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Preconditioning boosts regenerative
programmes in the adult zebrafish heart

Anne-Sophie de Preux Charles, Thomas Bise, Felix Baier, Pauline Sallin
and Anna Jaźwińska

Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland

During preconditioning, exposure to a non-lethal harmful stimulus triggers

a body-wide increase of survival and pro-regenerative programmes that

enable the organism to better withstand the deleterious effects of subsequent

injuries. This phenomenon has first been described in the mammalian heart,

where it leads to a reduction of infarct size and limits the dysfunction of the

injured organ. Despite its important clinical outcome, the actual mechanisms

underlying preconditioning-induced cardioprotection remain unclear. Here,

we describe two independent models of cardiac preconditioning in the

adult zebrafish. As noxious stimuli, we used either a thoracotomy procedure

or an induction of sterile inflammation by intraperitoneal injection of immu-

nogenic particles. Similar to mammalian preconditioning, the zebrafish heart

displayed increased expression of cardioprotective genes in response to these

stimuli. As zebrafish cardiomyocytes have an endogenous proliferative

capacity, preconditioning further elevated the re-entry into the cell cycle in

the intact heart. This enhanced cycling activity led to a long-term modification

of the myocardium architecture. Importantly, the protected phenotype

brought beneficial effects for heart regeneration within one week after cryo-

injury, such as a more effective cell-cycle reentry, enhanced reactivation of

embryonic gene expression at the injury border, and improved cell survival

shortly after injury. This study reveals that exposure to antecedent stimuli

induces adaptive responses that render the fish more efficient in the activation

of the regenerative programmes following heart damage. Our results open a

new field of research by providing the adult zebrafish as a model system to

study remote cardiac preconditioning.
1. Introduction
‘Was mich nicht umbringt, macht mich stärker’. (What does not kill me makes me

stronger.) This statement from the German philosopher Friedrich Nietzsche

(1844–1900) is a nearly prefect definition of the intriguing phenomenon referred

to as preconditioning. It is more formally described as the induction of cellular

survival and pro-regenerative programmes by transient exposure to non-lethal

noxious stimuli, which increase the resistance of tissues to further harmful inju-

ries. This physiological adaptation of tissues to subsequent damage was

discovered three decades ago in the heart [1] but has in the meantime been

described in a large variety of mammalian tissues, such as liver, kidney, skeletal

muscle and nervous system [2,3]. Numerous studies performed on mammalian

models of myocardial infarction have shown that subjecting hearts to ischaemic

preconditioning before ventricular infarction led to a reduction of the myocardial

infarct size and to a better recovery of cardiac function [4].

At first, a preconditioning effect was obtained by exposing heart to four brief

episodes of coronary occlusion interspersed with reperfusion periods. The trans-

position of preconditioning into clinics has been possible thanks to the

development of non-invasive cardiac preconditioning strategies using remote

stimuli, such as the application of cycles of inflation–deflation using a blood

pressure cuff placed on the upper arm [5,6]. Since then, multiple alternative
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triggers not based on ischaemia have been proposed, including

peripheral nociception (topical application of capsaicin or

surgical skin incision) and direct and transcutaneous nerve

stimulation (electroacupuncture) [7]. These findings suggest

that preconditioning-induced protective programmes can

be activated in an inter-organ response to a wide range of

transient aversive stimuli.

The mechanisms underlying the transport of the cardio-

protective signal from the preconditioned tissue to the target

organ remain unclear, but include both humoral and neural

aspects [7,8]. Several studies have implicated a blood-borne

factor as a mediator of cardioprotection. Indeed, the protected

phenotype can be transferred from a preconditioned to a non-

preconditioned individual via blood transfusion. This concept

of a humoral signal transfer has been reproduced in several

mammalian species, such as rabbit, rat and pigs [9–13].

Even though several factors, such as bradykinin, adenosine,

SDF-1a or endocannabinoids, have been proposed, the identity

of the humoral mediators of cardioprotection remains unclear

[4,7,8]. The second aspect, namely the neural hypothesis, pos-

tulates that the preconditioned tissue produces factors that act

locally to activate sensory afferent neurons and initiate the car-

dioprotective programmes [7,8]. In fact, nerve transection has

been reported to abolish preconditioning-induced cardiopro-

tection [14], while a direct stimulation of the sensory nerve

reproduced the protected phenotype observed after

preconditioning [15,16].

The protected phenotype after ischaemic preconditioning

appears in two subsequent waves. The first one, the acute

form, confers immediate cardioprotection, but its effects fade

within 4 h. The second wave appears after 24 h, and lasts for sev-

eral days. This delayed cardioprotection relies on the increased

expression of protective proteins, while acute cardioprotection

involves the recruitment of available signalling modules [17]. Pre-

conditioning has raised an important clinical interest and has led

to the publication of a large number of studies, identifying over

100 different signalling molecules and mechanisms. Acute cardi-

oprotective pathways, which include NO/PKG, SAFE (STAT3/5

activation) or RISK pathway (PI3K, Akt, ERK activation), con-

verge at the mitochondria, pointing to this organelle as a key

effector of early cardioprotection [18]. The transcriptional upreg-

ulation of cardioprotective proteins observed during delayed

cardioprotection is initiated by at least two signalling pathways

that act in parallel: the PKC1/NF-kB and SAFE pathways [17,19].

Remarkably, preconditioning has also been reported in

fish, such as rainbow trout and Atlantic cod, suggesting a

common evolutionary origin of this phenomenon in ver-

tebrates [20]. Over the last decade, the zebrafish has proved

itself to be an extremely interesting model to study heart

regeneration. In contrast to mammals, zebrafish cardiomyo-

cytes (CMs) remain responsive to mitogenic signals

throughout their life. This provides an efficient mechanism

of regeneration after injury, leading to a full cardiac recovery

within 30–60 days. Despite its high clinical interest, the cardi-

oprotective mechanisms triggered by preconditioning have

never been addressed using the zebrafish as a model system.

In this study, we described two independent models of car-

diac preconditioning in the adult zebrafish. We used either a

skin incision of the thorax (thoracotomy) or sterile inflam-

mation in the peritoneum as the preconditioning stimulus. In

contrast to mammalian models, preconditioning promoted

the re-entry of cardiac cells into the cell cycle and led to a modi-

fication of the ventricular architecture. In addition, we
observed an induction of more classical cardioprotective pro-

grammes in the epicardium shortly after the preconditioning

stimulus. Remarkably, fish preconditioned a few days before

heart injury exhibited an accelerated regeneration, illustrated

by an increased rate of re-entry of CMs into the cell cycle,

more CM dedifferentiation and better cell survival.
2. Material and methods
2.1. Animal procedures
This work was performed with fully grown adult fish at the age

of 12–24 months. Wild-type fish were AB (Oregon), transgenic

fish lines were cmlc2:DsRed2-nuc [21] and cmlc2:EGFP [22]. The

control and preconditioned animals for each experiment were

siblings that were maintained in the same density and food

conditions. Before every procedure, fish were anaesthetized

with tricaine (Sigma-Aldrich). To perform thoracotomy, fish

were placed ventral side up on a damp sponge and a small

incision was made through the thorax skin with iridectomy

scissors. The peritoneal injections were performed by injection

of 2 ml of solution into the abdomen of the fish using a glass

microcapillary connected to the Femtojet transjector (Eppen-

dorf). The lipopolysaccharides (LPS; Sigma-Aldrich) and

Zymosan (Sigma-Aldrich) were injected at a concentration of

10 mg ml21 in Hank’s solution (20 mg of immunogenic par-

ticles injected per fish). Cryoinjuries were performed as

described previously [23,24]. For bromodeoxyuridine (BrdU)

incorporation experiments, the animals were maintained in

5 mg ml21 BrdU (B5002; Sigma-Aldrich) for 7 or 30 days.

During all treatments, fish were fed and solutions were

changed every third day.

2.2. Immunohistochemistry and histology
At the end of each experiment, the hearts were collected and

fixed overnight at 48C in 2% paraformaldehyde. They were

then rinsed in PBS and equilibrated in 30% sucrose before

embedding in Tissue-Tek OCT compound (Sakura Finetek

Europe B.V.) and cryo-sectioned at a thickness of 16 mm.

The immunohistochemistry procedures were performed as

previously described [23]. The following primary antibodies

were used: rabbit anti-MCM5 at 1 : 5000 (kindly provided by

Soojin Ryu, Heidelberg), mouse anti-p-Histone 3 at 1 : 200

(Millipore, Clone 3H10), rabbit anti-Mef2 at 1 : 100 (Santa

Cruz Biotech SC-313), rabbit anti-DsRed (Clonetech, 632496)

at 1 : 200 and rat anti-BrdU at 1 : 100 (Abcam, ab6326). To

visualize the cardiac muscle, sections were incubated for

30 min with Phalloidin-Atto 647N (Sigma-Aldrich) at a

dilution of 1 : 500. For the BrdU immunostaining, the slides

were incubated in 2 M HCl in PBS with 0.3% Triton-X for

45 min before the immunohistochemistry procedure. The

Alexa-Fluor-conjugated secondary antibodies (Jackson

Immunoresearch) were used at 1 : 500, and DAPI was used

at 1 : 2000. Haematoxylin and eosin (H & E) staining was

performed as previously described [15].

2.3. TUNEL assay
For TUNEL reactions, the cryosections were postfixed for

10 min in 1% formalin, washed twice for 5 min in PBS and

pretreated in precooled ethanol : acetic acid 2 : 1 for 5 min at



Table 1. List of the primers used for in situ hybridization and qRT-PCR.

application gene gene ID forward primer 50->30 reverse primer 50->30 product length

qRT-PCR b-actin ENSDARG00000037870 TTGGCAATGAGAGGTTCAGG TGGAGTTGAAGGTGGTCTCG 55 bp

hmox1a ENSDART00000030890 GCTCAGCTACCAGAAAGGACAG CTGTCCAGCTCTTCCTCCAG 99 bp

hspa5 ENSDART00000169404 TCTCCACTGCTTCCGACAAC CAGATGGTTGTCTTTGGTCAGG 88 bp

in situ txn ENSDART00000064789 GCTCAAACGACACACGAGC GTTTTCATTTCATACAAAGCCAACA 643 bp

cxcl12a ENSDART00000053946 AGTTCCTCCACACACCCAAC AAACACGGAGCAAACAGGAC 452 bp
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2208C. After washing in PBS, DNA breaks were elongated

with Terminal Transferase (Roche) and Digoxigenin-dUTP

solution (Roche) as described previously [25]. The reaction

was stopped by incubation in 300 mM NaCl, 30 mM

sodium citrate for 10 min, followed by washing in PBS. The

staining with fluorescein conjugated anti-digoxigenin was

performed according to the manufacturer’s protocol (Roche).

2.4. Image analysis and quantification
After antibody staining, cardiac tissue imaging was performed

at 20� magnification with confocal microscopes (Leica TCS-

SP5 and Leica TCS-SPE-II). At least three different pictures

were taken for each heart. Here, n represents the number of

fish used in the experiment. IMAGEJ software was used to perform

the subsequent image analysis. The number of proliferating

non-CM nuclei was obtained by subtracting the number

of cmlc2:DsRed2-nuc-positive nuclei from the total number of

nuclei. To quantify the number of proliferating nuclei, the

images of cell-cycle markers (MCM5, PH3, BrdU) were

superimposed with the images of nuclei markers (DAPI,

cmlc2:DsRed2-nuc, Mef2). The number of apoptotic nuclei was

assessed by the superimposition of DAPI with the TUNEL label-

ling. To define the average myocardium thickness per section,

we selected ventricles of a similar shape and size for control

and preconditioning groups. We measured the thickness of the

compact myocardium at four positions at the up, right, down

and left side for each of the ventricular sections. The positions

were selected at places where the compact and the trabecular

myocardiums were clearly segregated and where the thickness

of the compact myocardium was representative of the neigh-

bouring positions. The average value of these measurements

was then normalized to the maximal myocardial length. All

results are expressed as the mean+ s.e. of the mean. Unless

specified, p-values were obtained by performing the t-test.

2.5. In situ hybridization
Several digoxigenin-labelled RNA antisense probes were

generated by PCR amplification of specific cardiac cDNA

sequences. The forward (F) and reverse (R) primers are listed

in table 1. The reverse primers were synthesized with the

addition of T3 polymerase. After hybridization, the probes

were detected by the use of anti-digoxigenin AP-conjugated

antibody (Dig labeling system, Roche).

2.6. Quantitative real-time PCR
RNA was extracted according to the Trizol reagent manual

(Life Technologies) with the use of MaXtract High Density
tubes. cDNA was synthesized with the Super-Script-II

Reverse-Transcriptase (Invitrogen) using 1.5 mg of RNA. The

primers used for different amplifications are listed in table 1.
3. Results
3.1. Thoracotomy is sufficient to induce cardiomyocyte

re-entry into the cell cycle
Previous studies in the zebrafish have shown that CM pro-

liferation is strongly induced in surgically damaged heart

after either amputation or cryoinjury [23,24,26,27]. In both

injury models, the first procedure is an incision into the thor-

acic cavity to gain access to the heart [24]. Interestingly, our

data showed that the initial surgical manoeuvre by itself is

sufficient to stimulate the entry of CMs into the cell cycle,

even when it was not followed by heart injury [23]. This

suggests that the regenerative programme of zebrafish CMs

could be markedly activated by a noxious stimulus. Accord-

ingly, we hypothesized that thoracotomy may represent a

preconditioning model, in which chest injury is sufficient to

elicit an activation of the heart in the absence of any myocar-

dial damage. Upon completion of the thoracic incision, the

chest is not sewn but left for spontaneous healing. Remark-

ably, re-epithelialization of the wound took place within

three days, while underlying connective tissue healed in

approximately one week (electronic supplementary material,

figure S1).

First, we aimed to reproduce our initial observation that

thoracotomy is sufficient by itself to induce the re-entry

of CMs into the cell cycle. For this purpose, immunohisto-

chemistry against minichromosome maintenance complex

component 5 (MCM5), a marker of G1/S phase [28], was per-

formed to quantify the entry of CMs into the cell cycle

(figure 1a,b,e). To distinguish CM from non-CM nuclei, we

used cmlc2:DsRed2-nuc fish, which express a nuclear form

of DsRed under the control of the cardiac myosin light chain 2
promoter. In control uninjured fully grown zebrafish, the

ratio of MCM5-positive CMs ranges from 0.1 to 0.5%. Remark-

ably, at 7 days post-thoracotomy (dpt), about 5% of CMs were

cycling. Proliferation of non-CM nuclei was similarly

enhanced, with a 10-fold increase in MCM5-positive non-CM

nuclei (figure 1f ). To confirm these results, we used BrdU as

a second cell-cycle marker. Fish were immersed in BrdU for 7

days following thoracotomy. Consistently, a sixfold increase

in BrdU-positive CM and non-CM nuclei was detected at

7 dpt (figure 1c,d,g,h). Taken together, these observations

indicate that the systemic reaction which is set in motion by



0

1

2

3

4

5

%
 o

f 
M

C
M

5-
po

si
tiv

e
 C

M
 n

uc
le

i

6

7
***

0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
B

rd
U

-p
os

iti
ve

 C
M

 n
uc

le
i

***

7 dpt

uninjured

%
 o

f 
B

rd
U

-p
os

iti
ve

no
n-

C
M

 n
uc

le
i

0

2.0

1.0

0.5

1.5

******

%
 o

f 
M

C
M

5-
po

si
tiv

e
no

n-
C

M
 n

uc
le

i

0

2

4

6

8

10

12

uninjured 7 dpt

D
A

PI
 / 

cm
lc

2:
D

sR
ed

2-
nu

c 
/ M

C
M

5 

uninjured 7 dpt

D
A

PI
 / 

M
ef

2 
/ B

rd
U

  

100 mm cm
lc

2:
D

sR
ed

2-
nu

c 
/ M

C
M

5

 M
ef

2 
/ B

rd
U

 

(b) (c) (d )(a)

(b¢)(a¢) (c¢) (d¢)

(a¢¢) (c¢¢) (d¢¢)(b¢¢)

100 mm 

(e) (g) (h)( f )

Figure 1. Thoracotomy triggers cell proliferation in the intact zebrafish heart. (a,b) Representative sections of hearts of transgenic fish cmlc2:DsRed2-nuc (red), which
demarcate cardiomyocyte (CM) nuclei, labelled with the G1/S-phase marker MCM5 (green). (c,d) Representative sections of hearts after one week of BrdU (green)
treatment. Mef2 staining (red) was performed to differentiate CM nuclei from non-CM nuclei. (a’,b’,c’,d’,a”,b”,c”,d”) Higher magnifications of the framed area shown
in the images that are labelled with the same letter without the prime symbol. The same rule applies to all the subsequent figures. Arrows indicate double-positive
nuclei. (e – h) Quantification of MCM5- and BrdU-positive CM and non-CM nuclei. (n � 4 hearts; �2 sections per heart; ***p , 0.001).
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the thoracotomy procedure elicits a global increase in the

cell-cycling activity of the zebrafish heart.

Then, the progression of the CM cell cycle was analysed.

CMs can undergo DNA replication without completing their

cell cycle. In humans, polyploidization occurs during post-

natal growth and in response to myocardial stress [29]. To

test whether the dividing CMs generated after thoracic incision

entered mitosis, we used phospho-(Ser10)-histone H3 (PH3) as

a marker of condensed chromosomes [30]. A sevenfold

increase in the number of PH3-positive CM nuclei was

observed at 7 dpt (figure 2b), while a ninefold increase was

detected for non-CM nuclei (figure 2c). Clear examples of

CM nuclear division were detected (figure 2a), indicating

that thoracotomy leads to the formation of new CM nuclei.

To determine whether the enhanced CM mitotic activity

was associated with dedifferentiation, we assessed the

expression of embryonic isoform of cardiac myosin heavy

chain (embCMHC), which has been shown to demarcate the
margin of the remaining myocardium in the vicinity of the

damaged tissue after amputation or cryoinjury [31]. The immu-

nofluorescence analysis revealed that embCMHC was not

induced after thoracotomy (data not shown). This result

suggests that MCM5-positive CMs of the preconditioned

hearts do not markedly revert to the immature state, which

would facilitate cardiogenesis.

Next, we investigated whether the increased cycling

activity observed in the absence of heart injury was followed

by an elimination of supernumerary cells by apoptosis.

TUNEL staining was performed at different time points after

thoracic incision (4, 7, 14, 21 and 30 dpt), and at 4 days post-

cryoinjury (dpci) as a positive control (figure 2d–g). Although

an increased cell death was detected at 4 dpci, no difference

was noticed between uninjured and thoracic-wounded ani-

mals, indicating that the induction of proliferation does not

concur with an increased apoptosis and confirming that the

thoracotomy procedure did not damage the cardiac tissue.
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Figure 2. Thoracotomy stimulates mitotic events in the intact heart without apoptotic turnover of the newly generated cells. (a) Representative image of a mitotic
CM in an intact heart of transgenic fish cmlc2:EGFP at 7 dpt. Orthogonal projections demonstrate a colocalization between PH3 (red), GFP (green) and DAPI (blue)
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3.2. Thoracotomy induces architectural modifications of
the myocardium

To test whether the proliferative response observed at 7 dpt was

a lasting phenomenon, we immersed fish in BrdU for one

month and assessed the profile of cycling CMs (figure 3a,b).

We identified a fivefold increase in the number of BrdU-positive

CMs at 30 dpt compared to 7 dpt (figure 3f). These results indi-

cate that thoracotomy opens a long-term proliferative window

in the zebrafish heart.

The zebrafish ventricle is composed of two distinct compart-

ments: a dense cortical layer (compact myocardium) which

surrounds a spongy inner structure (trabecular myocardium;

figure 3e) [32]. We hypothesized that the proliferation induced
after thoracotomy might not be evenly scattered through both

myocardial compartments. To test this hypothesis, the spatial

distribution of BrdU-positive CMs was characterized in fish

treated with BrdU for 30 days. The CMs that entered the cell

cycle during the month following thoracotomy were mainly

located in the compact myocardium (figure 3g), confirming

the result obtained at 7 dpt for MCM5-positive CMs (electronic

supplementary material, figure S2).

Next, we asked if the observed increase in CM proliferation

induced any long-term effect on the myocardium architecture.

To this aim, we stained heart sections with Phalloidin, which

binds to F-actin fibres present in muscle, and we quantified

diverse morphometric parameters at 30 dpt (figure 3c,d,h– j ).
While the maximal heart length was unchanged (figure 3h),
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the thickness of the compact myocardium was increased at

one month after thoracotomy (figure 3i). In addition, the

number of CM nuclei per square micrometre was larger after
thoracotomy (figure 3j). This increase was higher in the com-

pact myocardium than in the trabecular compartment,

supporting the notion that new CMs accumulate in the
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compact myocardium after thoracotomy and lead to a

thickening of this outer myocardial compartment.

3.3. Intraperitoneal injection of immunogenic particles
induced cardiomyocyte re-entry into the cell cycle

Even though no heart injury could be detected, we cannot

exclude that the enhanced mitotic activity observed after thora-

cotomy might be triggered by a direct stimulation of the cardiac

tissues by the osmotic or the mechanical stress created by the

thoracic incision and not simply by the preconditioning stimu-

lus. To test this possibility, we developed a second model of

cardiac preconditioning using another remote stimulus.
Specifically, an intraperitoneal (IP) inflammation was induced

by a single injection of either immunogenic lipopolysaccharides

(LPS) or Zymosan. LPS simulate a Gram-negative infection,

whereas Zymosan mimics a fungal infection [33]. Outstand-

ingly, at 7 days post injection (dpi), cell-cycle activity was

enhanced in LPS- and Zymosan-injected fish, as compared

to control fish injected with Hank’s buffer (figure 4a– f), reach-

ing levels similar to those observed after thoracotomy

(figure 4a– f). Similar to the thoracotomy model, we assessed

the spatial distribution of cycling CMs after the induction of a

peritoneal sterile inflammation. In contrast to the thoracotomy

model, MCM5-positive CMs were located throughout the

whole heart of LPS- and Zymosan-injected fish (figure 4f).
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3.4. Intraperitoneal injection of immunogenic particles
stimulated thickening of the compact myocardium

Then, we analysed the long-term effect of a single IP injection

of either LPS or Zymosan on the myocardium architecture.

Again, we stained heart sections with Phalloidin and quanti-

fied diverse morphometric parameters at 30 dpi (figure 5).

Similar to thoracotomy, the maximal heart length was

unchanged (figure 5d ), but the thickness of the compact

myocardium was increased (figure 5e). The analysis of

cmlc2:DsRed-nuc transgenic fish revealed that a densification

of CM nuclei in cardiac muscle was only detected in the com-

pact myocardium at 30 dpt (figure 5f ). In the trabecular

myocardium, we observed that the muscle surface relative to

the heart length (Phalloidin-positive area per maximal heart

length) was increased in heart preconditioned with IP injection

of LPS or Zymosan (data not shown). We did not notice the

same phenomenon after thoracotomy (data not shown). This

additional aspect of hearts preconditioned with a single IP

injection of LPS or Zymosan indicates that architectural modi-

fications might take place also in the trabecular myocardium in

this model.

Taken together, our results show that similar phenotypic

manifestations are observed after thoracotomy or IP injection
of immunogenic particles, suggesting that both procedures

trigger the activation of the similar molecular cascades.
3.5. Cardioprotective genes are expressed in the
epicardium after thoracotomy

To determine whether thoracotomy induces phenotypes simi-

lar to those seen after ischaemic preconditioning, we tested

the expression of several cardioprotective genes known to

be induced by preconditioning in mammalian models. Thio-

redoxin plays a crucial role in the cellular defence against

reactive oxygen species after ischaemic preconditioning [34],

while CXCL12 (also known as SDF-1a) and its receptor

CXCR4 are activated in response to preconditioning and pro-

mote cardiac protection against ischaemia/reperfusion

damage [35]. The expression of their zebrafish orthologues

(txn, cxcl12a, cxcl12b) was tested by in situ hybridization at

1 dpt. Interestingly, both txn and cxcl12a transcripts were

upregulated in the epicardium at 1 day after the precondi-

tioning stimulus (figure 6a–d ). By contrast, we did not

detect any change in the expression of cxcl12b (data not

shown). Importantly, txn and cxcl12a were similarly upregu-

lated in the epicardium after zymosan injection (data not



uninjured 1 dpt

tx
n

cx
cl

12
a

hm
ox

1a
  r

el
at

iv
e

m
R

N
A

 le
ve

l

hs
p5

a 
re

la
tiv

e
m

R
N

A
 le

ve
l

0

3

2

1

4

5

0

0.5

1.0

1.5

2.0
** **

100 m
m

 

(b) (b¢)(a) (a¢)

(d) (d¢)(c) (c¢)

(e) ( f )

 un
inj

ur
ed

 1 
dp

t

 un
inj

ur
ed

 1 
dp

t

Figure 6. The expression of cardioprotective genes is induced in the epicardium after thoracotomy. (a – d ) Representative images of in situ hybridization on heart
sections with antisense txn and cxcl12a probes. (e,f ) The relative expression level of hmox1a and hpsa5 was tested by qRT-PCR (n � 3; each replicate is a pool of six
ventricles; **p , 0.01).

rsob.royalsocietypublishing.org
Open

Biol.6:160101

9

shown). Next, we tested the expression of two heat-shock

proteins induced after ischaemic preconditioning in rodents.

The inability of hmox1 knock-out mice to respond to precon-

ditioning has highlighted the key role of this heat-shock

protein in cardioprotection [36]. Other studies in rats have

established an important role for HSPA5 (also known as

GRP-78) in the protection of CMs against ATP depletion

and oxidative stress after ischaemic preconditioning [37]. By

qRT-PCR, we observed an increased expression of the zebra-

fish orthologues of these two heat-shock proteins, namely

hmox1a and hspa5, shortly after the preconditioning stimulus

at 1 dpt (figure 6e,f ). Taken together, these results suggest

that similar cardioprotective mechanisms are at stake in the

adult zebrafish heart after thoracotomy and in mammalian

ischaemic preconditioning models.
3.6. Subsequent preconditioning stimuli have
additive effects

Next, we asked whether myocardial cell-cycle activity could

be further boosted when two distinct preconditioning stimuli

were combined. Accordingly, we performed an IP injection of

Zymosan at 3 days before the thoracotomy procedure and,
subsequently, assessed the rate of dividing CMs in the ventri-

cle at 7 dpt (figure 7c). Remarkably, the percentage of

MCM5-positive CMs increased by 3.6-fold when a single

IP-injection of Zymosan was combined with thoracotomy,

when compared with a control injection followed by thora-

cotomy (figure 7a,b,d ). Our results demonstrate that two

distinct non-lethal harmful stimuli have additive effects on

the rate of cell-cycle re-entry of CMs and suggest that these

procedures could be used as effective preconditioning stimuli

before heart injury.
3.7. Using thoracotomy as a preconditioning stimulus in
the adult zebrafish enhances regenerative
programmes

To validate thoracotomy and IP injection of immunogenic

particles as proper models of cardiac preconditioning in the

zebrafish, we subjected fish to these non-lethal harmful stimuli

a few days before wounding their hearts. In contrast to

mammals, zebrafish are able to fully regenerate their heart

following injury. Upon wounding, cardiac cells at the injury

border reactivate developmental programmes, undergo
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mitosis and efficiently repopulate the damaged zone

[23,26,27,38]. In addition, proliferative programmes are acti-

vated within the entire intact myocardium, where CMs

distant from the wound enter the cell cycle without undergoing

any obvious dedifferentiation [31].

To induce myocardial injury, we used the cryoinjury

model, in which approximately 20% of the ventricle is

damaged by exposure to a precooled metal probe [24].

Within the first week after the procedure, the initial inflamma-

tory phase is tuned down and a collagenous matrix is

deposited in the wounded area, providing a scaffold for the

regeneration. By 7 days post-cryoinjury (dpci) the regenerative

phase has been clearly initiated, and within four to eight weeks

a complete restoration of the cardiac tissue can be observed

[23,26,39].

To maximize our chance to detect the effect of precondi-

tioning on heart regeneration in the adult zebrafish, we

focused our analysis at 7 dpci. At this time point, most regen-

erative programmes are active. We subjected fish to

thoracotomy either 2 or 7 days before the cryoinjury procedure,

referred to as a short-term preconditioning, and assessed CM

proliferation in the ventricles at 7 dpci (figure 8a–c). The results

were displayed by plotting the percentage of MCM5-positive

CM nuclei as a function of the percentage of cryoinjured area
for each heart section (figure 8g). We observed that the

amount of dividing CMs was proportional to the size of the

wound. Remarkably, CMs re-entered the cell cycle more

efficiently in preconditioned hearts than in controls

(figure 8a,b,g; electronic supplementary material, figure S3b).

To confirm our observation of an enhancement of regeneration

after preconditioning, we then examined the induction of

developmental programmes in CMs in close vicinity to the

wound, using embryonic cardiac myosin heavy chain

(embCMHC) as a marker of undifferentiated CMs. In control

unconditioned hearts, embCMHC staining can be detected

starting from 4 dpci, it peaks between 7 and 10 dpci and

decreases thereafter as regeneration progresses [31]. In precondi-

tioned hearts, we observed a fourfold increase in the embCMHC

staining at 7 dpci (figure 8e,f,h). Our data show a clear acce-

leration of the heart regeneration in fish preconditioned by

thoracotomy a few days before the cryoinjury.

Interestingly, we could not observe a significant difference

in the number of cycling CMs or in the size of embCMHC-

positive myocardium between hearts preconditioned at 2 or

7 days before cryoinjury (figure 8g; data not shown). These

results suggest that preconditioned hearts are able to retain

their protected phenotype for at least one week. To test whether

preconditioned hearts hold these cardioprotective capacities in
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the long term, we performed a thoracotomy 30 days before the

cryoinjury procedure (electronic supplementary material,

figure S4a). This long-term preconditioning did not lead to

improvement of the cardiac regeneration as convincingly as

that seen when thoracotomy was performed within the week

preceding the cryoinjury (electronic supplementary material,

figure S4d). The rate of cycling CMs as a function of the size

of the wounded area was not higher in preconditioned fish

(electronic supplementary material, figure S4b, S4e). Further-

more, no difference between control and preconditioned fish

could be observed in the quantity of undifferentiated CMs (elec-

tronic supplementary material, figure S4c).

3.8. Using Zymosan intraperitoneal injection as a
preconditioning stimulus in the adult zebrafish
enhances regenerative programmes

To test whether IP injection of immunogenic particles could

also be used to confer cardioprotection before cryoinjury,

similar to thoracotomy, we performed a single IP injection

of Zymosan at 3 days before the cryoinjury procedure

(figure 8d). Again, CMs re-entered the cell cycle more effi-

ciently in preconditioned hearts (figure 8i; electronic

supplementary material, figure S3d ). The initiation of devel-

opmental programmes in CMs at the injury border was

stronger after Zymosan injection, as illustrated by a 2.5-fold

increase in injury-normalized embCMHC staining

(figure 8j ). These results also establish IP injection of Zymo-

san as a valid preconditioning stimulus in the adult zebrafish.

3.9. Preconditioning in the adult zebrafish enhances
survival programmes

We noticed that the size of the cryoinjuries tended to be smal-

ler after short-term preconditioning. This observation was

mostly striking in our thoracotomy model (figure 8g),

where the average cryoinjury covered 36.6+ 2.6% of the
control heart and only 20+ 2.4% of the preconditioned hearts

(electronic supplementary material, figure S3a). A milder

phenotype was seen after Zymosan injection (figure 8i;
electronic supplementary material, figure S3c). With this pro-

cedure, the injured areas represented on average 33+2.4% of

the surface of the heart in Hank’s-injected fish and 24.4+
2.4% in Zymosan-injected specimens. In accordance with

our previous results, we found no difference in the size of

cryoinjuries after long-term preconditioning (electronic sup-

plementary material, figure S4d ). Based on these results, we

asked whether preconditioning could promote survival pro-

grammes after cryoinjury. For this aim, TUNEL assay was

performed at 12 h post-cryoinjury (hpci) in the hearts of con-

trol and preconditioned fish (figure 9a,b). Apoptosis was

impressively decreased in preconditioned hearts (figure 9c),

suggesting that preconditioning efficiently promote survival

within a few hours after injury.
4. Discussion
Preconditioning can be considered as an evolutionary adap-

tation of organisms to activate protective/pro-regenerative

programmes upon exposure to mild pathologic perturbations

in order to better withstand the deleterious effects of ensuing

harsh injuries. In the mammalian heart, short bouts of non-

lethal cardiac or non-cardiac insults elicit cytoprotection

against subsequent prolonged ischaemia and reperfusion [7].

The preconditioned phenotype is characterized by the elevated

expression of pro-angiogenic, antioxidant and cardioprotective

genes [17,19,40]. A mechanistic rationale for new drug thera-

pies that mimic these powerful protective responses remains

unfortunately still unclear.

In this study, we identified that heart preconditioning also

occurs in the adult zebrafish. We described two independent

models of remote preconditioning, namely thoracotomy and

induction of a sterile IP inflammation. In our first model, a

chest incision without heart injury was sufficient to invoke

a proliferative phenotype in CMs and non-CMs in the
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ventricle during the time window of two to three weeks after

the procedure. Thus, cardiac remodelling is not restricted to

myocytes, but is a general feature of cells that build the fish

heart. Remarkably, the CM cell-cycle re-entry as assessed by

MCM5 expression was nearly as high as after cryoinjury [23].

However, as opposed to the regenerative process, we did not

observe CM dedifferentiation in the preconditioned heart. It

is possible that the rate of cardiogenesis is different between

mature and immature proliferating CMs in preconditioning

and regenerative processes, respectively. Moreover, the

enhanced mitotic activity was mainly located in the compact

myocardium and led to a thickening of this dense cortical

myocardial layer one month after the initial precondition-

ing stimulus. This architectural alteration can increase the

robustness of the heart. It is reasonable to assume that this

phenotype is adaptive and renders the organ more resistant

to a cardiac muscle injury. Indeed, several studies have ident-

ified a leading role of a compact myocardium during heart

regeneration after ventricular resection [27,41,42]. Additional

benefit of the more robust outer wall would be a limitation of

the heart dysfunction immediately after ventricle damage,

which enables the fish to better cope with damage. Certainly,

the significance of an enlarged compact myocardial layer

after thoracotomy requires further investigation. In general,

the elucidation of the cytoprotective processes in the zebrafish

model may uncover the mechanistic underpinnings for this

clinically relevant phenomenon.

Remarkably, we observed a similar phenotype in our

second model of cardiac preconditioning. A single IP injec-

tion of immunogenic particles led to an increased mitotic

activity and to a long-term modification of the heart architec-

ture. After thoracotomy, cycling cells were mainly detected in

the compact myocardium, whereas they were scattered

throughout the heart after LPS or Zymosan injection. The

different localization of cycling cells in the ventricle after

thoracic surgery and after the induction of an IP inflam-

mation might result from the spatial pattern of stimuli

used. Indeed, in thoracic-wounded fish, the outer surface of

the heart is mainly in contact with the aversive stimuli. In

fish injected with immunogenic particles, a systemic response

appears, which progressively reaches the heart, probably via

blood circulation. In this context, the whole myocardium is in

contact with the aggressive components. Remarkably, LPS/

Zymosan injections activated CM proliferation more selec-

tively than thoracotomy. These finding should be further

investigated in additional studies. Despite these variations

in the profile of cycling CMs, both models exhibited a thicker

compact myocardium, indicating architectural modification of

the heart at one month after the preconditioning. The striking

resemblance between both models suggests that these two

remote preconditioning stimuli trigger the same molecular

cascades in the target organ.

Although the mammalian heart studies are predominantly

based on mild antecedent ischaemia/reperfusion, remote car-

diac preconditioning has also been observed [8]. Similar to

thoracotomy, skin incision models as conditioning stimuli

have been described in mouse and dog [43,44]. In these

models, preconditioning is dependent on skin nociception

and on the activation of cardiac sensory and sympathetic

nerves. As mammalian adult CMs are poorly responsive to

mitogenic signals, the downstream effectors of preconditioning

do not involve cell division pathways [19,45]. By contrast, car-

diac preconditioning in the zebrafish promoted a hyperplastic
growth of the heart. This striking difference between mamma-

lian and teleost models of cardiac preconditioning is most

likely due to the remarkable capacities of the zebrafish heart

to respond to mitogenic signals throughout ontogenic life.

Moreover, our results obtained in the adult zebrafish precondi-

tioned heart are reminiscent of the observations made in

mammalian preconditioned kidney or liver, where proli-

feration can be observed after ischaemic preconditioning

[46–48]. In contrast to the adult mammalian heart, these

adult tissues are still responsive to mitogenic signals [49,50].

Taken together, these observations emphasize the re-entry

into the cell cycle as a classic protective reaction in tissues

sensitive to mitogens.

In parallel to an increased cell-cycle activity, we observed

an enhanced expression of more classical cardioprotective

genes. We tested the expression of four zebrafish orthologues

of mammalian genes activated after ischaemic precondi-

tioning, namely txn, cxcl12a, hmox1a and hspa5 [34–37]. All of

them were increased 24 h after thoracotomy, suggesting that

preconditioning elicits conserved cardioprotective mechan-

isms through species. Interestingly, our in situ hybridization

revealed that txn and cxcl12a expression was restricted to the

epicardium. This expression pattern highlights this cardiac

compartment as a key mediator of cardioprotection and is con-

sistent with a previous report that has demonstrated that the

opening of the pericardial sac is sufficient to induce the

expression of raldh2, a marker of the activated epicardium

[51]. Thus, the epicardium is a dynamic tissue responsive to

changes within the extra-cardiac space. Here, we have demon-

strated that the stimulation of this sensitive mesothelial layer

coincides with the activation of the CM cell cycle. Even

though the capital role played by the epicardium in cardiac

regeneration has already been examined in the zebrafish

[52–54], further studies are needed to outline its function in

the formation of a protected phenotype after preconditioning.

In mammalian models, preconditioning hearts before pro-

longed ischaemia reduces significantly the resultant infarct

size. In contrast to mammals, the zebrafish heart heals natu-

rally after injury within 30–60 days. In an organism in which

regeneration is a highly efficient process, one can only expect

a modest increase in the speed of recovery. To maximize our

chances to see how preconditioning impacts on heart regener-

ation, we focused our analysis at 7 dpci, when most healing

programmes are already induced. Remarkably, we observed

a clearly enhanced regeneration in preconditioned hearts at

this time point, independently of the used stimuli. The re-

entry of CMs into the cell cycle was more efficient and more

CMs exhibited hallmarks of dedifferentiation at the injury

border. Moreover, we observed less apoptosis in the damaged

area of preconditioned hearts shortly after the cryoinjury pro-

cedure. We also tried to assess regenerative scores at 30 dpci.

Unfortunately, we did not detect a significant improvement

of the regenerative status of preconditioned heart versus con-

trol at this late stage of cardiac healing. This disappointing

outcome might be explained by the high inter-individual varia-

bility present during heart regeneration. At 30 dpci, the injured

area of control non-preconditioned fish is sometimes almost

completely resorbed, but can also still be visible [55,56].

Indeed, the speed of heart regeneration will depend on a

large variety of parameters such as the initial size of cryoinjury,

the level of stress or the general health status of the fish [56].

Outstandingly, the same cardioprotective capacities were

observed in hearts preconditioned at 2 or 7 days before the
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cryoinjury procedure. By contrast, the protected pheno-

type was lost when a gap of one month was used between

the thoracotomy and the cryoinjury. Taken together,

our data indicated that preconditioned hearts are able to

retain a stable cardioprotective phenotype for at least

one week, regardless of the number of days between the

preconditioning and the heart injury.

In summary, we proposed two independent models to

study cardiac preconditioning using the adult zebrafish as a

model system. In contrast to mammalian models, the increased

expression of cardioprotective genes is accompanied by an

increased mitotic activity leading to the long-term remodelling

of the adult zebrafish myocardium architecture. The demon-

stration of the cardioprotective effects after heart injury of

thoracotomy and IP inflammation validated these procedures

as appropriate models for cardiac preconditioning in the zebra-

fish. Our findings open a new field of research that uses the

zebrafish to study the cardiac preconditioning phenomenon.

The understanding of how noxious stimuli can invoke
subsequent intrinsic cell protective programmes to increase

the global cardiac muscle tolerance creates an interesting per-

spective, which can promote new therapeutic strategies in

prevention of ischaemic muscle diseases.
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