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ABSTRACT
Objectives  The acute respiratory distress syndrome 
(ARDS) is a heterogeneous condition, and identification of 
subphenotypes may help in better risk stratification. Our 
study objective is to identify ARDS subphenotypes using 
new simpler methodology and readily available clinical 
variables.
Setting  This is a retrospective Cohort Study of ARDS 
trials. Data from the US ARDSNet trials and from the 
international ART trial.
Participants  3763 patients from ARDSNet data sets and 
1010 patients from the ART data set.
Primary and secondary outcome measures  The 
primary outcome was 60-day or 28-day mortality, 
depending on what was reported in the original trial. 
K-means cluster analysis was performed to identify 
subgroups. Sets of candidate variables were tested to 
assess their ability to produce different probabilities for 
mortality in each cluster. Clusters were compared with 
biomarker data, allowing identification of subphenotypes.
Results  Data from 4773 patients were analysed. Two 
subphenotypes (A and B) resulted in optimal separation 
in the final model, which included nine routinely collected 
clinical variables, namely heart rate, mean arterial 
pressure, respiratory rate, bilirubin, bicarbonate, creatinine, 
PaO

2, arterial pH and FiO2. Participants in subphenotype B 
showed increased levels of proinflammatory markers, had 
consistently higher mortality, lower number of ventilator-
free days at day 28 and longer duration of ventilation 
compared with patients in the subphenotype A.
Conclusions  Routinely available clinical data can 
successfully identify two distinct subphenotypes in adult 
ARDS patients. This work may facilitate implementation of 
precision therapy in ARDS clinical trials.

INTRODUCTION
The Berlin definition of acute respiratory 
distress syndrome (ARDS) encompasses acute 
hypoxemic respiratory failure due to a wide 
variety of etiologies.1 Due to this inclusion 

of heterogeneous conditions within the 
syndrome, there are significant clinical and 
biological differences that make ARDS chal-
lenging to treat.2 3 These differences among 
ARDS patients are associated with variation 
in risk of disease development and progres-
sion,3 4 potentially generating differential 
responses to treatments and interventions.5–10 
Despite evidence, clinical risk stratification of 
ARDS patients still solely depends on PaO2/
FiO2 ratios,11 12 possibly misleading the inter-
pretation of results in clinical trials and clini-
cians when evaluating treatment options for 
patients.13

Therefore, identifying groups of patients 
who have similar clinical, physiologic or 
biomarker traits becomes relevant6 14 as it can 
help with stratification of patients producing 
better targeted therapies and interventions.15 
These different groups can be defined as 
ARDS subphenotypes.4 14 Two ARDS subphe-
notypes have been consistently identified 
in previous studies.6–10 16–18 However, these 

Strengths and limitations of this study

	► Largest cohort of patients used to identify sub-
phenotypes of acute respiratory distress syndrome 
(ARDS) patients.

	► Subphenotypes were validated in the population of a 
large international ARDS randomised controlled trial.

	► Subphenotypes were identified by using only rou-
tinely collected clinical data.

	► Our use of data exclusively from randomised con-
trolled trials does not prove generalisability to unse-
lected ARDS populations.

	► The clinical utility of the subphenotypes has to be 
validated in a prospective study.
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models are complex, and significant barriers exist in their 
implementation and use in clinical practice. Existing 
models use up to 40 predictor variables, including 
biomarkers and other variables that are not readily avail-
able at the bedside.6–10 16–18 These limitations explain the 
current status quo of ARDS care, where clinicians must 
depend on the limited prognostic value of PaO2/FiO2 
ratios instead of biologically distinct subphenotypes.

We hypothesised that the use of a simpler method-
ology and a small number of easily available clinical vari-
ables could identify new ARDS subphenotypes and thus 
provide the means to allow future implementation of 
bedside stratification.

METHODS
Data source and participants
We performed a retrospective study using a deidentified 
data set pooling data from six randomised clinical trials 
in patients with ARDS, namely ARMA, ALVEOLI, FACTT, 
EDEN, SAILS and ART.19–24 Patients in ARMA, ALVEOLI, 
FACTT, EDENand SAILS trials were eligible if they met 
the American-European consensus for ARDS, including 
patients with a PaO2/FiO2 ratio <300 up to 48 hours before 
enrolment. From 1996 to 2013, these trials enrolled 902, 
549, 1000, 1000 and 745 patients, respectively, and tested 
a variety of interventions.19–23 Between 2011 and 2017, 
the international ART study enrolled 1010 adult patients 
diagnosed with moderate to severe ARDS according to 
the Berlin definition (PaO2/FiO2 ratio <200) for less than 
72 hours of duration and assessed two different ventila-
tory strategies.24 To avoid biases due to high mortality in 
the high tidal volume group of the ARMA study,19 which 
has not been standard of care since the beginning of 
2000, only 473 patients receiving low tidal volume in that 
study were included.

Predictors
Six clinical trials were assessed to identify a set of clin-
ical variables recorded closest to time of randomisation 
which were most commonly available across all data sets. 
The list of potential candidates was then further refined 
to include only those that are frequently observed in the 
routine care of ARDS patients at the time of its diagnosis 
according to judgement provided by intensive care unit 
physicians who participated in this study. To develop a 
clustering algorithm for potential rapid translation into 
clinical use, elements which would not be commonly 
found in the electronic health records (EHR) at the time 
of ARDS diagnosis, such as biomarker levels, ARDS risk 
factors, organ support apart from mechanical ventilation 
settings and severity scores, were excluded from model 
development. The treatment assignment in the original 
trials, and clinical outcomes were not considered in the 
model development.

After all assessment, 16 variables that are routinely 
collected as part of the usual care and which were 
uniformly present in all the trials were considered, 

including age, gender, arterial pH, PaO2, PaCO2, bicar-
bonate, creatinine, bilirubin, platelets, heart rate, respira-
tory rate, mean arterial pressure, positive end-expiratory 
pressure (PEEP), plateau pressure, FiO2 and tidal volume 
adjusted for predicted body weight (mL/kg PBW). The 
PBW was calculated as equal to 50+0.91 (centimetres of 
height, 152.4) in males and 45.5+0.91 (centimetres of 
height, 152.4) in females.18 These variables were grouped 
into five domains named demographics, arterial blood 
gases, laboratory values, vital signs and ventilatory vari-
ables. Plateau pressure was excluded due to a high rate 
of missingness across the trials included in the training 
set. Amount of missing data in the training data sets is 
reported in online supplemental eTable 1.

Outcomes
The primary outcome was 60-day mortality for all ARDSnet 
trials, and 28-day mortality for ART trial. Secondary 
outcomes included 90-day mortality, number of ventilator 
free days at day 2825 and the duration of mechanical venti-
lation in survivors within the first 28 days postenrolment.

Data preparation
Data preprocessing was performed before modelling, 
and the pooled data set was assessed for completeness 
and consistency. Patients with values out of the plausible 
physiological range for a specific variable were excluded 
from the final analysis (described in online supplemental 
eTable 2). The training data set was constructed using 
data from the two largest ARDSnet trials, EDEN and 
FACTT. The validation data set was sourced from the 
four remaining trials: ALVEOLI, ARMA, SAILS and ART. 
Means and SD for z-scoring variables were calculated 
from the training data set and subsequently applied to 
the validation data.

Statistical analysis
Baseline and outcome data were presented according to 
the assigned cluster. Continuous variables were presented 
as medians with their IQRs and categorical variables 
as total number and percentage. Proportions were 
compared using Fisher exact tests and continuous vari-
ables were compared using the Wilcoxon rank-sum test. 
Study outcomes were further compared using the median 
and mean absolute differences for continuous and cate-
gorical values, respectively.

Model development and validation
For the model development, the K-means clustering 
algorithm was used. K-means is one of the simplest and 
most used classes of clustering algorithms. In critical care 
research, unsupervised machine learning techniques 
have already been used in several studies, attempting to 
find homogeneous subgroups within a broad heteroge-
neous population.26 This specific algorithm identifies a 
K number of clusters in a data set by finding K centroids 
within the n-dimensional space of clinical features.26

For feature selection, different sets of candidate 
variables were tested to assess their ability to produce 
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significantly different mortality probabilities in each 
cluster using the minimum amount of readily available 
clinical data. For each set of candidate variables, the 
optimal number of clusters was determined by comparing 
models with between 2 and 5 clusters, using the Elbow 
method27 and the Calinski-Harabasz index.28 Information 
about the methods for selecting the number of clusters 
are provided in the online supplemental material.

The following steps were performed for the final model 
selection: (1) all predictors were assessed for correlation 
(online supplemental eTable 3); and (2) 10 different 
combinations of the proposed variables were investi-
gated. These combinations were developed based on the 
perceived clinical importance of each variable and its 
combinations. All 10 models were tested for the optimal 
number of clusters based on both the Elbow method and 
the Calinski-Harabasz index, as described above. The 
models were then compared, aiming for the minimum 
set of variables with high 60-day mortality separation. 
The description of each model is shown in online supple-
mental eTable 4.

Biological and clinical characteristics of the clusters 
were evaluated using clinical, laboratory and (when 
available) biomarker data to establish subphenotypes.4 
All iterations in model development were done on the 
training set and the generalisability of the final model was 
assessed using the validation data set. K-means clustering 
analysis is structured to ignore cases with missing data. No 
assumption was made for missingness, and we therefore 
conducted a complete case analysis. Model development 
and evaluation was performed using Python V.3.8 and 
scikit-learn 0.23.1.

Patient and public involvement
There was no patient involvement in this study.

Data availability
Data from the ARDSnet studies (EDEN, FACTT, ARMA, 
ALVEOLI and SAILS) are publicly available from the 
NHLBI ARDS Network and data from the ART trial can 
be requested from study authors.

RESULTS
Participants
Data from 4777 clinical trial patients were considered for 
inclusion. In total, four patients were excluded for having 
clinical measurements outside plausible range. The 
remaining 1998 patients from EDEN and FACTT trials 
were included in the training set, while the 2775 patients 
from ARMA, ALVEOLI, SAILS and ART were included in 
the validation cohort.

Baseline characteristics of the patients in the training 
and validation sets are presented in table 1. Pneumonia 
was the prevailing aetiology followed by sepsis and aspira-
tion in all trials. Between 29.3% and 72.7% of the patients 
were receiving vasopressors at the time of randomisa-
tion. At randomisation, PaO2/FiO2 ratio ranged from 

112 (75–158) to 134 (96–185) mm Hg, and PEEP from 8 
(5–10) to 12 (10–14) cmH2O across trials. Mortality at 60 
days for the ARDSnet trials ranged from 22.7% to 30.1%, 
while in the ART trial mortality at 28 days was 58.8%.

Predictor variables and model selection
The correlation between the 15 variables selected for 
clustering is shown in online supplemental eTable 3. The 
strongest correlation was between PEEP and FiO2 (r=0.49). 
The comparison of the 10 models regarding the optimal 
number of clusters based on both the Elbow method and 
the Calinski-Harabasz index is shown in online supple-
mental eFigure 1. In all models and methods, two clusters 
were a better fit than a higher number of clusters.

Across the 10 models, absolute mortality difference 
between cluster 1 and cluster 2 ranged from 3.9% to 
13.1% for the FACTT study and between 0.1% and 
8.1% for EDEN (online supplemental eTable 4). The 
models with the highest 60-day absolute mortality sepa-
ration between the clusters for each of the two trials in 
the training set were then further evaluated. Models 6, 5 
and 8 were consistently among the models with highest 
separation (online supplemental eTable 4). Model 8 was 
selected for further investigation, as it had the fewest vari-
ables (online supplemental eTable 5).

Clinical characteristics of each cluster
Based on model 8, only nine clinical and laboratory vari-
ables were needed to identify the two distinct clusters in 
ARDS patients, namely heart rate, mean arterial pressure, 
respiratory rate, bilirubin, bicarbonate, creatinine, PaO2, 
arterial pH and FiO2. For each variable in the model, 
opposing measurements could be observed for each 
cluster (figure 1 and online supplemental eFigure 2). For 
the ARDSnet trials, the incidence of cluster 1 patients 
varied from 57.8% (EDEN) to 73.6% (ARMA), and 
41.5% of ART patients were part of cluster 1. Across all 
trials, patients in cluster 2 had higher severity of illness, 
rate of vasopressor, heart rate, respiratory rate, creati-
nine and bilirubin, as well as lower platelets, pH, blood 
urea nitrogen and bicarbonate compared with patients 
in cluster 1 (table 2, online supplemental eTables 6 and 
7). In addition, 28-day, 60-day and 90-day mortality rate 
was higher in patients in cluster 2 in all trials (table 3). 
Likewise, for each trial, the number of ventilator-free 
days at day 28 was lower in patients in cluster 2 compared 
with cluster 1, and duration of ventilation in survivors was 
longer in cluster 1.

Identification of subphenotypes
After comparing the clinical characteristics of the clus-
ters, each cluster was assigned to represent a distinct 
subphenotype of ARDS, with patients in cluster 1 
assigned to subphenotype A, and patients in cluster 2 
assigned to subphenotype B. Using blood biomarker 
information available for a subset of patients from both 
ARMA and ALVEOLI, subphenotype B showed increased 
levels of proinflammatory markers when compared with 
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subphenotype A (figure  2 and online supplemental 
eTables 8 and 9).

DISCUSSION
This study successfully demonstrated that nine easily 
obtainable clinical variables: arterial pH, partial O2 pres-
sure, creatinine, bilirubin, bicarbonate, mean arterial 
pressure, heart rate, respiratory rate and FiO2 at the time 
of study enrolment can identify two distinct ARDS subphe-
notypes with different clinical and biologic characteristics 
as well as outcomes across the test and validation cohorts. 
There was good generalisability among diverse popula-
tions from multiple validation data sets with temporal and 
geographical differences.

It is understandable that researchers feel compelled 
to use as much information as possible to build robust 
models. This is supportable for two main reasons: (1) 
the well-known heterogeneity of complex syndromes 
such as ARDS and (2) the abundance of highly gran-
ular clinical data generated by EHRs. It is anticipated 
that analysing this vast amount of data will provide new 
knowledge regarding disease mechanisms by enabling 
researchers to find plausible hidden patterns within the 
data.29 However, this data-heavy approach has the poten-
tial drawback of using predictors which are not generally 
obtained in a time window prior to intervention, or worse 
yet, using variables that are not part of the routine stan-
dard of care for patients. The rationale of using fewer and 
easy to collect clinical variables is not new in the field of 
critical care. Prognostic models have already shown that 
it is indeed feasible to create meaningful models using 
fewer predictors.30 31

Unfortunately, unlike supervised algorithms (eg, regres-
sion analyses), unsupervised algorithms such as K-means 
clustering do not provide one straightforward and 
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Figure 1  Differences of the variables included in the cluster 
algorithm among clusters. Square symbols represent the 
study with the highest mean z score for each phenotype; 
circles represent the study with the lowest mean z score for 
each phenotype. The coloured bands are exclusively to help 
visualise the opposite trends of the variables on the different 
clusters; Art.pH, arterial pH; Bicarb, bicarbonate; MAP, mean 
arterial pressure; Creat, creatinine; Resp.Rate, respiratory 
rate.
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Table 2  Baseline characteristics and clinical outcomes according to the clusters and trials in the training set

FACTT EDEN

Cluster 1
(n=407)

Cluster 2
(n=294) P value

Cluster 1
(n=449)

Cluster 2
(n=328) P value

Age, year* 50.0 (40.0–63.0) 47.0 (36.0–58.0) 0.002 53.0 (44.0–63.0) 51.0 (41.0–62.2) 0.183

Male gender, no. (%) 223 (54.8) 151 (51.4) 0.411 233 (51.9) 168 (51.2) 0.910

Body mass index, kg/m2 27.5 (23.3–32.1) 27.4 (23.0–32.7) 0.938 29.1 (24.6–34.5) 28.5 (23.4–35.1) 0.476

Caucasian, no. (%) 269 (66.1) 177 (60.2) 0.129 349 (81.5) 237 (75.7) 0.067

Aetiology, no. (%) <0.001 0.003

 � Pneumonia 201 (49.4) 139 (47.3) 296 (65.9) 217 (66.2)

 � Sepsis 78 (19.2) 101 (34.4) 50 (11.1) 60 (18.3)

 � Aspiration 67 (16.5) 30 (10.2) 45 (10.0) 27 (8.2)

 � Trauma 24 (5.9) 8 (2.7) 24 (5.3) 5 (1.5)

 � Other 37 (9.1) 16 (5.4) 34 (7.6) 19 (5.8)

Prognostic scores

 � APACHE III 69.0 (56.0–84.0) 91 (76.0–105.0) <0.001 66.0 (54.0–79.0) 84.0 (71.0–100.2) <0.001

Use of vasopressor, no. (%) 118 (29.5) 189 (64.9) <0.001 187 (41.6) 209 (63.7) <0.001

Vital signs

 � Temperature, °C 37.5 (36.8–38.2) 37.6 (37.0–38.4) 0.371 37.3 (36.8–37.8) 37.3 (36.7–38.1) 0.212

 � Heart rate, bpm 95.0 (81.0–110.0) 114 (102–126) <0.001 89 (77–102) 101 (89–116) <0.001

 � Mean arterial pressure, 
mm Hg

76.0 (68.0–88.0) 71.0 (65.0–80.8) <0.001 77.0 (68.0–84.0) 71.0 (66.0–80.0) <0.001

 � SpO2, % 96 (93–98) 95 (92–97) <0.001 96 (94–98) 95 (92–98) 0.032

 � Urine output in 24 hours, 
mL

1785 (1192–2853) 1370 (842–2446) <0.001 1505 (977–2250) 1165 (566–1816) <0.001

Laboratory tests

 � Haematocrit, % 30.0 (26.0–33.0) 30.0 (24.2–35.0) 0.272 30.0 (26.0–34.0) 30.0 (26.0–35.0) 0.919

 � White cell count, 109 /L 11.6 (7.3–16.3) 11.7 (5.6–17.9) 0.972 11.4 (7.7–15.5) 12.7 (7.7–19.0) 0.019

 � Platelets, 109 /L 195 (118.5–268) 158 (87–237) <0.001 163 (108–241) 164 (103–227) 0.552

 � Creatinine, mg/dL 0.9 (0.7–1.3) 1.4 (1.0–2.0) <0.001 1.0 (0.7–1.5) 1.6 (1.0–2.8) <0.001

 � Bilirubin, mg/dL 0.7 (0.5–1.3) 0.9 (0.5–2.0) 0.003 0.8 (0.5–1.3) 0.8 (0.5–1.7) 0.128

Arterial blood gas

 � pH* 7.41 (7.36–7.45) 7.29 (7.23–7.35) <0.001 7.40 (7.35–7.44) 7.30 (7.24–7.35) <0.001

 � PaO2, mm Hg 78 (68–100) 78 (65–99) 0.240 83 (70–107) 81 (67–107) 0.416

 � PaO2/FiO2 132 (92–173) 89 (65–126) <0.001 133 (98–193) 101 (73–162) <0.001

 � PaCO2, mm Hg 39 (34–44) 38.5 (33–47.9) 0.877 38 (34–44) 38 (33–46) 0.55

 � Bicarbonate, mmol/L 24.0 (21.0–27.0) 17.0 (14.0–20.0) <0.001 23.0 (21.0–26.0) 18.5 (15.0–21.0) <0.001

Ventilatory variables

 � Tidal volume, mL 450 (400–530) 450 (382–500) 0.009 420 (356–487) 400 (350–450) 0.032

 � Per PBW, mL/kg PBW 7.1 (6.3–8.4) 7.0 (6.0, 8.0) 0.058 6.3 (6.0–7.5) 6.1 (6.0–7.3) 0.079

 � Plateau pressure, cmH2O 25.0 (20.0–29.0) 28.0 (24.0–32.0) <0.001 23.0 (19.0–27.0) 24.0 (21.0–28.0) 0.004

 � PEEP, cmH2O 8 (5–10) 10 (8–14) <0.001 10 (5–10) 10 (8–14) <0.001

 � Respiratory rate, breaths/
min

22 (18–27) 30 (24–35) <0.001 22 (19–26) 30 (25–35) <0.001

 � FiO2 0.50 (0.40–0.70) 0.80 (0.60–1.00) <0.001 0.60 (0.45–0.70) 0.80 (0.60–1.00) <0.001

Data are mean±SD, median (quartile 25th–quartile 75th) or N (%).
APACHE, Acute Physiology and Chronic Health Evaluation; PEEP, positive end-expiratory pressure; VT/PBW, tidal volume per predicted 
body weight.
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established metric to describe feature importance. In that 
sense, our approach of testing multiple sets of variables 
was also meant to select features that were most likely to 
be relevant, serving as surrogate for the feature selection 
step normally employed in supervised algorithms. While 
each individual variable by itself may not be significantly 
different across subphenotypes, their interaction in the 
nine-dimensional space of our model may be relevant.

Our initial choices to define variables commonly 
found in the EHR at ARDS diagnosis was inspired by a 
recent report from the WHO which showed an enor-
mous discrepancy of medical devices availability in a 
survey across 135 countries.29 Recognising this incon-
sistency is essential for widespread implementation of 
machine learning models regardless of varying availability 

of resources across countries and health systems.29 The 
aim is to provide clinically relevant information within a 
defined and short period that might impact the delivery 
of effective interventions to the right patient population 
and to as many patients as possible.29

Recently, Sinha et al developed supervised-learning 
gradient boosted classifier models trained using 24 or 
14 readily available clinical data elements to reproduce 
biomarker-derived subphenotypes which were previ-
ously identified by Calfee et al.17 Unlike Sinha et al, who 
predicted previously identified subphenotypes, our study 
has identified two subphenotypes de novo using a small 
set of clinical variables.

Although the subphenotypes that we have identified 
and those that have been previously published look 

Table 3  Clinical outcomes according to clusters in each trial

Cluster 1 Cluster 2 Difference (95% CI) P value

Training set

FACTT n=407 n=294

 � 60-day mortality, no. (%) 94 (23.1) 102 (34.7) 11.6% (4.9% to 18.3%) 0.001

 � 90-day mortality, no. (%) 103 (25.4) 106 (36.3) 10.9% (4.1% to 17.8%) 0.002

 � Ventilator-free days at day 28 19.0 (0.0–24.0) 10.0 (0.0–21.0) −9.0 (–11.9 to –6.1) <0.001

 � Duration of ventilation in survivors, days 8.0 (4.0–13.0) 10.0 (7.0–19.0) 2.0 (0.5 to 3.5) <0.001

EDEN n=449 n=328

 � 60-day mortality, no. (%) 87 (19.4) 90 (27.4) 8.1% (2.1% to 14.0%) 0.010

 � 90-day mortality, no. (%) 90 (20.0) 93 (28.4) 8.3% (2.3% to 14.3%) 0.009

 � Ventilator-free days at day 28 21.0 (0.0–25.0) 15.0 (0.0–22.2) −6.0 (–8.1 to –3.9) <0.001

 � Duration of ventilation in survivors, days 6.0 (4.0–11.0) 8.0 (6.0–18.0) 2.0 (0.9 to 3.1) <0.001

Validation set

ALVEOLI n=336 n=157

 � 60-day mortality, no. (%) 59 (17.6) 68 (43.3) 25.8% (17.7% to 33.8%) <0.001

 � 90-day mortality, no. (%) 60 (18.1) 70 (45.5) 27.3% (19.2% to 35.5%) <0.001

 � Ventilator-free days at day 28 21.0 (4.8–25.0) 2.0 (0.0–19.0) −19.0 (–20.8 to –17.2) <0.001

 � Duration of ventilation in survivors, days 7.0(4.0,13.0) 11.0 (6.0–22.2) 4.0 (2.1 to 5.9) <0.001

ARMA n=279 n=100

 � 60-day mortality, no. (%) 69 (24.8) 42 (42.0) 17.2% (6.9% to 27.5%) 0.002

 � 90-day mortality, no. (%) 70 (25.5) 42 (42.0) 16.5% (6.0% to 26.9%) 0.003

 � Ventilator-free days at day 28 17.0 (0.0–24.0) 2.0 (0.0–19.0) −15.0 (–18.6 to –11.4) <0.001

 � Duration of ventilation in survivors, days 7.0 (4.0–13.8) 11.0 (5.0–18.0) 4.0 (1.5 to 6.5) 0.018

SAILS n=319 n=188

 � 60-day mortality, no. (%) 80 (25.1) 60 (31.9) 6.8% (–1.2% to 14.9%) 0.119

 � 90-day mortality, no. (%) 81 (25.4) 63 (33.5) 8.1% (0.0% to 16.3%) 0.063

 � Ventilator-free days at day 28 21.0 (0.0–25.0) 16.0 (0.0–23.0) −5.0 (–7.3 to –2.7) <0.001

 � Duration of ventilation in survivors, days 6.0 (3.0–10.0) 8.0 (5.0–14.0) 2.0 (0.7 to 3.3) <0.001

ART n=211 n=298

 � 28-day mortality, no. (%) 81 (38.4) 180 (60.4) 22.0% (13.4% to 30.7%) <0.001

 � Ventilator-free days at day 28 0.0 (0.0–17.0) 0.0 (0.0–7.8) −0.0 (–1.0 to 1.0) <0.001

 � Duration of ventilation in survivors, days 12.0 (8.0–20.0) 13.5 (8.0–20.0) 2.0 (–0.3 to 4.2) 0.570

Data are median (quartile 25th–quartile 75th) or N (%). Difference is mean difference with (95% CI) for binomial variables and median 
difference with (95% CI) for continuous variables.
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similar, our work is distinct from previous studies in 
several ways. We employed different training and valida-
tion data sets as well as a different and well-established 
unsupervised learning technique. Moreover, we utilised a 
process for selecting predictors which is not comparable 
to previous studies. Acknowledging these differences is 
crucial. It would not be unexpected to assume that these 
deviations would be relevant enough to produce different 
subphenotypes.32 However, the clinical, laboratory charac-
teristics and the clinical outcomes of our subphenotypes 
show that they are remarkably similar to subphenotypes 
found in previous papers, regardless of methodological 
differences.

At this point it is not possible to go beyond this compar-
ative analysis, as there is no gold standard definition of 
ARDS subphenotypes.32 Nonetheless, our work does 
provide robust evidence that ARDS does indeed have 
two subphenotypes that can be systematically identified, 
despite major differences in population assessed and 
methodological approach used compared with previous 
studies. It also reinforces that we should continue to 
explore the underlying biological pathways of such 
subphenotypes to find responders to new or previously 
tested therapies.

Our study has several strengths. First, it is the largest 
cohort of patients that has been studied to develop 
distinct subphenotypes of ARDS patients. Moreover, our 
validation cohort included patients from the ART trial, 
allowing us to validate our model in the contempora-
neous population of a large international randomised 
clinical trial in addition to the ARDSnet studies used in 
other subphenotyping studies. Second, our subpheno-
typing model was developed exclusively on the training 
set and then validated across multiple separate data sets. 
Nevertheless, similar separation in mortality was seen 
between the two subphenotypes across all trials. Third, 
we used the K-means algorithm to identify our subphe-
notypes, and the results obtained with this technique can 
be easily interpreted by clinicians and implemented in 
clinical practice. Finally, this is the first phenotyping study 

that has used easily available clinical variables to identify 
ARDS phenotypes de novo, which allows for early identifi-
cation of these patients in the clinical care at the bedside. 
Using this algorithm with a small number of routinely 
collected variables could enable our model to be applied 
in trials that either retrospectively or prospectively assess 
interventions targeted to each subphenotype.

This study also has limitations. First, we have developed 
our models exclusively on patients enrolled in clinical 
trials. Due to the strict inclusion and exclusion criteria 
of these clinical trials, the generalisability of these results 
needs to be evaluated in unselected ARDS populations. 
Although there are clear clinical and biomarker differ-
ences between the identified subphenotypes, the model’s 
clinical utility needs to be prospectively validated and 
further investigated. Additionally, our biomarker anal-
ysis is limited to those patients in which the data were 
made publicly available by the study authors, but future 
collection of biomarker data in a prospective study will 
allow more robust understanding of the underlying 
biology and validation of the subphenotype model. Also, 
K-means clustering does not handle missing data, and no 
approach was used to impute missing values. However, 
the extremely low rate of missingness in our study makes 
this issue less relevant. Finally, future work should analyse 
previous trials to identify possible differential treatment 
responses for the subphenotypes of ARDS patients iden-
tified in this study.

CONCLUSIONS
This study confirms the existence of two distinct subphe-
notypes in ARDS patients using a novel clustering model 
on routinely collected clinical data. This work may allow 
for easier identification of ARDS subphenotypes to facil-
itate implementation of precision clinical trial enrol-
ment and development of targeted therapies in a variety 
of settings without the added burdens of biomarker 
evaluation.
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