
Sejong 29.78 33.48 30.42 30.83
Gongju 32.30 33.77 32.08 31.92
Baekje 25.30 26.60 25.95 27.37
Sangju 10.18 14.08 14.37 14.49

Nakdan 11.88 10.54 9.34 9.85
Gumi 13.32 10.14 10.26 10.52

Chilgok 11.82 9.80 10.55 11.00
Gangjeong goryeoung 10.02 9.28 8.11 7.86

Dalseong 19.63 11.80 13.24 12.63
Hapcheon 14.87 13.95 14.35 14.11

Changnyeong haman 19.40 12.01 12.83 13.23
Seungchon 34.24 29.10 33.25 30.47

Juksan 22.44 28.42 26.22 26.35
RMSE average 17.75 16.42 16.13 16.09

Our results show that the deep learning models were superior to the OLS linear regression model
at most dammed pool sites. We compared the OLS model with each deep learning model. The RMSE
values of the MLP was lower than those of OLS at 11 dammed pools, the RNN was lower than OLS
at 12 dammed pools, and the LSTM was lower than OLS at 12 dammed pools. The RMSE values
of the MLP and RNN were lowest at four and three dammed pools, respectively, while those of the
LSTM and OLS were lowest at five dammed pools each. All deep learning models’ RMSE averages
were lower than the OLS average; the difference in the RMSE average between the OLS and LSTM
model was 1.66. The LSTM deep learning model showed the best prediction performance overall,
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with the lowest average RSME and lowest individual values at five of the 16 dammed pools, although
it performed less well in certain cases. These results demonstrate that the prediction accuracy for algal
blooms can be improved through the use of deep learning models, particularly when compared to the
commonly used OLS model.

The results of this study support the practicality of using deep learning models to supplement
existing models in comparable research contexts. As this is the first attempt, to our knowledge,
at predicting algal blooms in Korean rivers using the LSTM model of deep learning, we expect that
this research will prompt further attempts to apply and refine these methods.

However, this study has some limitations. We considered the use of cyanobacteria in the prediction
of algae blooms, yet there were some missing data values that meant it could not be used, so it became
a limiting factor in the accurate prediction of algae blooms. In addition, it is necessary to adjust
the parameters in future to obtain higher accuracy; better results will be obtained by adjusting the
parameters to determine optimal values for each region. Subsequent studies and/or improved data
would be very helpful in overcoming this limitation. In addition, as the predicted results were not
always accurate, further research would be useful to better refine the methods employed here.

Furthermore, our results showed the potential for using a deep learning model when it is difficult
to apply existing physical prediction models (such as QUAL2E and CE-QUAL-W2) due to a lack of
data on the relationships between factors. Applying deep learning methodology to water quality and
environment management studies can improve the prediction accuracy by constructing a short-term
prediction model for algal blooms. The performance of the LSTM model can achieve better predictions,
one week in advance that would enable the implementation of specific and appropriate measures for
the prevention or mitigation of algal blooms.

4. Conclusions

In this study, we analyzed factors influencing the occurrence and prediction of harmful algal
blooms using weekly water quality and quantity data of 16 dammed pools on four major rivers in
South Korea. Based on the selected variables, we employed chlorophyll-a as a predictive factor.

Next, we constructed a model using the deep learning method and compared its results with
existing analysis methods such as OLS regression analysis to analyze their relative performance.
OLS regression and the MLP, RNN, and LSTM deep learning models were investigated by analyzing
predictions of chlorophyll-a based on RMSE. The OLS regression model achieved the lowest RMSE
value at five of the 16 dammed pools, while the LSTM model was the most accurate overall.

Moreover, the performance of the LSTM model was superior to the MLP and RNN models.
In addition, the LSTM model predictions were closer to the actual data than those of the MLP model
when variations in chlorophyll-a were large. This implies that the MLP model tended to fail to learn
properly when the value of chlorophyll-a increased. The LSTM model, on the other hand, followed
the trend line regardless of the range of values. In the comparison between deep learning models,
we found that the feedforward method (MLP) performance was worse than that of the recurrent
method (RNN and LSTM). In addition, the LSTM model exhibited higher performance than the other
models. The algorithms used in the LSTM model were designed to solve the problem of information
loss for long-term memory in existing RNN models, which is known to improve predictions by
transferring information on previous data as the amount of data grows. Therefore, for water quality
data collected daily with continuous data management, predictions could be made more accurate
using such “big data.”
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