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B cell leukemia 11b (Bcl11b) is a zinc finger protein transcription factor with a multiplicity

of functions. It works as both a genetic suppressor and activator, acting directly, attaching

to promoter regions, as well as indirectly, attaching to promoter-bound transcription

factors. Bcl11b is a fundamental transcription factor in fetal development, with important

roles for the differentiation and development of various neuronal subtypes in the central

nervous system (CNS). It has been used as a specific marker of layer V subcerebral

projection neurons as well as striatal interneurons. Bcl11b also has critical developmental

functions in the immune, integumentary and cardiac systems, to the extent that Bcl11b

knockout mice are incompatible with extra-uterine life. Bcl11b has been implicated in a

number of disease states including Huntington’s disease, Alzheimer’s disease, HIV and

T-Cell malignancy, amongst others. Bcl11b is a fascinating protein whose critical roles in

the CNS and other parts of the body are yet to be fully explicated. This review summarizes

the current literature on Bcl11b and its functions in development, health, and disease as

well as future directions for research.
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BCL11B: STRUCTURE AND FUNCTION

B cell leukemia 11b (BCL11b), also named Radiation induced tumor suppressor gene 1 (RIT1) and
Coup-TF interacting protein 2 (CTIP2) and is a Kruppel-like C2H2 zinc finger protein transcription
factor. The encoding gene, present in human chromosome 14, was initially found to be a tumor
suppressor gene closely related to Bcl11a, a proto-oncogene (Satterwhite et al., 2001). Bcl11b has
alpha and beta splice isoforms which comprise 823 (89.1 kDa) and 894 (95.5 kDa) amino acids
respectively in humans. The beta isoform includes Exon 3whereas this is spliced out in the alpha but
both contain Exon 4 which includes the six critical C2H2 zinc finger binding domains and thus are
functionally similar (Lennon et al., 2016). Of those, domains 3, and 4 bind to the DNA, while other
regions are important for protein interactions. Themurine Bcl11b gene is 88% similar to the human
gene and is on chromosome 12 rather than 14 (Huang et al., 2012). In mice there are alpha, beta and
gamma isoforms of Bcl11b, 75, 89.4, and 97.1 kDa, respectively, with the beta form being the most
highly expressed (Desplats et al., 2008). Bcl11b acts both directly, by attaching to promoter regions,
and indirectly, by binding to transcription factors bound to promoter regions themselves (Cismasiu
et al., 2005). In its role as a transcription factor Bcl11b acts as both a repressor and activator of a
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multiplicity of genes. For example Bcl11b interacts with the
orphan nuclear receptors known as chicken ovalbumin upstream
promoter transcription factors COUP-TF (Avram et al., 2000)
and nucleosome remodeling and histone deacetylation complex
(NuRD; Cismasiu et al., 2005) to act as a powerful genetic
repressor for a number of genes. As a converse example,
Bcl11b and p300 co-activate at upstream site 1 in the IL-2
promoter causing transactivation of IL-2 expression in activated
T lymphocytes (Cismasiu et al., 2009).

NEURONAL EXPRESSION OF BCL11B IN

DEVELOPMENT AND ADULTHOOD

Leid et al. (2004) characterized Bcl11b and Bcl11a expression
throughout murine development at E10.5, 12.5, 14.5, 18.5, P21,
and adult mouse brain. They found that at E10.5 Bcl11b was
expressed diffusely through the embryo. Through 12.5 and 14.5
the CNS expression localized to layers IV/V of the cortex, limbic
system, olfactory bulb, basal ganglia, and CA1/2 regions of the
hippocampus (Leid et al., 2004). From E18.5 to P21 Bcl11b
expression was maintained in the cortex, hippocampus and
basal ganglia and this pattern of expression remained through
adulthood. This selective distribution of Bcl11b through the
CNS underlies its role in specification and differentiation, and is
further discussed below.

Role in Corticospinal Motor Neurons
Bcl11b directs pathfinding and development of axons in
Corticospinal Motor Neurons (CSMNs), which are 1st order
motor neurons that run in the pyramidal tracts providing
descending control from the cortex to the spinal motor neurons
(Chen et al., 2004). Bcl11b is highly expressed in CSMNs of
cortical level V but is absent from cortico-cortical neurons,
which are characterized by Satb2 expression prenatally (Fame
et al., 2012; Harb et al., 2016). Chen et al. discovered that Fezf2
works upstream of Bcl11b and determines whether neocortical
neurons project to the cortex or subcortically (Chen et al., 2008).
Bcl11b-knockout mice die on day 1 after birth demonstrating
irregularities in uniform bundling, growth and pathfinding of
CSMN axons. Heterozygote Bcl11b+/− mice manifest decreased
ability to functionally prune and regulate axons, albeit to a lesser
extent. It was thought to be a specific marker of layer V and
VI neurons but has recently been found to be highly expressed
in GABAergic interneurons in layers I—VI (Arlotta et al., 2005;
Nikouei et al., 2016). Embryologically the difficulty for CSMNs is
to direct axonal projections over significant distances to specific
locations in the spinal graymatter. Arlotta et al. (2005) found that
on immunohistochemistry of wild type mice at E18, P3, P6, and
P14 Bcl11b was co-expressed with Netrin-G1, csmn1, Cadherin
13, and Cadherin 22, which are known to functionally direct
axonal projections and delineate CSMNs from callosal projection
neurons (Abbas et al., 2014). The Notch pathway controls the
transcription of these pathfinding proteins. Bcl11b was identified
as an interacting partner and regulator of the Notch signaling
pathway in T cell lines (Yatim et al., 2012) but as yet this has not
been confirmed in neurons.

Role in Cortical Gabaergic Interneurons
Bcl11b is present in the majority of cortical GABAergic
interneurons. Nikouei et al. (2016) found that almost all Bcl11b
positive staining cells in the somatosensory cortex layers I-
IV of adult mice were GABAergic interneurons. Interestingly
in layer V, where Bcl11b was thought to be specific for
subcerebral projection neurons it was found that almost 40%
of Bcl11b staining cells were interneurons. Indeed on single cell
mRNA sequencing the interneurons demonstrated significantly
higher expression of Bcl11b compared to subcerebral projection
neurons which complicates it’s previous use as a marker for
CSMNs. Amongst the subclasses of GABAergic interneurons
Bcl11b was expressed in 64% of parvalbumin expressing
interneurons, 73% of somatostatin expressing neurons and 42%
of 5HT3 ligand gated ion channel receptor-expressing neurons
indicating that it may have a role in subtype specification of
interneurons. It’s may also play a role in directing local axonal
projection but its function in these cells has not been fully
explored (Nikouei et al., 2016).

Role in Striatal Medium Spiny Neurons

(MSNs)
Bcl11b has an integral role in the development and maintenance
of striatal inhibitory GABAergic MSNs which comprise 90–95%
of the striatum (Gerfen, 1992; Graybiel, 2005). Arlotta et al
found in adult wild type mice within the striatum it consistently
co-localized with DARPP-32 and was consistently excluded
from somatostatin and ChAT expressing cells indicating its
specificity for MSNs and absence from striatal interneurons.
They also found striatal expression was highest anteriorly and
lowest posteriorly suggesting that it has a role in patterning
and structuring the striatum (Arlotta et al., 2008). Bcl11b is
expressed in the immature migratory cells in the mantle zone
of the striatum from E13.5 but is excluded from the dividing
progenitors of the SVZ/VZ in the lateral ganglionic eminence
where MSNs are generated. Bcl11b expression increases as the
MSNs migrate and mature in the striatum and is maintained
throughout adulthood. All these data corroborate the idea that
Bcl11b is critical to the terminal differentiation and maintenance
of MSNs rather than early neurogenesis.

Indeed in Bcl11b−/− knockout mice MSNs fail to
differentiate, form normal cellular patch-matrix collections
and repel heterotopic cellular aggregates from invading into
the striatum, resulting in abnormal dopaminergic innervation
and a dysfunctional striatum (Arlotta et al., 2008). Interestingly,
researchers have produced MSNs from adult fibroblasts by
the co-expression of miRNA 9/9∗, 124 and transcription
factors Bcl11b, Dlx1, Dlx2, and Myt1l. When implanted into
mouse striatum the human cells persisted in situ for greater
than 6 months and extended projections to normal targets,
opening exciting possibilities for its future utilization for
neuroregenerative stem cell therapies (Victor et al., 2014).

ChIP-Seq transcriptome experiments of cultured striatal cell
lines indicate that Bcl11b is a regulator of a myriad of genes
of the Brain Derived Neurotrophic Factor (BDNF) signaling
pathway (Tang et al., 2011). Tang et al. (2011) found that
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there were seven genes targeted by Bcl11b within the pathway
including: Rps6ka5, Irak4, Plcg2, Mapk9, Shc1, Mapk10, and
Rapgef1 as well as targeting BDNF. Interestingly there were also
six target genes in the Epidermal Growth Factor (EGF) pathway
including: Nrg3, Pak4, Plcg2, Mapk9, Shc1, and Mapk10. The
gross preponderance of changes in expression for both pathways
were decreases, indicating that Bcl11b is a negative regulator of
BDNF and EGF signaling. The BDNF signaling pathway is critical
to neuroplasticity and development of higher-order cortical
functions such as learning and memory. Thus, dysregulation
of neurotrophins, particularly BDNF, have been implicated in
a myriad of neurodegenerative diseases, including Alzheimer’s,
Huntington’s and Parkinson’s diseases (Zuccato and Cattaneo,
2009). Specific targeting of Bcl11b expression and function could
represent a novel therapeutic approach to modifying BDNF
signaling specifically in striatal cells.

Role in Hippocampus
Bcl11b is highly expressed in the hippocampus, serving an axial
functions in both development of and adult neurogenesis in the
dentate gyrus (Simon et al., 2012). During development Bcl11b
is present in the hippocampus of mice at E15 starting in the CA
and extending into the suprapyramidal blade of the dentate gyrus
at E18. Postnatally and extending into adulthood it is present
in the CA1/CA2 regions as well as post-mitotic granule cells of
the dentate gyrus. Forebrain specific Emx-Cre Bcl11bflox/flox mice
show 33% less cells, poorer cellular structure, smaller cells and
immature cellularity in the dentate gyrus demonstrating its roles
in early neurogenesis, differentiation and structural organization
(Simon et al., 2012).

The dentate gyrus of the hippocampus is one of only two
neurogenic stem cell niches that persist into adulthood—the
other being the lateral ventricles of the subventricular zone. In
adult mice injected with BrdU, a marker of cell proliferation, and
then stained with markers of mature granule cells (NeuN and
Calbindin) the adult-born neurons remain in undifferentiated,
early post mitotic stages, confirming a role of Bcl11b in
proliferation and neuronal maturation. Additionally, Simon et
al found that induced Bcl11b ablation in adult mice caused a
reduction in dentate gyrus size and cellularity, and increased
apoptosis after as little as 2 months. Taken together, these data
indicate Bcl11b is critical for adult neurogenesis specifically
the specification, maintenance, and neuronal integration of
new adult born hippocampal granule cells as well as being
necessary for the survival of mature granule cells (Simon et al.,
2016). Consequently Bcl11bflox/flox mice have impaired learning,
memory, and maze solving skills. Interestingly Simon et al found
that a similar phenotype was present in desmoplakin forebrain-
specific mutant mice and re-introduction of desmoplakin cDNA
to the Bcl11b forebrain mutants returned neurogenesis to
normal. They posit that desmoplakin, an intercellular adhesion
molecule, is a critical effector of Bcl11b in the hippocampus
(Simon et al., 2012).

Given that the dentate gyrus is one of the two regions of adult
neurogenesis in the brain and that the hippocampus is critical
to spatial learning and memory formation, loss of Bcl11b may
have critical roles in neurodegenerative disease. Bcl11b has been

observed as a target of the mir-17 cluster (Lewis et al., 2003; Zeller
et al., 2003) as well as miR-93 and let-7 in T cells (Kurosawa et al.,
2013). Given the accumulating data of the importance of Bcl11b
in critical brain regions such as hippocampus, the expression of
microRNAs targeting Bcl11b in the hippocampus is a fertile area
for further study.

Role in Vomeronasal Sensory Neurons
The Vomeronasal organ is present and functioning in mice in
humans it is present during fetal development but regresses
before birth and is present as a non-functioning remnant in a
portion of adults (Kjaer and Fischer Hansen, 1996; Meredith,
2001; Trotier, 2011). Within mice the Vomeronasal system
Bcl11b is found in post mitotic vomeronasal sensory neurons
(VSNs) of the vomeronasal epithelium (VNE) in addition to
projection neurons andGABAergic interneurons in the accessory
olfactory bulb. Enomoto et al demonstrated that in wild typemice
Bcl11b is first observed within the vomeronasal groove at E11.5.
The expression increased through E16.5 to P0 but after birth
gradually diminished and was limited to the marginal region of
the VNE, an area of precursor cells and immature neurons. On
immunohistochemistry they found that Bcl11b at P0 and P14 co-
localized with GAP43, SCG10 and NeuroD which are markers
for immature neurons and differentiating/post mitotic neurons.
It was excluded from Mash1 and OMP staining cells which
are markers for vomeronasal neuronal precursors and mature
neurons respectively indicating that Bcl11b has a role in the early
differentiation/immature neurons. Interestingly in Bcl11b−/−

mice cells are produced in sufficient numbers but subsequently
VSNs undergo apoptosis selectively. Similar to irregularities
in the mice Bcl11b deficient motor cortex, the vomeronasal
system manifests disoriented laminar structure, impaired axonal
projections of VSNs, down-regulation of vomeronasal receptor
genes, and thus undifferentiated VSNs (Enomoto et al., 2011).
Thus Bcl11b is critical in the differentiation, specification, and
structural organization in VSNs.

OTHER ROLES

Bcl11b is critical for the specification and differentiation of αβ

T cells. Bcl11b knockout precursor T cells demonstrate an arrest
of differentiation at an immature DN2 stage (CD4-, CD8-; Liu
et al., 2010; Kominami, 2012) but no changes in the development
of cells of B- or γδ T cell lineages. In these cell lines the lack
of differentiation is recognized by the p53 pathway and leads
to profound apoptosis of the Bcl11b−/− T cells (Okazuka et al.,
2005; Karanam et al., 2010; Zhang et al., 2010). Conversely naïve
T cells overexpressing Bcl11b manifest increased proliferation,
most notably in the Th group (Ikawa et al., 2010; VanValkenburgh
et al., 2011). Recently it has been found that Bcl11b induces
mammary stem cells into the G0 cell cycle phase, entering
quiescence (Cai et al., 2017). Similar tomaintenance ofmammary
epithelium Bcl11b has an important role in epidermal stem cell
maintenance and integrity as well as sphingolipid biosynthesis
(Ganguli-Indra et al., 2009; Wang et al., 2012a; Bollag, 2013;
Inoue et al., 2016). Bcl11b functionally directs mammalian
odontogenesis and is crucial for the morphogenesis of lingual
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papilla and differentiation of oral epithelium (Kyrylkova et al.,
2012; Nishiguchi et al., 2016).

INVOLVEMENT IN PATHOLOGY

Huntington’s Disease
Huntington’s disease (HD) is marked by the ubiquitous
pathological expression of the Huntingtin protein with toxic
neurodegenerative changes predominant in the striatum (Ross
and Tabrizi, 2011). Bc11b is significantly diminished in HD
cell lines, mouse models and human CSF and tissue samples.
Ahmed et al suggest that the toxic effects of Bcl11b deficiency
are mediated by decreases in inositol polyphosphate multikinase
(IPMK; Ahmed et al., 2015). IPMK, a kinase and a transcriptional
co-activator, is severely diminished in Bcl11b knockout cells lines
and is returned to normal levels when Bcl11b is replaced. As
with Bcl11b IPMK is reduced in HD cell lines and mouse models
and indeed it was found in R6/2 HD mouse model that virally
transfected intrastriatal IPMK delivery prevents the progression
of psychomotor dysfunction and reduces striatal pathology.
Similarly Desplats et al found that the deleterious impacts of
Huntingtin protein in the Q111 cell line are diminished when
Bcl11b is expressed at supranormal levels (Ahmed et al., 2015).
Reversing the loss of Bcl11b-IPMK expression is therefore a
promising novel therapeutic target in HD. Bcl11b attaches to the
proximal promoter region a multiplicity of striatally expressed
genes including Pde10a, Isl1 Klf9, and Dgke. Desplats et al posits
that the deficiencies of the normally striatally enriched genes
are in part caused by Bcl11b insufficiency and underlie the
neuropathology of HD (Desplats et al., 2008). Given it’s role in a
number of neurodegenerative diseases putative linkages to motor
neuron disease has also recently been discussed (Lennon et al.,
2016).

Alzheimer’s Disease
Like HD, Alzheimer’s is a neurodegenerative disease marked by
the pathological presence of B amyloid plaques and tau protein
found in neurofibrillary tangles (Braak and Braak, 1991). A recent
genome wide association study of 41 families with hereditary
late onset Alzheimer’s disease (LOAD) identified Bcl11b as
a novel gene defect involved. They suggest a pathological
pathway involving Bcl11b’s negative regulation of brain-derived
neurotrophic factor (BDNF) signaling, a crucial pro-survival
and neuroprotective cytokine. Aberrant BDNF signaling is
involved in several neurodegenerative diseases, including LOAD,
in which low levels have been associated with worsening
disease and higher levels have been shown to be protective
(Nagahara et al., 2009; Weinstein et al., 2014). Thus BDNF-
based therapies have been proposed for Alzheimer’s and other
neurodegenerative disease. Kunkle et al suggests that targeting
of Bcl11b-BDNF interactions may be a potential therapeutic
approach to increasing levels of BDNF (Kunkle et al., 2016).

NeuroHIV
Bcl11b has been strongly associated with latent neuroglial
reservoirs of HIV-1. Desplats et al demonstrated that Bcl11b
was raised in latent HIV patients CSF. There increases were

closely correlated with elevations of HDAC1, MeCP2, and
HP1-alpha. Each of these act as transcriptional HIV silencers,
through processes of histone modification. Post-mortem tissue
immunostaining analysis found Bcl11b present in both astrocytes
and microglia and CSF immunoblot found that it was
significantly elevated compared with both healthy and non-
latent HIV controls (Desplats et al., 2013). However, other
potential reasons for Bcl11b elevation such as inflammation and
neurodegeneration were not explored. Bcl11b has been found to
have two actions in the suppression of latent HIV-1 (Lennon
et al., 2016). In cultured human microglial cell lines Bcl11b,
acts with the NuRD co-repressor complex to downregulate HIV-
1 LTR transcription, thus diminishing HIV TAT expression, a
critical regulator of viral transcription (Marban et al., 2005).
Furthermore, Bcl11b downregulates HIV-1 reactivation when
TAT is not present and thus it also inhibits endogenous
transcription factors including P-TEFb (Cherrier et al., 2013).
Bcl11b and NuRD co-repressor complex causes heterochromatin
development and deacetylation of histones in the LTR HIV1
sequence and thus transcriptionally silences it (Cismasiu et al.,
2008). This promoter region heterochromatin formation induces
HIV-1 latency and may similarly induce latency in endogenous
retroviruses (Le Douce et al., 2014a; Lennon et al., 2016).

Other Pathologies
Bcl11a and 11b were first discovered by Satterwhite et al., 2001
when they found a translocation of t(2:14) (p13;q32.1) B cell
malignancies causing dysfunction of Bcl11a, an immunoglobulin
heavy chain gene, and its close relative Bcl11b (Satterwhite et al.,
2001) with deletions or missense mutations present in 9% of
mature T-ALL specimens (Kamimura et al., 2007; Gutierrez et al.,
2011). Bcl11b is a suppressor of apoptosis with knockout cells
showing apoptotic pathway activation, mitochondrial membrane
potential loss and elevation of BclxL, Caspase 8, and caspase 9.
(Karanam et al., 2010). Bcl11b is integral for T cell differentiation,
in particular T cell identity and VDJ recombination (Liu
et al., 2010; Li et al., 2013). Bcl11b complexes with Notch1
proteins to facilitate V(D)J recombination and express TCR-β,
a key step in αβ T cell differentiation (Rothenberg and
Scripture-Adams, 2008). Ultimately Bcl11b-deficient T cells are
more undifferentiated and thus have greater proliferative and
oncogenic potential (Nagel et al., 2007; Zhang et al., 2012).
Fascinatingly a hypofunctioning, missense mutation of Bcl11b
has recently been found to be the causative genetic defect in
a child with severe combined immunodeficiency, in which the
child also demonstrated developmental arrest of immature T
cells, absence of a corpus callosum and dermal, craniofacial
abnormalities, mental retardation and impaired acquisition of
language (Punwani et al., 2016). Interestingly Bcl11b has also very
recently been connected to neuropsychiatric disease by Whitton
et al. who identified Bcl11b as one of seven genes in which
polymorphisms were associated with schizophrenia. However,
there was no correlation of Bcl11b with any of the cognitive
functional outcomes tested (IQ, working memory, episodic
memory, and attention) and thus the connection between Bcl11b
and schizophrenia presently remains unclear (Whitton et al.,
2016).
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VanValkenburgh et al. demonstrated by knockdown of Bcl11b
at the T cell double-positive stage caused inflammatory bowel
disease in mice because of a dysregulation of proinflammatory
cytokine production in CD4+ T cells infiltrating the colon
(VanValkenburgh et al., 2011). Wang et al. found a similar
occurrence in the skin, in which a dermatitis-like skin
inflammatory response was elicited when there was selective
ablation of the Bcl11b in keratinocytes (Wang et al., 2012b).
Bcl11b deficiency has also been associated with dysregulation
of intracellular signaling in cardiomyocytes resulting in
hyperproliferation and hypertrophic cardiomyopathy (Le Douce
et al., 2014b).

CONCLUSION

Bcl11b is a complex multifunctional protein with important
roles neuronally and non-neuronally. When using Bcl11b as a
marker for neurons it is important to keep in mind it’s alternative
sources as well as that it is expressed in a multiplicity of different
subtypes of neurons even within the same cerebral cortex layers.

It has essential roles in development and its deficiency and
dysregulation results in death and various disease states.
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