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Abstract: The increase in antibiotic resistance and the emergence of new bacterial infections have
intensified the research for natural products from plants with associated therapy. This study aimed to
verify the antibacterial and antioxidant activity of crude extracts of the genus Plectranthus species, be-
ing the first report on the modulation of aminoglycosides antibiotic activity by Plectranthus amboinicus
extracts. The chemical composition was obtained by chemical prospecting and High-Performance
Liquid Chromatography with diode arrangement detector (HPLC/DAD). The antibacterial activities
of the extracts alone or in association with aminoglycosides were analyzed using the microdilu-
tion test. The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free
radical scavenging. The phytochemical prospection allowed the flavonoids, saponins, tannins and
triterpenoids to be identified. Quercetin, rutin, gallic acid, chlorogenic acid, caffeic acid, catechin,
kaempferol, glycosylated kaempferol, quercitrin, and isoquercitrin were identified and quantified.
The principal component analysis (PCA) observed the influence of flavonoids and phenolic acids
from Plectranthus species on studied activities. Phytochemical tests with the extracts indicated,
especially, the presence of flavonoids, confirmed by quantitative analysis by HPLC. The results
revealed antibacterial activities, and synergistic effects combined with aminoglycosides, as well
as antioxidant potential, especially for P. ornatus species, with IC50 of 32.21 µg/mL. Multivariate
analyzes show that the inclusion of data from the antioxidant and antibacterial activity suggests that
the antioxidant effect of these species presents a significant contribution to the synergistic effect of
phytoconstituents, especially based on the flavonoid contents. The results of this study suggest the
antibacterial activity of Plectranthus extracts, as well as their potential in modifying the resistance of
the analyzed aminoglycosides.
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1. Introduction

The progress of biotechnology, associated with health concerns such as the emer-
gence of increasingly resistant microorganisms to conventional antimicrobials, as well as
degenerative diseases, such as Alzheimer’s and Parkinson’s, which are associated with
free radical-induced oxidative stress, have raised interest in both the development of new
antimicrobial compounds and natural antioxidants obtained from medicinal plants [1–3].

Among the plant species most widely used in the treatment of diseases and ethnob-
otanical applications, the genus Plectranthus (Lamiaceae) should be highlighted; it is widely
studied in ethnopharmacological and chemical terms, as it has a representative popular
use in the form of teas, infusions, and syrups, especially in the treatment of digestive,
dermatological, and respiratory diseases [4,5].

The Plectranthus genus includes about 300 species of herbs and shrubs native to
tropical and warm regions worldwide [6]. In Brazil, several species of this genus are
referred to as “boldo” and “mint”, and they are known for being able to successfully
grow in different environmental conditions, tolerating from moderate to high water and
nutrient deficits [7,8]. In addition, the genus is recognized for its biological activities, such
as antimicrobial, anticancer, antiparasitic, repellent, immunomodulating activity, among
others. Its bioactivities are related to its content of phenolic compounds, proving to be rich
in flavonoids, especially flavones, flavonols and flavonones, and phenolic acids, such as
trans-rosmarinic acid [4,9–12].

This study is a chemical approach to ethanol extracts of Plectranthus amboinicus, Plec-
tranthus barbatus, and Plectranthus ornatus leaves, in which a comparison of the chemical
profile was made, emphasizing the quantification of phenolic acids and flavonoids by
HPLC/DAD; also, it describes the results from microbiological tests to verify the antibac-
terial effect and modulate the bacterial resistance to aminoglycosides and antioxidant
potential. Therefore, it must be emphasized that this is the first report performed with
extracts of P. amboinicus species as modulator of this class of antibiotics against pathogenic
bacteria.

Moreover, this work provides a significant contribution to the chemical and biolog-
ical knowledge of the Plectranthus species, to the validation of its popular use, and the
availability of alternative sources, as well as the valorization of local biodiversity.

2. Results and Discussion
2.1. Chemical Characterization

The phytochemical prospection revealed the presence of flavonoids (flavones, flavonones,
xanthones, chalcones and aurones), triterpenoids, tannins and saponins in the three extracts,
as shown in Table 1. P. amboinicus was the only species that showed anthocyanins and
anthocyanidins. However, this one did not indicate the presence of chalcones like the
other species, which are in agreement with the literature [13]; it has a rich composition of
flavonoids such as apigenin, cirsimartin, luteolin, salvigenin, rutin, and quercetin, as well
as phenolic acids and tannins [14].

Table 1. Secondary metabolites classes identified in the ethanol extracts of fresh leaves of Plectranthus
amboinicus, Plectranthus barbatus, and Plectranthus ornatus.

Samples
Secondary Metabolites

CT PT TT LA AC F FV FVN XT CH AR CQ AL SP

EELPa + + + - + + - + + - + - - +
EELPb + + + - - + - + + + + - - +
EELPo + + + - - + - + + + + - - +

CT: Condensed tannins; PT: Pyrogallic tannins; TT: Triterpenes; LA: Leucoanthocyanidins; AC: Anthocyanins
and anthocyanidins; F: Flavones: FV: Flavonols; FVN: Flavonones; XT: Xanthones: CH: Chalcones; AR: Aurones:
CQ: Catechins; AL: Alkaloids; SP: Saponins; EELPa: Ethanol Extract from Plectranthus amboinicus leaves; EELPb:
Ethanol Extract from Plectranthus barbatus leaves; EELPo: Ethanol Extract from Plectranthus ornatus leaves. (+):
Present; (-): Absent.
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Studies show that in ethanolic, acetonic and aqueous extracts of P. amboinicus, leaves
do not have anthocyanidins by phytochemical prospecting [15,16]. The amount and
type of anthocyanins in vegetables are also influenced by some determinants, such as
growing conditions, temperature, ultraviolet (UV) light exposure, salinity, drought, injury,
and harvest method [17]. For this reason, comparison of anthocyanin contents between
different crops may show different results.

Hiba et al. [18] studying the influence of zinc concentration and drought on the produc-
tion of secondary metabolites of P. amboinicus showed a significant increase in anthocyanin
content in individuals submitted to ZnSO4 treatment in 21 days (36%) compared to their
respective controls, while in those subjected to water stress, there was a reduction of 33%.

Phenolic acids and flavonoids in extracts from fresh leaves of P. amboinicus, P. barbatus
and P. ornatus were determined by the HPLC/DAD system using authentic standards
and a total of ten compounds were determined from the samples. According to the
results, the Plectranthus species contained comparable amounts of phenolic acids and
flavonoids (Table 2). The results prove that the extracts contained among other compounds,
as shown in Figure 1, gallic acid (Rt = 13.87 min, peak 1), catechin (Rt = 19.94 min, peak 2),
chlorogenic acid (Rt = 24.15 min, peak 3), caffeic acid (Rt = 27, 45 min, peak 4), rutin
(Rt = 39.83 min, peak 5), quercitrin (Rt = 42.28 min, peak 6), isoquercitrin (Rt = 45.06 min,
peak 7), quercetin (Rt = 48.35 min, peak 8), kaempferol (Rt = 57.62 min, peak 9) and
glycosated kaempferol (Rt = 66.31 min, peak 10). Many of those compounds have been
shown to possess both antimicrobial and antioxidant activities in previous studies, thus
contributing to the observed activities in such plant extracts [19,20].

Table 2. Phenolic acids and flavonoids quantified by HPLC/DAD in ethanol extracts of Plectranthus
amboinicus, Plectranthus barbatus and Plectranthus ornatus fresh leaves.

Compounds
EELPa EELPb EELPo

mg/g % mg/g % mg/g %

Gallic Acid 1.13 ± 0.04 a 0.11 0.74 ± 0.03 a 0.07 1.85 ± 0.02 a 0.18
Catechin 1.89 ± 0.02 b 0.18 1.91 ± 0.01 b 0.19 3.04 ± 0.01 b 0.30

Chlorogenic Acid 4.06 ± 0.03 c 0.40 3.87 ± 0.02 c 0.38 4.51 ± 0.03 c 0.45
Caffeic Acid 2.15 ± 0.01 d 0.21 5.01 ± 0.01 d 0.50 9.76 ± 0.05 d 0.97

Rutin 1.09 ± 0.03 a 0.10 0.26 ± 0.01 e 0.02 3.12 ± 0.01 b 0.31
Quercitrin 1.83 ± 0.02 b 0.18 1.83 ± 0.03 bf 0.18 4.93 ± 0.03 e 0.49

Isoquercitrin - - 0.91 ± 0.04 g 0.09 4.27 ±0.02 c 0.42
Quercetin 1.65 ± 0.01 e 0.16 2.34 ± 0.01 h 0.23 2.63 ± 0.01 f 0.26

Kaempferol 0.28 ± 0.01 f 0.02 1.76 ± 0.05 f 0.17 2.45 ± 0.04 f 0.24
Kaempferol

glycoside 1.81 ± 0.02 b 0.18 0.85 ± 0.02 g 0.08 1.36 ± 0.03 g 0.13

Total 15.89 ± 0.14 a 1.37 19.48 ± 0.22 b 1.91 37.92 ± 0.25 c 3.75
Results of values are expressed as mean (mg/g of dry extract) ± S.P.E. (n = 3). Averages followed by different
letters differ statistically (ANOVA, Tukey’s test at p < 0.001).

Phenolic compounds are extensively used in botanical chemosystematic studies. The
chemotaxonomic values of phenolic biomolecules such as these has been recognized in the
plant kingdom [21]. Apart from the chemotaxonomic significance, its biological activities
stand out as well as the role of phenolic compounds as indicators of the presence of metals
in the leaves of different botanical genera [22].

There are considerable differences in the concentrations of phenolic compounds
compared to the three species of Plectranthus. In EELPa (1.37%), there is the highest
amount of chlorogenic acid (4.06 ± 0.03 mg/g), while in EELPb (1.91%) and EELPo (3.75%)
the amount of caffeic acid was the highest (5.01 ± 0.50 mg/g and 9.76 ± 0.05 mg/g,
respectively). In the EELPo extract, the constituents are in higher quantity, showing high
concentrations quercitrin (4.93 ± 0.03), chlorogenic acid (4.51 ± 0.03) and isoquercitrin
(4.27 ± 0.02). In EELPa, isoquercitrin was not present, and it was the species that had the
lowest quantification of phenolic compounds, as shown in Table 2.
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chlorogenic acid (peak 3), caffeic acid (peak 4), rutin (peak 5), quercitrin (peak 6),isoquercitrin (peak 7), quercetin
(peak 8), kaempferol (peak 9), kaempferol glycoside (peak 10). Calibration curve for gallic acid: Y = 16,479x + 1236.5
(r = 0.9991); catechin: Y = 11,355x + 1047.1 (r = 0.9987); chlorogenic acid: Y = 17,035x + 1304.6 (r = 0.9997); caffeic acid:
Y = 13,674x + 1288.4 (r = 0.9989); rutin: Y = 14,756x + 1258.7 (r = 0.9999), quercetin: Y = 15,071x + 1241.6 (r = 0.9985), iso-
quercitrin: Y= 12,873x + 1325.6 (r = 0.9998); quercitrin: Y = 11,870x + 1329.8 (r = 0.9993) and kaempferol: Y = 12,953x + 1063.2
(r = 0.9997).

The amounts of caffeic acid and chlorogenic acid found in the species studied in this
work corroborate the study by Chaowuttikul et al. [23], who investigated the determination
of the two acids in 100 selected plants from several families, including Lamiaceae. The
results of RP-HPLC analysis demonstrated that the distribution of these two phenolic
compounds varied in many samples. Among 100 selected plants, 80.18 % contained all two
compounds, 14.41% contained only one compound, and 5.41% could not detect these two
compounds. Given the facts, we can suggest that chlorogenic acid (3.87 ± 0.02–4.51 ± 0.03)
and caffeic acid (2.15 ± 0.01–9.76 ± 0.05) act as chemical markers in species of the genus
Plecthanthus.

2.2. Antimicrobial Activity

Among all their ethnopharmacological applications, the species of the genus Plectran-
thus are reported to be used for the treatment of infections and as antiseptic agents, which
is consistent with the literature reporting their potential as antimicrobials [24–26].

The extracts of the three Plectranthus species studied showed antibacterial capacity on
both Gram-negative and Gram-positive strains, as shown in Table 3. The best antibacterial
effects were evidenced for the P. amboinicus extract, with minimum inhibitory concentration
(MIC) values reaching up to 16 µg/mL against Gram-positive strains, especially the multi-
resistant S. aureus. This bacteria class is more susceptible to penetration because its cell
wall does not have an extra membrane as the Gram-negative ones do [27].

Almeida et al. [28], analyzing the antimicrobial potential of medicinal species from
the Caatinga and Atlantic Forest, obtained for the ethanol extract of P. amboinicus MIC of
>2000 µg/mL against S. aureus and B. subtilis, showing a lower potential than that obtained
in this study. The ethanol extract of the dried leaves of P. amboinicus and its ethyl acetate
fraction were tested against 14 clinical isolates of S. aureus resistant to methicillin (MRSA),
obtaining MIC ranging between 2000–4000 µg/mL and 500–250 µg/mL, respectively, also
showing lower efficacy than that obtained in this study [29].
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Table 3. Minimum inhibitory concentration (MIC) of ethanol extracts of P. amboinicus, P. barbatus, and
P. ornatus fresh leaves.

Microorganism MIC (µg/mL)

EELPa EELPb EELPo

E. coli ATCC 25922 64 128 128
P. vulgaris ATCC 13315 128 128 128
B. cereus ATCC 33018 256 256 256

P. aeruginosa ATCC 15442 256 128 256
S. aureus ATCC 12692 16 16 32

S. aureus SA 358 16 128 64
ATCC: American Type Culture Collection.

Mothana et al. [30], evaluating the antibacterial potential of Plectranthus species,
demonstrated the inhibitory potential of P. barbatus and its hexanic, chloroformic, and bu-
tanolic fractions against Gram-positive strains with MIC ranging from 62.5 to 312.5 µg/mL,
corroborating the results obtained. The aqueous and aqueous aceto extracts of P. barbatus
leaves showed MIC against E. coli, P. aeruginosa and two strains of MRSA ≥ 500 µg/mL,
showing lower effectiveness than the extract under study [9].

Silva and collaborators [31], studying the antimicrobial potential of plant extracts,
obtained for ethanolic extract of P. ornatus leaves against two strains of S. aureus MIC of
1200 µg/mL. The dichloromethane extract from the leaves of this species, on the other
hand, showed good antibacterial potential against S. aureus, with MIC ranging from 500 to
700 µg/mL [32]. These results show low potentials when compared to the results of this
study.

The results of the direct contact modulatory activity assays show that the antibi-
otic activity against the aminoglycosides was potentialized in the presence of extracts.
P. amboinicus potentiated the antibiotic activity of all drugs against all tested strains, as
shown in Figure 2. The species P. barbatus potentiated gentamicin against P. vulgaris,
S. aureus and multidrug-resistant S. aureus, decreasing all the MIC from 128 µg/mL to
16 µg/mL (Figure 3). The extract of P. ornatus produced a synergistic effect on kanamycin
and gentamicin against E. coli and S. aureus, respectively, decreasing the MIC values from
128 µg/mL to 16 µg/mL in both cases (Figure 4).

Silva and collaborators [31], by studying plant extracts with antibacterial potential,
demonstrated that the interaction between the ethanol extract of P. ornatus leaves and the
antibiotics ampicillin, kanamycin, and gentamicin had a synergistic effect against two
S. aureus strains, corroborating the results obtained in this study. On the other hand, the
ethanol extract of P. barbatus leaves, combined with streptomycin, showed a synergistic
effect against Gram-negative strains of E. coli and P. aeruginosa [33]. Although several
studies report the antimicrobial activity of the genus Plectranthus, there is no research found
employing crude extracts of P. amboinicus as modulator of the action of aminoglycoside
class antibiotics.

The use of extracts and fractions as antimicrobial agents presents a low risk of in-
creased resistance, because they are complex mixtures, making microbial adaptability
difficult. Considering this variety in the chemical nature of their compositions, they present
varied mechanisms of interfering with microbial growth by interacting with the lipid
bilayer and facilitating the disruption of cellular activity [34].

Several combinations enable the conventional antibiotic to interact with its target
inside the bacterial cell, and additionally, some compounds can act by other antimicrobial
mechanisms. Synergistic interactions are a tool to expand the antimicrobial spectrum,
prevent the emergence of new resistance, and minimize toxicity by using low concentrations
of both agents [35].
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2.3. Antioxidant Activity

The results show that all extracts showed DPPH free radical scavenging activity
(Figure 5), revealing that EELPa was the least effective, with IC50 117.4 µg/mL, followed
by EELPb, with IC50 37.20 µg/mL. In contrast, EELPo exhibited the highest inhibition
potential with an IC50 32.21 µg/mL, which may correlate with the higher amount of
phenolic compounds presented in the extract. The positive control ascorbic acid showed
higher antioxidant activity, with an IC50 1.77 µg/mL. The results indicate that the three
extracts tested presented higher IC50 than the ascorbic acid control, but at the concentration
of 0.5 mg/mL, the inhibition potentials of the EELPb and EELPo extracts were higher than
that of ascorbic acid, with percentages of 84.33, 88.66 and 83.85%, respectively.

Gomes et al. [36], studying the influence of annual seasonal variation on phenolic
content, and antioxidant activity of P. amboinicus, obtained IC50 ranging from 85.04 to
220.37 µg/mL. Ethanol, methanol and chloroform extracts of P. amboinicus leaves from
India showed different IC50, which were 59.5, 124.9 and 137.1 µg/mL, in the same order,
on which the authors relate this potential to the content of phenolic compounds present in
the extracts [37].

The ethanol extract of the aerial parts of P. barbatus and its chloroform fraction obtained
DPPH inhibition percentages of 81.2 and 80.1% at the concentration of 1000 µg/mL, proving
to be close to that obtained by ascorbic acid of 94.4% [30]. As for the ethanol extract,
lyophilized decoct and acetate fraction of P. ornatus leaf decoct showed potential DPPH
free radical scavenging, with IC50 of 67.04, 66.62 and 12.35 µg/mL, respectively [38].

Medrado et al. [39], studying the relationship between different culture types, chemical
composition, and antioxidant activity of P. ornatus, demonstrated that cultures with higher
caffeic acid content showed better DPPH inhibition responses, with IC50 between 26
and 39.7 µg/mL; ethyl acetate fractions from quercetin-rich P. amboinicus leaves, on the
other hand, showed moderate DPPH sequestering activity, with IC50 ranging from 124 to
137 µg/mL [40].
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The structure of phenolic compounds is directly related to their ability to scavenge
free radicals and chelate metals by donating hydrogen or electrons, which is influenced by
the number of hydroxyl groups and their positions in relation to the carboxyl group, chain
saturation, glycosylation, and the presence of substituents on the rings. Furthermore, gly-
cosylated phenolics exhibit weaker antioxidant activity than the corresponding aglycones;
however, they are more bioavailable, which increases their antioxidant potency [41].
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2.4. Chemometric Analysis

Principal component analysis, together with cluster analysis, was used to classify the
species according to the content of the bioactive compound. The chemical PCA (Figure 6)
showed that the first two PC accounted for the totality of variability, which was high enough
to represent all the variables (58.5% for the PC1 and 41.5% for PC2). Using the bioactive
compounds as chemical descriptors, it was clearly seen that the species were separated
in the different quadrants in the PCA biplot. The inclusion of data from the antioxidant
and antibacterial activity does not modify the separation; instead, it suggests that the
antioxidant effect of these species presents a significant contribution to the synergistic
effect of phytoconstituents, especially by the flavonoid contents such as rutin, catechin,
quercitrin, kaempferol glycoside and phenolic acid such as gallic acid, chlorogenic acid,
caffeic acid. The antimicrobial activity did not show significant variation among the studied
Plectranthus species; however, the chemical of the phenolic acid (gallic acid, chlorogenic
acid and caffeic acid) and flavonoid glycoside (rutin, quercitrin, kaempferol glycoside)
presents a significant contribution to the antibacterial effect againt S. aureus ATCC 12692,
isoquercitrin to S. aureus 358 and quercetin and kaempferol to E. coli ATCC 25922.
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Our study was in agreement with other data in the literature, suggesting that antioxi-
dant and antibacterial activity of Plectranthus extract was related to the presence of some
these classes of compounds as gallic and caffeic acid [42]. The study by Jhanji et al. [43]
showed that rutin had a greater inhibitory effect in S. aureus and the lowest effect against
drug-resistant E. coli and S. aureus. Studies with phenolic acids present a positive correlation
between increasing hydroxyl and methoxy groups with antioxidant properties (as observed
in the positive value of PC2); however, there was a slightly decreased antimicrobial efficacy
with increases number of compounds that present these groups [44]. A positive value of
PC1 demonstrates the importance of these flavonoids and phenolic acid to antibacterial
activity, which can act selectively on Gram-positive [45] and -negative bacterial cells [46],
and the literature data show that these compounds can promote these compounds the
inhibition of virulence factors as biofilm formation [47].

In this study, we examine the chemical composition of extracts from Plectranthus
species (Lamiaceae) and establish a correlation between the antioxidant and antibacterial
activities by utilizing chemometric methods. These data provide comparison basis and
valuable information that contribute to the use of these extracts or isolate compounds as a
possible therapeutic antibacterial agent.

3. Materials and Methods
3.1. Plant Materials

The leaves of Plectranthus amboinicus (Lour.) Spreng, Plectranthus barbatus (Andr.), and
Plectranthus ornatus (Codd) were collected in the Horto de Plantas Medicinais e Aromáticas
in Laboratório de Pesquisas de Produtos Naturais (LPPN) from Universidade Regional do
Cariri (URCA), Crato, state of Ceará, Brazil. A voucher of each specimen was deposited in
the Herbário Caririense Dárdano de Andrade—Lima (HCDAL), URCA, registered under
No 3037, 3038, and 3039, for P. amboinicus, P. barbatus, and P. ornatus, respectively.
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3.2. Preparation of Extracts

The extracts were prepared used fresh leaves (500 g) of the three Plectranthus species.
The samples were added separately in flasks with 2 L of ethanol 95% (w/v) and left in
ambient temperature (30 ◦C) for 72 h. The ethanol was removed using a rotary vacuum
evaporator (Model Q-214M2, Quimis, Brazil) and ultrathermal bath (Model Q-214M2,
Quimis) under reduced pressure at a temperature of 60 ◦C. The yields obtained for the
crude ethanol extracts were 6.0%, 4.5% and 3.8% for P. amboinicus (EELPa), P. barbatus
(EELPb) and P. ornatus (EELPo), respectively.

3.3. Chemical Characterization
3.3.1. Phytochemical Screening

A solution containing 300 mg of each extract was diluted in 30 mL of ethanol 70%
(w/v). Aliquots containing 3 mL of this solution were subjected to the addition of specific
reagents such as: iron chloride, acetic acid, ammonium hydroxide, potassium dichromate,
Dragendorff, among others. These qualitative tests are based on color or precipitation
reactions as a positive response to the presence of specific classes of secondary metabolites,
when in contact with reagents. All reactions allow only the presence or absence of the
chemical classes to be determined, and not the amounts of them that are present in different
extracts [48,49].

3.3.2. Phenolics and Flavonoids Compounds by HPLC/DAD
Chemical, Apparatus, and General Procedures

All chemicals were of analytical grade. Methanol, acetic acid, gallic acid, caffeic
acid and chlorogenic acid were purchased from Merck (Darmstadt, Germany). Cate-
chin, quercetin, rutin, quercitrin, isoquercitrin, glicoside kaempferol and kaempferol were
acquired from Sigma Chemical Co. (St. Louis, MO, USA). High performance liquid
chromatography with diode arrangement detector (HPLC/DAD) was performed with a
Shimadzu Prominence Auto Sampler (SIL-20A) HPLC system (Shimadzu, Kyoto, Japan),
equipped with Shimadzu LC-20AT reciprocating pumps connected to a DGU 20A5 de-
gasser with a CBM 20A integrator, SPD-M20A diode array detector and LC solution 1.22
SP1 software.

HPLC/DAD Analysis

Reverse phase chromatographic analyses were carried out under gradient conditions
using C18 column (4.6 mm × 250 mm) packed with 5 µm diameter particles; the mobile
phase was water containing 2% acetic acid (A) and methanol (B), and the composition
gradient was: 5% (B) for 2 min; 25% (B) until 10 min; 40, 50, 60, 70 and 80% (B) every 10 min.
This was following the method described by Sabir et al. (2012) with slight modifications.

Extracts of Plectranthus were filtered through 0.45 µm membrane filter (Millipore) and
then degassed by ultrasonic bath prior to use, the extracts of Plectranthus were analyzed
at a concentration of 6 mg/mL. The flow rate was 0.8 mL/min and the injection volume
was 40 µL. The sample and mobile phase were filtered through 0.45 µm membrane filter
(Millipore) and then degassed by ultrasonic bath prior to use. Stock solutions of stan-
dards references were prepared in the HPLC mobile phase at a concentration range of
0.050–0.250 mg/mL catechin, quercetin, rutin and kaempferol, and 0.020–0.200 mg/mL for
gallic, chlorogenic and caffeic acids. Quantification was carried out by integrating the peaks
using the external standard method, at 257 nm for gallic acid, 280 nm for catechin, 325 nm
for chlorogenic and caffeic acids, and 365 for quercetin and rutin. The chromatography
peaks were confirmed by comparing its retention time with those of reference standards
and by diode arrangement detector (DAD) spectra (200 to 600 nm). All chromatography
operations were carried out at an ambient temperature (25 ◦C) and in triplicate.

Quantifications of the compounds were based on analytical curves of the reference
standards. The limit of detection (LOD) and limit of quantification (LOQ) were calculated
based on the standard deviation of the responses and the slope using three independent
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analytical curves, as defined by IHC [50]. LOD and LOQ were calculated as 3.3 and 10 σ/S,
respectively, where σ is the standard deviation of the response and S is the slope of the
calibration curve.

3.4. Antibacterial Activity
3.4.1. Minimal Inhibitory Concentration Test (MIC)

The assay was performed with six bacterial strains from the Oswaldo Cruz Foundation
(FIOCRUZ): Escherichia coli (ATCC 25922), Proteus vulgaris (ATCC 13135), Bacillus cereus
(ATCC 33018), Pseudomonas aeruginosa (ATCC 15442), Staphylococcus aureus (ATCC 12692),
and multidrug-resistant strain of Staphylococcus aureus (Sa 358). The minimum inhibitory
concentration was determined by the microdilution method according to documents
M-100 [51]. The extracts were initially solubilized in sterile distilled water and dimethyl
sulfoxide (DMSO) at 1024 µg/mL. An amount of 100 µL of inoculum was distributed in
each well of the 96-well microdilution plate; subsequently, serial dilutions of the extract
solution were performed obtaining concentrations from 512 to 8 µg mL. The plates were
transferred and incubated for 24 h at 35 ± 2 ◦C, an air atmosphere on the stove. The results
were analyzed by colorimetric reaction after adding 25 µL of a resazurin solution (0.01%)
to each well after incubation. The minimum inhibitory concentration (MIC) was defined as
the lowest concentration of extract capable of inhibiting the growth of microorganisms.

3.4.2. Modulating the Action of Antibiotics

The modulating effect of the extracts was analyzed by combining them with the
aminoglycosides amikacin, kanamycin, and gentamicin, according to the methodology
proposed by Coutinho et al. [52]. The extracts were tested at subinhibitory concentrations
(MIC/8). In each well of the microdilution plate, 100 µL of the solution containing BHI cul-
ture medium (10%) and 100 µL of the inoculum and solution of the extracts (1024 µg/mL)
were distributed. Subsequently, serial dilutions of the antibiotics were performed obtaining
dilutions concentrations from 1024 to 0.5 µg/mL. The plates were incubated at 35 ± 2 ◦C
for 24 h an air atmosphere on the stove, and read by colorimetry by the addition of 25 µL
of resazurin solution (0.01%).

3.5. DPPH Free Radical Scavenging

The free radical scavenging activity of the extracts was determined by the photo-
colorimetric 2,2-diphenyl-1-picrylhydrazyl (DPPH) method proposed by Choi, Lee and
Kang [53], with modifications. Concentrations of 0.001; 0.0025; 0.005; 0.01; 0.025; 0.05; 0.1;
0.25; 0.35 and 0.5 mg/mL of the extracts were used. In 96-well ELISA plates, 20 µL of the
extract concentrations, 80 µL of 95% ethanol and 100 µL of ethanolic solution of the DPPH
radical (0.4 mM) were added. After 30 min of incubation at ambient temperature (30 ◦C)
under the shelter of light, the reading was performed at 518 nm in a spectrophotometer
(UV-Visible TR Reader Shimadzu). The positive control used was ascorbic acid, under
the same conditions as the samples, and the blank in the absence of DPPH. The negative
control consisted of 100 µL of DPPH (0.4 mM) and 100 µL of 95% ethanol. The percentages
(%) of DPPH radical inhibition were calculated using the following formula, in which Abs
means absorbance:

% DPPH inhibition = {[(AbsControl − (AbsExtract − AbsWhite)] × 100%}/AbsControl

3.6. Statistical Analysis

In the statistical analyses, the results were expressed as mean (n = 3) ± standard error
(S.E.P.M). The data obtained in the phenols and flavonoids quantification by HPLC/DAD,
modulation of antibiotic action, and DPPH free radical scavenging were submitted to
analysis of variance (ANOVA) followed by Tukey’s test. Results with p < 0.05 were
considered significant. All analyses were performed using GraphPad Prism 8.0 software.
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The chemometric analysis by principal components analysis (PCA) was procedure using
the Jamovi v.2.2.

4. Conclusions

The present study reports the analysis of the chemical constituents of the species
extracts of the genus Plectranthus, revealing flavonoids, tannins, and saponins as the un-
common constituents found in the three species; as well as highlighting the predominance
of chlorogenic acid in EELPa, with caffeic acid being the most abundant compound in
EELPb and EELPo. Antibacterial activity on Gram-positive and Gram-negative strains was
observed for all species, with EELPa performing best against Gram positive strains. In the
modulation tests, the best results were also with EELPa, suggesting that the modulatory
action was potentialized by the chemical constitution of this extract in comparison to the
other extracts. In the antioxidant test, EELPo showed the highest capacity to scavenge the
DPPH free radical. The PCA of the chemical composition of the species of Plectranthus
separated in three different chemotypes. The P. amboinicus was correlated has important
antioxidant, whereas P. ornatus and P. barbatus were correlated to having important antibac-
terial activities. Updates and new evidence on Plectranthus species obtained in this study
may serve as the basis for further development of antimicrobial agents and antioxidant
compounds.
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