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Simple Summary: Ruminants under grazing conditions play an important role, especially in devel-
oping countries. Enteric methane emissions from ruminants are greater with pasture-based diets;
however, it is not clear which abatement practices are effective to reduce methane emissions under
grazing conditions. The objective of this review was to identify and describe enteric methane abate-
ment practices for ruminants that are applicable under grazing conditions. Decreasing the pre-grazing
herbage mass reduced methane emissions per unit of product. Other grazing management practices
such as increased stocking rate, decreased forage maturity, rotational stocking, and incorporating
tannin-containing or non-tannin-containing legumes showed inconsistent results. Nitrogen fertil-
ization or silvopastoral systems did not modify methane emissions, although they may alter carbon
sequestration in a system. Supplementation in grazing conditions shows inconsistent responses on
methane emissions. However, lipid supplementation showed promising results. Identifying and
implementing grazing strategies and supplementation practices under grazing conditions is required
to increase efficiency and reduce the environmental impact of these systems.

Abstract: Ruminants produce approximately 30% of total anthropogenic methane emissions globally.
The objective of this manuscript was to review nutritional enteric methane abatement practices for
ruminants that are applicable under grazing conditions. A total of 1548 peer-reviewed research
articles related to the abatement of enteric methane emissions were retrieved and classified into four
categories: non-experimental, in vitro, in vivo confined, and in vivo grazing. The methane abatement
strategies for grazing systems were arranged into grazing management and supplementation prac-
tices. Only 9% of the retrieved papers have been conducted under grazing conditions. Eight grazing
management practices have been evaluated to reduce methane emissions. Decreasing the pre-grazing
herbage mass reduced the methane emission per unit of product. Other grazing management prac-
tices such as increased stocking rate, decreased forage maturity, rotational stocking, and incorporating
tannin-containing or non-tannin-containing feeds showed contradictory results. Nitrogen fertilization
or silvopastoral systems did not modify methane emissions. Conversely, supplementation practices
in grazing conditions showed contradictory responses on methane emissions. Lipid supplementation
showed promising results and suggests applicability under grazing conditions. Identifying and
implementing grazing strategies and supplementation practices under grazing conditions is required
to increase efficiency and reduce the environmental impact of these systems.

Keywords: diet supplementation; grassland systems; grazing management; methane emission;
secondary compounds tannin-containing legume

Animals 2022, 12, 1132. https://doi.org/10.3390/ani12091132 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12091132
https://doi.org/10.3390/ani12091132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-7674-3850
https://orcid.org/0000-0002-5422-5462
https://orcid.org/0000-0003-4080-9325
https://doi.org/10.3390/ani12091132
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12091132?type=check_update&version=2


Animals 2022, 12, 1132 2 of 13

1. Introduction

Ruminants are an essential component of grassland ecosystems. They maintain the
dynamic cycle of nutrients through grazing and nutrient excretion [1]. Additionally, they
convert non-edible feeds into high-quality food for human nutrition [2], promote human
food security, especially in developing communities, and play an essential role in cultural
and social relationships in many societies [3]. Grasslands support 360 million cattle and
more than 600 million sheep and goats worldwide [4]. However, ruminant production in
grassland ecosystems has been associated with deforestation, biodiversity loss, and water
and air contamination [5,6].

Globally, livestock produce 14.5% of total anthropogenic emissions of greenhouse
gases (GHG), with enteric methane (CH4) being the primary source (39.1% [7]). Further, it
has been proposed that 47% of CH4 emissions are the result of ruminants under grazing
conditions [8], associated with poor animal performance [9]. For this reason, these systems
produce more CH4 per unit of product than mixed or confined production systems [10,11].
Regardless of the production system, CH4 emissions represent an energy loss for ruminants,
varying between 2 and 12% of gross energy intake [12].

Enteric CH4 can be expressed in different forms: as an absolute amount emitted per
day (i.e., total CH4 production), relative to the unit of dry or organic matter consumed
(i.e., CH4 yield), or by product produced such as meat or milk (i.e., CH4 intensity), either as
a percentage of the gross energy ingested (i.e., CH4 conversion factor, Ym) or relative to the
unit of grazed area.

Strategies for decreasing CH4 emissions from ruminant livestock can be grouped into
animal management, genetic selection, rumen microbiome manipulation, and nutritional
modulation [11,13,14]. Practices that promote more efficient systems due to better animal
performance or fewer inputs reduce CH4 intensity [2,10,15]. In the past decades, various
strategies have been evaluated both under in vitro and in vivo conditions. In vitro tech-
niques are convenient for evaluating many samples and understanding the chemical and
biological mechanisms involved in CH4 production [16]. In vivo methodologies allow a
more holistic approach and can take place in confined or grazing conditions. Confined
methods allow better control of experimental procedures, particularly feed intake, and
often provide more precise results [17]. However, research under confined conditions has
limitations when extrapolated to grazing conditions because it does not convey all the
complexity and dynamic interactions that occur between soil, forage, animal, herd, and
climate [18]. In addition, confined experimental conditions to measure enteric methane
(e.g., chambers) could decrease dry matter intake by ruminants, potentially affecting the
CH4 emission determination [19,20].

Animal response in grazing systems is affected by environmental, management, social,
and individual factors that differ from confined systems [21]. Environmental conditions
such as heat can modify ruminant grazing patterns [22,23]. Further, grazing management
modulates animal forage selection and nutrient recycling, ultimately impacting herbage
mass accumulation and forage nutritive value [1]. Additionally, herd interaction alters
consumption behavior associated with animal hierarchy, and ruminants show an individual
grazing behavior associated with previous experience or modulated through epigenetic
stimuli [21]. Because intake is the main driver of CH4 production [12,17], the differences
between grazing and confinement may be partially explained by variations in dry mat-
ter intake. However, the type of ruminal fermentation in both systems (i.e., proportion
of propionate relative to other VFA) may have a greater impact on the differences in
methanogenesis, assuming the predominance of cereal-based diets in confinement.

Determining enteric CH4 emissions in grasslands poses significant challenges as few
in vivo techniques are available that can accurately measure daily CH4 emissions under
grazing conditions [18,24]. Constraints in measuring variables related to CH4 emissions
(e.g., dry matter intake) and handling ruminants with a specific frequency, especially in
extensive systems, limit animal interventions such as the use of feed additives or supplemen-
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tation [14,25,26]. This manuscript aims to critically review nutritional abatement strategies
of enteric CH4 from ruminants in grassland systems reported in the scientific literature.

2. Research on Methane Emission Abatement Strategies

Peer-reviewed publications were obtained from ScienceDirect (https://www.sciencedirect.
com/ accessed on 11 October 2021), Springer (https://www.springer.com/us accessed on
18 October 2021), and Scielo (https://www.scielo.org/ accessed on 5 October 2021), using
the following keywords: “methane”, “methane emissions”, “methane production”, and
“ruminant”. A total of 1548 documents from 1956 to 2020 were retrieved and classified into
four categories as follows:

i. Non-experimental: Represented by documents that did not involve original research
data collection, for example, reviews, meta-analyses, life cycle assessments, inventory
estimations, or methodology description.

ii. In vitro: This category comprised research that evaluated CH4 emissions in batch or
semi-continuous in vitro cultures.

iii. Confined studies: Represented by documents that evaluated in vivo CH4 emissions,
where ruminants were restricted to confined facilities.

iv. Grazing studies: This category includes research that determined in vivo CH4 emis-
sions under grazing conditions.

Retrieved documents were categorized according to the continent where the experi-
ments were conducted (i.e., the Americas, Africa, Asia, Europe, or Oceania), production
system (i.e., beef, dairy, or small ruminants), type of forage (i.e., temperate or tropical
forage), and CH4 measurement technique.

Research evaluating CH4 emissions from ruminants published in the last decade
increased by 6 and 28-fold relative to the decades 2001–2010 and 1990–2000, respectively
(Figure 1). Thus, there has been an increase in interest in measuring and evaluating strate-
gies to reduce CH4 emissions from ruminants in the last decade. Beauchemin et al. [25]
reported similar tendencies, emphasizing that early CH4 research focused more on increas-
ing animal energy efficiency, understanding methanogenesis biochemical pathways, and
evaluating rumen modifiers under in vitro or confined conditions. After the development
of the sulfur hexafluoride (SF6) tracer technique [12], and more recently, the use of the
GreenFeed (GF, C-Lock Inc., Rapid City, SD) technology [27], more experiments have been
conducted under grazing conditions [25].
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Publications involving reviews, meta-analyses, methodology description, and theoret-
ical analyses (i.e., non-experimental category) represented 23% of the retrieved documents.
In vitro publications were 31% of the documents, with the batch culture methodology
being predominant (reported in 83% of the in vitro studies). The in vivo Confined category
represented 39% of the documents, and respiration chambers, SF6, and GF techniques used
in confinement studies were 57, 20, and 7% of the documents, respectively. Further, 16% of
the confined studies provided cut and carry forage as a proxy for grazing conditions.

The in vivo Grazing category represented 7% of the documents (Figure 2), and the SF6
technique was used in 70% of the grazing research on CH4 abatement. Research on enteric
CH4 emissions under grazing conditions has been carried out mainly in Europe and the
Americas (67%), evaluating mostly cattle (83%) under temperate pastures (76%) (Figure 3).
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3. Methane Emissions in Grassland Systems

Grassland systems vary from extensive, generally with low productivity per area,
low forage nutritive value, non-improved ruminant breeds, and without supplementation
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schemes, to intensive, generally with high productivity, improved animal breeds, grasses,
and management, and more balanced diets [7,26]. This diversity in production systems
requires the development of different approaches to reduce enteric CH4 emissions that
will have a minimal effect on farm labor activities, production costs, and profitability. For
example, continuous inclusion of a feed additive may be easily incorporated in intensive
grazing systems through supplemental feed (e.g., during the milking routine). However,
in extensive grazing conditions, daily additive supplementation is less feasible, and other
strategies must be developed to ensure continuous CH4 abatement.

From a feed and nutritional perspective, strategies to decrease CH4 emissions can
be classified into practices related to grazing management or strategic supplementation
of ingredients or additives. Managing grazing intensity—targeted through contrasting
stocking rates or pre-grazing herbage masses—and concentrate supplementation have been
the most reported strategies to modulate CH4 under grazing conditions (12 and 9 studies,
respectively). This was followed by lipid (6 studies) and nitrate supplementation (3 studies).
Other strategies that modify forage nutritive value (i.e., incorporation of tannin-containing
legumes or manipulation of forage maturity) have been less evaluated (2 studies each).

3.1. Grazing Management Strategies to Mitigate Methane Emissions from Ruminants

Grazing management consists of practices that manipulate forage characteristics to
pursue one or multiple objectives. Grazing intensity, phenological stage of grasses, and
grazing method are management tools that manipulate forage availability or quality [28].
Grazing intensity, generally expressed as stocking rate, or relationship between the number of
animals and amount of land grazed, is the main factor affecting nutrient cycling, and defines
animal productivity while delivering ecosystem services [28,29]. Under grazing conditions,
increasing the stocking rate showed inconsistent results on CH4 emissions (Table 1). However,
methane intensity was not affected by increasing the stocking rate (Table 1).

Table 1. Number of experiments that reported either increased, decreased, or not modified CH4

emissions when implementing different grazing management practices.

Grazing or Pasture Management
CH4 g/d CH4 g/kg DM or OM CH4 g/kg Product CH4 %GEI 1

Source
Effect NE 2 Effect NE 2 Effect NE 2 Effect NE 2

Increasing Stocking Rate
Increase 0 Increase 0 Increase 0 Increase 0

[30–35]No effect 5 No effect 4 No effect 3 No effect 6
Decrease 5 Decrease 3 Decrease 0 Decrease 1

Decreasing pre-grazing herbage mass
Increase 2 Increase 1 Increase 1 Increase 1

[36–41]No effect 4 No effect 3 No effect 2 No effect 2
Decrease 2 Decrease 3 Decrease 5 Decrease 3

Decreased forage maturity
Increase 0 Increase = 0

NR 3 NR 3
Increase 0

[42,43]No effect 1 No effect 1 No effect 0
Decrease 1 Decrease 1 Decrease 2

Rotational systems
Increase 0 Increase 0 Increase 2 Increase 0

[31,34,44]No effect 5 No effect 1 No effect 1 No effect 2
Decrease 2 Decrease 1 Decrease 0 Decrease 1

N fertilization
Increase 0 Increase 0 Increase 0 Increase 0

[45–47]No effect 3 No effect 1 No effect 2 No effect 1
Decrease 1 Decrease 0 Decrease 0 Decrease 0

Inclusion of non-tannin-containing
legumes into the pastures

Increase 1 Increase 1 Increase 0 Increase 1
[46,48–53]No effect 4 No effect 4 No effect 4 No effect 2

Decrease 1 Decrease 1 Decrease 0 Decrease 1

Inclusion of tannin-containing
legumes into the pastures

Increase 1 Increase 0 Increase 0 Increase 0
[54,55]No effect 1 No effect 1 No effect 1 No effect 0

Decrease 0 Decrease 1 Decrease 1 Decrease 1

Silvopastoral systems
Increase 0 Increase 0 Increase 0 Increase 0

[47,56–58]No effect 6 No effect 2 No effect 2 No effect 2
Decrease 0 Decrease 0 Decrease 0 Decrease 0

1. GEI = Gross energy intake; 2. NE = Number of experiments; 3. NR = Not reported.

Increasing the stocking rate decreases forage biomass, but increases forage nutritive
value [59], as greater stocking rates are associated with extensive biomass defoliation,
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maintaining the vegetative stage of forages [28]. Consumption of forage material in a vege-
tative stage is associated with reduced CH4 yield due to a lesser concentration of cell wall
structure [43]. Additionally, intake of forages in a vegetative stage increases dry matter con-
sumption, decreases ruminal retention time, and reduces CH4 yield (i.e., grams of CH4 per
unit of dry matter intake), although it could increase total CH4 production (i.e., total grams
of CH4 per animal per day [60]). Conversely, individual animal productivity decreases
when the stocking rate increases due to greater grazing competition and less possibility
for animal forage selection [61]. The intensity or yield of enteric CH4 emissions may be
increased with high stocking rates if forage availability is restricted and is insufficient to
meet the animal’s nutrient requirements.

The phenological stage of grazing is related to the physiological stage of forage,
i.e., forage maturity, when the defoliation occurs [28]. Reduced forage maturity decreased
the CH4 conversion factor (i.e., Ym; Table 1). Mature forages have a lesser concentration
of digestible tissues such as parenchyma and more cell wall structure. This structure is
mainly composed of cellulose, hemicellulose, and lignin and has slow rumen fermentation
and passage rates [62]. The fermentation of cell wall carbohydrates yields more CH4 than
non-structural carbohydrates [63]. Conversely, immature forages have more degradable
nutrients and result in increased dry matter intake [42]. Thus, it is expected that mature
forages in ruminant diets produce a greater CH4 yield due to greater cell wall concentration.
However, if the forage cell wall structure limits intake (i.e., physical restriction), the CH4
production may be reduced, increasing CH4 yield [60].

The grazing method refers to how animals are stocked and is generally classified as
continuous or rotational [64]. Usually, rotational grazing is associated with more uniformly
distributed grazing and manure deposition, increasing the carrying capacity and efficiency
of grazing, maintaining forage uniformity, conserving nutrient soil characteristics, and
increasing productivity per unit of area [28,65]. In contrast, continuous grazing promotes
greater herbage selection and intake if animals have a similar herbage allowance [31].
In our review, the grazing method did not show consistent results on CH4 emissions
(Table 1). In one experiment, increased CH4 intensity was associated with decreased animal
production in rotational vs. continuous stocking, related to lower intake [31]. Under well-
managed grazing conditions, no differences were observed in continuous or rotational
grazing in herbage accumulation, forage nutritive value, intake, or performance because
the animal can select and consume forages of greater nutritional value [64]. The limited
number of studies comparing continuous and rotational grazing limits the evaluation of
the effects of rotational or continuous methods on CH4 emissions. Additionally, to our
knowledge, no studies have evaluated other grazing methods such as first-last grazers [64]
on CH4 emissions.

Another strategy to increase herbage mass is applying nitrogen fertilization [54,66],
allowing a greater stocking rate and extending the grazing period [59]. Nitrogen fertilization
did not modify enteric CH4 production except with nitrogen application rates greater than
400 kg/ha [45]. However, nitrogen application did not modify forage biomass or nutritive
value, explaining the absence of effects on CH4 yield or intensity (Table 1). No experiments
have evaluated the effects of fertilization with other nutrients on CH4 production.

Legume inclusion in pastures has important advantages for grassland systems. Legumes
can fix atmospheric nitrogen through the symbiotic relationship with Rhizobium bacteria
and increase crude protein concentration in forage diets [67]. Legumes are C3 species
and have more digestible tissue (i.e., mesophyll), greater crude protein concentration, and
greater microbial degradation than C4 grasses [62,68]. Several studies have been conducted
to evaluate the effects of legumes on CH4 production. There are differences in ruminant
CH4 emissions when the legume evaluated contains condensed tannins. Generally, non-
tanninferous legumes such as Medicago sativa or Trifolium spp. Have a greater extent of
ruminal organic matter digestion, especially in low-quality grass-based diets [50]. Their in-
clusion in ruminants’ diets increase dry matter intake and animal performance [48,52,53,69].
However, in most retrieved manuscripts, non-tanninferous legumes did not modify CH4
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production, yield, or intensity (Table 1). Factors such as legume proportion in pasture, dry
matter intake, organic matter digestibility, and passage rate can help explain the absence
of any effects on CH4 emissions. For example, McCaughey et al. [52] reported that 78% of
alfalfa in the pasture increased dry matter intake by 13% and decreased CH4 production by
10%. In contrast, Chaves et al. [49] reported that 40% of alfalfa in the pasture did not affect
intake or CH4 production.

Tannin-containing legumes such as Lotus spp. or Calliandra calothyrsus contain polyphe-
nol compounds that protect plants against external stressors. Variations in tannin type,
concentration, and activity depend on environmental conditions and management prac-
tices [70]. Waghorn [71] suggested that tannins reduce ruminal protein and carbohydrate
fermentation and microbial enzyme activity and affect methanogenic archaea popula-
tions [70,72]. Thus, CH4 emissions may be reduced due to decreased nutrient fermentation,
diminished dihydrogen (H2) production, or a modified archaeal community. However,
high tannin concentration is associated with detrimental effects on animal performance,
related to decreased dry matter intake and protein digestibility [71]. There is too little
information to conclude on the effect of the inclusion of tannin-containing legumes as a
strategy to modify CH4 emissions (Table 1).

Silvopastoral systems are a spatial arrangement where multiple forage strata grow
together to provide forage biomass and other ecosystem services [73]. There are multiple
silvopastoral designs where woody species may or may not provide forage for ruminant
diets [74]. Silvopastoral systems decrease the nutritive value of grass and biomass produc-
tion because trees can intercept light, increase cell wall concentration, and reduce herbage
photosynthetic ability [75]. However, in warm or dry conditions, the presence of trees
produces a micro-environment that maintains forage production, reduces maturity, and
increases nutritive value [73]. There are few evaluations of silvopastoral systems on enteric
CH4 emissions. Ruminants in silvopastoral systems produced similar CH4 emissions to
ruminants in grasslands without trees due to similar forage nutritive value and animal
intake (Table 1). The foliage of some shrubs and trees has secondary compounds, such as
tannins or saponins, that have been reported to decrease CH4 emissions from ruminants;
however, this has not been evaluated under grazing conditions [76].

3.2. Supplementation Strategies to Mitigate Methane Emissions from Ruminants in Grasslands Systems

Diet supplementation is a nutritional strategy to supply deficient nutrients, improve
the health status, increase animal performance, and reduce GHG emission intensity, espe-
cially in undernourished ruminants [77]. Concentrate supplementation at pasture showed
contradictory results on CH4 emissions (Table 2). It is expected that concentrate supplemen-
tation increases rumen fermentation of forage diets, resulting in greater absolute production
of H2 and CH4 in the rumen [78]. Thus, concentrate supplementation may increase the
total CH4 production (i.e., total grams of CH4 per animal per day). Conversely, concentrate
supplementation increases ruminal passage and reduces the rumen pH, resulting in lower
CH4 relative to organic matter fermented because the hydrogen is redirected to other
metabolic pathways (i.e., propionate or microbial bacteria synthesis; [79,80]. In addition,
methanogens are sensitive to ruminal pH lower than 6 [81]. Thus, concentrate supple-
mentation might decrease CH4 yield (i.e., total grams of CH4 per unit of OM fermented).
Finally, concentrate supplementation increases dry matter intake and animal performance
resulting in lower CH4 intensity (i.e., total grams of CH4 per unit of product), and effects
appear to be dependent on the level of concentrate supplied.



Animals 2022, 12, 1132 8 of 13

Table 2. Number of experiments that reported either increased, decreased, or not modified CH4

emissions when supplementing concentrates or nitrates to ruminants under grazing conditions.

Supplementation Strategy
CH4 g/d CH4 g/kg DM or OM CH4 g/kg Product CH4 %GEI 1

Source
Effect NE 2 Effect NE 2 Effect NE 2 Effect NE 2

Concentrate inclusion
Increase 5 Increase 0 Increase 0 Increase 0

[37,42,44,82–89]Equal 8 Equal 9 Equal 7 Equal 8
Decrease 2 Decrease 3 Decrease 2 Decrease 3

Lipid supplementation
Increase 0 Increase 0 Increase 0 Increase 0

[90–93]Equal 4 Equal 3 Equal 2 Equal 3
Decrease 5 Decrease 4 Decrease 3 Decrease 2

Nitrate supplementation
Increase 0 Increase 0 Increase 0 Increase 0

[94–96]Equal 3 Equal 3 Equal 2 Equal 2
Decrease 0 Decrease 0 Decrease 0 Decrease 0

1. GEI = Gross energy intake; 2. NE = Number of experiments.

Lipid supplementation is another strategy to increase the energetic density of ruminant
diets, especially during high-energy demand periods such as early lactation [97], which
has shown promise as a CH4 mitigation strategy [98]. Lipid supplementation under
grazing conditions decreased CH4 intensity 60% (Table 2). Lipid inclusion may reduce fiber
digestion, by coating the fiber against microbial fermentation [14,99]. Fiber fermentation
is related to acetate and H2 production in the rumen. In this regard, reducing dry matter
intake and fiber degradability potentially decreases H2 and CH4 production, though it is
not a desirable mechanism to reduce CH4 emissions [78]. Furthermore, fatty acids can
inhibit methanogens. Poly-unsaturated and medium chain fatty acids have toxic and
disruptive effects on methanogen cell membranes [98,100]. In addition, unsaturated fatty
acids capture H2 during the rumen biohydrogenation process, although this represents a
small proportion of H2 capture [12]. Finally, nitrates are reduced in the rumen to ammonia,
competing with methanogenesis [9]. However, nitrates did not reduce CH4 emissions of
ruminants under grazing conditions (Table 2).

4. Perspectives on Methane Mitigation Strategies in Grasslands Systems

Designing effective mitigation strategies of CH4 emissions under grazing conditions
represents a significant challenge, especially in extensive systems. These challenges are
reflected in the fact that considerably less research has been conducted under grazing
conditions, in which there is less control of the experimental conditions compared to
confined systems. In addition, the heterogeneity and seasonal variation in grazing lands’
forage composition and growth further complicate conditions in these systems by adding
experimental variation. The most widespread technique for measuring CH4 under grazing
conditions is the SF6 tracer technique, which is less precise and more labor intensive
than respiration chambers [17,18]. The inability to accurately determine intake in grazing
conditions hinders the ability of researchers in terms of assessing CH4 emissions yield and
the impact of interventions on forage intake. Thus, results of CH4 abatement strategies
evaluated in grazing systems are less consistent than in confined studies, and researchers
may need to rely on the impact on emissions intensity rather than yield when assessing
these strategies. Animal performance (i.e., milk yield or growth) is frequently and more
precisely evaluated during grazing experiments. Therefore, CH4 intensity should be a more
useful variable to compare practices in grazing conditions.

This review highlights CH4 mitigation practices that have been studied under grazing
conditions. Emission of CH4 may be reduced through grazing practices that modify the for-
age composition (i.e., reducing structural carbohydrate intakes) as a result of an increased
stocking rate or lower pre-grazing herbage mass. Rotational grazing does not increase emis-
sions intensity unless animal intake is restricted, compromising production. Decreasing
forage maturity and the presence of tannin-containing legumes can decrease CH4 emis-
sions; however, more research is required under grazing conditions to further quantify this.
Non-tanniferous legumes mostly did not modify CH4 emissions. Additionally, nitrogen
fertilization and silvopastoral systems have had no effects on CH4 emissions. Conversely,
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concentrate and lipid supplementation of grazing diets have improved animal performance
and reduced CH4 intensity. Nitrates supplementation has not shown a consistent effect on
CH4 production from grazing ruminants. Supplementation can be problematic in extensive
systems where infrequent animal management and low profitability restricts its imple-
mentation [11,25]. Other additives such as tannins, 3-nitrooxypropanol, or red algae have
shown promising results on CH4 reduction under confined conditions [101,102], but their
effects on grazing systems are as yet uncertain. Finally, long-term studies and integrative
evaluation through life cycle assessment analysis are needed to generate technologies that
promote greater biological efficiency and farm profitability while reducing the detrimental
effects on the environment.

Author Contributions: Conceptualization, J.V., N.D., E.U. and C.M.; data curation, J.V.; writing—review
and editing, J.V., N.D., E.U. and C.M. All authors have read and agreed to the published version of
the manuscript.

Funding: J.V. was funded with an Animal Science department Ph.D. scholarship from the University
of Florida and supported by the CGIAR Research Program on Climate Change, Agriculture and
Food Security (CCAFS), the Global Research Alliance on Agricultural Greenhouse Gases (GRA)
through their CLIFF-GRADS program and the Agencia Nacional de Investigación y Desarrollo
(ANID)/FONDECYT/REGULAR/FOLIO 1191476.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this paper are available on request from corre-
sponding author.

Acknowledgments: The authors gratefully acknowledge the critical review of the manuscript and
editorial comments provided by Tessa Schulmeister.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Dubeux, J.C.B.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands.

Crop Sci. 2007, 47, 915–928. [CrossRef]
2. Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Enteric methane in dairy cattle production: Quantifying the

opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [CrossRef]
3. Godde, C.M.; Garnett, T.; Thornton, P.K.; Ash, A.J.; Herrero, M. Grazing systems expansion and intensification: Drivers, dynamics,

and trade-offs. Glob. Food Secur. 2018, 16, 93–105. [CrossRef]
4. FAO (Food and Agriculture Organization of the United Nations). Livestock and the Environment. Meeting the Challenge; FAO: Rome,

Italy, 1999; Available online: http://www.fao.org/docrep/x5304e/x5304e00.htm (accessed on 15 November 2021).
5. Weindl, I.; Bodirsky, B.J.; Rolinski, S.; Biewald, A.; Lotze, H.; Müller, C.; Dietrich, J.P.; Humpenöder, F.; Stevanović, M.; Schaphoff,
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