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ABSTRACT

Glioblastoma (GBM) represents the most common and lethal primary malignant 
brain tumor. The standard treatment for glioblastoma patients involves surgical 
resection with concomitant radio and chemotherapy. Despite today’s clinical protocol, 
the prognosis for patients remains very poor with a median survival of 15 months. 
Tumor resistance and recurrence is strongly correlated with a subpopulation of 
highly radioresistant and invasive cells termed Glioblastoma Stem Cells (GSCs). The 
transcription factor STAT3 has been found to be constitutively activated in different 
tumors including GBM and enhanced tumor radioresistance. In this study, we assessed 
radiosensitization of GSC lines isolated from patients by inhibition of STAT3 activation 
using Stattic or WP1066. We showed that inhibitor treatment before cell irradiation 
decreased the surviving fraction of GSCs suggesting that STAT3 inhibition could 
potentiate radiation effects. Finally, we investigated STAT3 activation status on 61 
GBM clinical samples and found a preferential phosphorylation of STAT3 on Serine727 
(pS727). Moreover, we found that pS727 was associated with a significant lower 
overall patient survival and progression-free survival but not pY705. Taken together, 
our results suggest that pS727-STAT3 could be a potential prognostic marker and 
could constitute a therapeutic target to sensitize highly radioresistant GSCs.

www.impactjournals.com/oncotarget/                      Oncotarget, 2018, Vol. 9, (No. 3), pp: 3968-3979

INTRODUCTION

Glioblastoma (GBM) is the most common and 
aggressive primary malignant brain tumor associated with a 
poor prognosis. Surgical resection followed by concomitant 
radiochemotherapy constitutes the gold standard treatment 
for glioblastoma patients [1]. Despite this intensive clinical 
protocol, the prognosis for patients remains very poor with a 
median survival of 15 months according to tumor radio- and 

chemo-resistance [2]. Treatment failure may be explained 
by the presence of highly radioresistant Glioblastoma 
Stem Cells (GSCs) [3–5]. This small tumor subpopulation 
shares properties with “normal” neural stem cells like self-
renewal activity and multilineage differentiation but shows 
strong tumorogenicity upon orthotopic transplantation in 
immunodeficient mice. GSCs represent a supplemental 
degree in resistance to treatment as they are less sensitive 
to radiotherapy and contribute to tumor radioresistance 
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by preferential activation of DNA damage checkpoint 
responses and increased DNA repair capacity [6–9]. Several 
signaling pathways have been suggested as potential targets 
in cancer radioresistance including PI3K/Akt, NF-κB, 
TGF-β, Notch, or STAT3 [10–14]. The transcription factor 
STAT3 has been shown to play a critical role in GSCs  
[15–18]. In 2009, Sherry et al. have shown for the first time 
that STAT3 was required for proliferation and maintenance 
of multipotency in GSCs [19]. This member of STAT 
(Signal Transducer and Activator of Transcription) family 
can be activated by various cytokines and growth factors 
like IL-6 and EGF as well as by oncogenic proteins such 
as Src and Ras [20–23]. STAT3 is canonically activated 
by phosphorylation of tyrosine 705 (pY705) by different 
tyrosine kinases including EGFR, Src, JAK or ERK [24–26].  
STAT3 transcriptional activity can be modulated by 
phosphorylation of serine 727 (pS727) by various serine 
kinases like PKC, MAPKsor mTOR [27–30]. The activation 
of STAT3 in the cytoplasm leads to its dimerization by SH2 
domains, translocation into the nucleus, DNA binding and 
transcriptional activation of genes involved in numerous 
biological processes. Indeed, STAT3 is implicated in 
inflammatory response, cell proliferation, angiogenesis and 
cell survival by regulation of anti-apoptotic gene expression 
such as Bcl-2 [31–34]. Constitutive activation of STAT3 
is frequently found in cancers including GBM [35, 36]. 
Furthermore, recombinant Erythropoietin Receptor, non-
receptor tyrosine kinase BMX, Enhancer of Zeste Homolog 
2 or Toll-like receptor 9 were shown to promote GSC self-
renewal through activation of STAT3 [37–40]. STAT3 was 
also shown to be constitutively activated in GSCs and its 
inhibition impaired GSCs self-renewal and viability [18]. 
Finally, STAT3 was shown to be involved in radioresistance 
in breast cancer, colorectal cancer, and gliomas [41–43]. 
Recently, Ouedraogo et al. have shown that STAT3 
inhibition by Gö6976 leads to radiosensitization of human 
conventional GBM cell lines [14]. In this present work, we 
assessed radiosensitization of patient-derived GSC lines by 
specific inhibition of STAT3 phosphorylation using Stattic, 
a small non-peptidic inhibitor of SH2 domain and using 
WP1066 preventing downstream activation of STAT3 [44, 
45]. We also examined STAT3 phosphorylation status on 61 
GBM clinical samples to evaluate the prognostic impact of 
pS727 and pY705.

RESULTS

Inhibition of STAT3 phosphorylation affects 
GSC viability

As STAT3 is strongly activated in several cancer 
cell types [46–48], we compared STAT3 activation in our 
GSCs with normal human Neural Stem Cells (H9-hNSC). 
We observed that STAT3 is constitutively phosphorylated 
on both Y705 and S727 in GSCs compared to H9-hNSC 

(Supplementary Figure 1). As STAT3 is a key player in 
GSC proliferation and self-renewal, we examined the 
effect of its inhibition on GSC viability by MTS assay. 
We observed that Stattic inhibits cell proliferation of both 
GSC-2 and GSC-11 lines in a dose-dependent manner 
(Figure 1A). Half-maximal inhibitory concentration 
(IC50) was 2.2 µM and 1.2 µM whereas IC20 was 0.93 
µM and 0.52 µM for GSC-2 and GSC-11 respectively. 
WP1066 treatment was less toxic compared to Stattic as 
IC50 and IC20 were 3.6 µM and 2.6 µM for GSC-11. As 
previous reports showed that Stattic can alter cell cycle 
distribution, we verified whether Stattic could affect GSC 
cell cycle [49, 50]. As shown in Supplementary Figure 2,  
5 µM of Stattic does not significantly affect the percentage 
of cells in each phase of the cell cycle. Finally, we 
examined the effect of Stattic and WP1066 on pY705 and 
pS727 by western blotting and showed a strong decrease 
of both phosphorylations (Figure 1B).

Radiations increase S727 but not Y705 
phosphorylation of STAT3

Several studies have shown that radiations 
increase STAT3 phosphorylation in tumoral cells [51, 
52]. To address the effects of radiations on STAT3 
phosphorylation, we irradiated GSC-2 and GSC-11 cell 
lines at different doses. Lysates of the above cell lines 
were extracted and the phosphorylation levels of STAT3 
on S727 and Y705 were analyzed by Western Blotting 
(Figure 2A). Twenty-four hours after irradiation, we 
observed a significant increase of pS727 in both cell lines 
compared to pY705 (Figure 2B). These results support the 
idea that irradiation leads to STAT3 activation which may 
enhance GSC radioresistance.

Stattic pretreatment radiosensitizes GSCs

Since irradiation induced STAT3 activation, we 
examined whether STAT3 inhibition by Stattic may have 
a radiosensitizing effect on GSCs. For that purpose, GSC-
2 and GSC-11 cell lines were pretreated or not (control) 
with infra-cytotoxic concentration of Stattic or WP1066 
(<IC20). Pretreatment with STAT3 inhibitors at low doses 
has no effect on cells’ ability to form colonies as evaluated 
by a clonogenic assay 21 days after plating (Figure 3A). 
As shown in Figure 3B, radiations combined with 
Stattic pretreatment drastically decreased the surviving 
fraction of both GSC lines compared to radiation alone, 
thereby indicating a radiosensitization effect of STAT3 
inhibition (ER > 1). More interestingly, when radiations 
were associated with Stattic, the effect was found to be 
statistically significant (p < 0.05) at low radiation doses of 
2 and 4 Gy for GSC-11 and 4 Gy for GSC-2 (Figure 3C). 
Additionally, radiosensitization effect of STAT3 inhibition 
was confirmed on GSC-11 using WP1066 treatment. 
Thus, we concluded that infra-cytotoxic doses of Stattic 
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or WP1066 potentiate radiation-induced self-renewal 
inhibition of GSC lines. 

STAT3 preferential activation by pS727 is 
related to GBM patient outcome

To investigate the activation pattern of STAT3 
in clinical samples, we assessed pY705, pS727 and 
total STAT3 by immunohistochemistry (IHC) on Tissue 
Microarray comprising samples of 61 patients with 

GBM (Figure 4A). First, we found that all samples were 
positive for pS727 whereas 74% of these samples showed 
pY705 staining thereby suggesting an important role of 
pS727 activation in GBM (Figure 4B). Moreover, 77% of 
samples presented a low or negative staining for pY705 
and only 8% were associated with a high level staining. 
On the contrary, concerning pS727 immunolabeling, 
33% of the above cases exhibited low staining levels 
whereasile 33% were highly stained. Finally, we evaluated 
the prognostic role of pS727 and pY705 on our patient’s 

Figure 1: Effect of STAT3 inhibition in GSC lines. (A) GSC viability was assessed by MTS assay after 5 days of Stattic or WP1066 
treatment. The half maximal inhibitory concentrations IC50 and IC20 are indicated in the panel. Each point represents the mean of at least 
3 independent experiments. Error bars show ± the standard error of the mean. (B) Western Blot analysis of STAT3 phosphorylation status 
after treatment with indicated doses of each inhibitor. No major modification of total STAT3 expression was observed. Actin was used as 
internal control. This experiment was repeated 3 times.
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cohort. The analysis of Kaplan-Meier survival curves 
showed that a high level of pS727 was associated with 
a lower overall survival (p = 0.0044) and progression-
free survival (p = 0.0452) whereas no correlations were 
found for pY705 (p = 0.4344 and p = 0.5039 respectively) 
(Figure 5A and 5B). Taken together, these data suggest 
that pS727-STAT3 has a prognostic value and could be 
involved in GBM aggressiveness and resistance.

DISCUSSION

Concomitant chemo and radiotherapy after surgery 
represent the “gold standard” for initial treatment of GBM. 
Despite this aggressive therapy, relapse ineluctably occurs, 
principally due to tumor resistance. This therapeutic failure 
may be explained by the presence of highly radioresistant 
GSCs which constitute an additional degree of resistance 
and could be one of the main causes of tumor relapse. 
Many avenues have been suggested to target pathways 
involved in gliomagenesis and therapeutic resistance in 
order to increase treatment efficiency and patient survival. 
Transcriptional factor STAT3 was proposed as a potential 

target for tumor radiosensitization. Indeed, STAT3 is a 
major actor of cell survival after therapy by regulating the 
expression of anti-apoptotic genes such as Bcl-xL or Mcl-
1 in glioblastoma [53]. Moreover, STAT3 was shown to 
be necessary for efficient repair of damaged DNA, partly 
by modulating the ATM-Chk2 and ATR-Chk1 pathways 
[54]. Recently, Xu et al. have shown that autophagy 
promotes the repair of radiation-induced DNA damage in 
bone marrow hematopoietic cells through the activation of 
STAT3, leading to upregulation of expression of BRCA1 
[55]. Furthermore, several studies have demonstrated 
that the inhibition of STAT3 led to radiosensitization of 
different cancer cell lines including breast, colorectal, 
uterine, head and neck and brain cancers [14, 41, 42, 
56, 57]. In 2016, Ouédraogo et al. proposed that pS727-
STAT3 constitute a relevant target for radiosensitization 
in human GBM cell lines. However, radiosensibility after 
STAT3 inhibition was only observed for conventional cell 
lines which present pS727 without pY705 [14].

In this work, we investigated the radiosensitizing 
effect of STAT3 inhibition by Stattic in two patient 
derived GSC lines and assessed the prognostic impact 

Figure 2: Radiations enhance STAT3 activation mainly by S727 phosphorylation. (A) Western blot analysis of STAT3 
phosphorylation status 24 h after treatment at increasing doses of radiations in GSC-2 and GSC-11. (B) Quantification of experiment 
presented in (A). Histogram represents the mean ± standard error of the mean of 6 independent experiments (*p < 0.05; **p < 0.01; Mann-
Whitney test).
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Figure 3: STAT3 inhibition radiosensitizes GSCs. (A) Plating efficiency of GSC lines in control conditions compared with 
Stattic or WP1066 pretreatment in the absence of irradiation (N.S. not significant, Mann-Whitney test). (B) Clonogenic survival curves of 
GSCs treated with irradiation alone or in combination with STAT3 inhibitors were assessed using the linear quadratic model. The mean 
inactivation dose equal to the area under the survival curves was calculated and the cell survival enhancement ratio (ER) was determined 
as the ratio of the mean inactivation dose under control conditions divided by the mean inactivation dose after inhibitor treatment.A ratio 
superior to 1 indicates radiosensitization of GSCs. (C) Comparison of cell surviving fractions after inhibitor treatment for each dose of 
radiation. Histograms represent the mean ± standard error of the mean of 4 independent experiments (*p < 0.05, Multiple comparison t-test).
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Figure 4: STAT3 is preferentially activated by pS727 in GBM clinical samples. (A) Examples of immunohistochemical 
staining to detect the phosphorylation of Y705 and S727 or the expression of total STAT3 in 2 GBM samples. Scale bar = 20 µm. (B) 
Number and percentage of positive samples and staining score for pY705 and pS727 (n = 61 patients).

Figure 5: S727 phosphorylation but not Y705 affects the outcome of GBM patients. Kaplan-Meier curves of all glioblastoma 
patients plotting overall survival (A) or progression-free survival (B) of patients with low, medium or high score for pY705 and pS727 
staining. For this analysis, patients presenting negative or low staining score were pooled. Mantel-Cox log rank test was performed to 
determine the p-value indicated on the graphs.
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of STAT3 activation in 61 GBM clinical samples. First, 
we showed that STAT3 is constitutively activated in our 
GSC lines confirming our previous report [18]. Moreover, 
this activation is increased by radiation treatment mainly 
on pS727. Stattic inhibitor induces a strong decrease of 
both pY705 and pS727 phosphorylations in GSCs. For 
determination of conjugated effect of STAT3 inhibition 
with radiations, we used infra-cytotoxic dose (<IC20) 
of Stattic to exclude inhibitory effect alone. For both 
GSCs, Stattic potentiated radiation effect by decreasing 
GSC self-renewal. This effect was more important for 
low radiation doses at 2 and 4 Gy corresponding to daily 
fractions of radiotherapy received by GBM patients. 
We also confirmed the strategy of STAT3 inhibition 
for GSC radiosensitization using a second inhibitor, 
WP1066. Our results showed that STAT3 inhibition led 
to radiosensitization even in the presence of both STAT3 
phosphorylated forms in opposition to previous results 
reported by Ouédraogo et al. However, these results 
corroborate the fact that S727 phosphorylation constitutes 
an interesting target to sensitize GSCs to irradiation. 

Over the last decade several STAT3 inhibitors have 
been studied but Stattic has been the first nonpeptidic small 
molecule to demonstrate selective inhibition function over 
the STAT3 SH2 domain regardless of the STAT3 activation 
state in vitro [44].  Other STAT3 inhibitors are currently 
used for targeting the STAT3 pathway in cancer, including 
GBM. Cucurbitacin-I and WP1066 administration or 
shRNA knockdown resulted in on-target JAK2/STAT3 
inhibition and dramatically reduced GBM-derived Brain 
tumor stem cells [17]. Moreover, STX-0119 inhibitor 
of STAT3 dimerization has shown antitumor effects on 
GSC lines without significant decrease of pY705 [58]. 
WP1066, one of the most promising STAT3 inhibitor, 
will be investigated in phase I clinical trial for patients 
with recurrent malignant glioma and brain metastasis 
from melanoma (scheduled for 2017, ClinicalTrials.gov). 
As WP1066 is orally bioavailable and crosses the blood-
brain barrier, it could be a promising inhibitor of STAT3 
in clinical treatment of GBM [59]. OPB-31121 is another 
promising STAT3 inhibitor which presents notably higher 
affinity for STAT3, stronger efficacy for pY705 and pS727 
inhibition and is associated with a lower toxicity than other 
STAT3 inhibitors. This inhibitor induces a strong decrease 
of cell proliferation and clonogenicity in prostate cancer 
cell lines [60]. In addition, OPB-31121 has been tested in 
a phase I clinical trial, showing antitumoral activity with 
relatively good tolerance and demonstrating feasibility 
of STAT3 inhibition in patients with solid tumors [61]. 
Altogether, these data demonstrated the potential role 
of STAT3 inhibitors in cancer treatment, however these 
molecules cannot distinguish which activation of STAT3 
could be at the origin of tumor resistance as there are no 
pS727 specific inhibitors.

In our study, we observed that GSC lines showed 
different sensibility in term of response to Stattic treatment 

with almost a 2 fold change in IC50 and IC20 values. This 
could be explained by tumor heterogeneity with distinct 
genetic profiles. Indeed, GBMs were classified into four 
different groups (classical, mesenchymal, neural and 
proneural) according to their molecular and transcriptome 
profiles referred to as Verhaak’s classification [62]. 
These subtypes present different microenvironments 
and are regulated by different signaling pathways. The 
mesenchymal subtype was shown to be particularly 
malignant and associated with a poor prognosis [63]. In 
brain tumors, STAT3 was shown to play a critical role 
in mesenchymal transition associated with angiogenesis, 
extensive necrosis and enhanced inflammatory response 
[15, 64–66]. The experimental differences between our 
GSC lines could be explained by inter and intra-tumor 
heterogeneity.

Immunohistochemical analysis of pS727 and pY705 
in our 61 GBM samples showed that pS727 was present 
in all patients with higher staining scores than pY705. 
Moreover, we found that pS727 negatively impacts patient 
outcome in a way that is concordant with previous reports 
showing the association of pS727 with lower patient 
survival and faster relapse [14, 67]. However, we did not 
find any association for pY705 in contrast to previous 
studies which have also shown a prognostic role for pY705 
[68]. This could be explained by the limits of sensitivity 
and specificity of the diagnosis and of the detection 
methods as well as by the sampling and monitoring of 
patients. In our cohort, all patients were deceased at the 
time of the study removing bias due to censored subjects 
in Kaplan-Meier survival curve analysis.

In conclusion, our results show pS727 as prognostic 
factor for patient survival and confirm the strategy of GSC 
radiosensitization by STAT3 inhibition. The high level of 
pS727 could confer a radioresistance of GBM tumor and 
explain faster relapse after current radio-chemotherapy 
treatment, supporting the idea of pS727-STAT3 inhibition 
as innovative targeted therapy. However, genetic 
background of tumor could modulate the therapeutic 
response, suggesting that the strategy to enhance tumor 
radiosensitivity by STAT3 inhibition could be applied 
to STAT3-dependant GBMs, especially these of the 
mesenchymal subtype.

MATERIALS AND METHODS

Cell culture

Glioblastoma stem cell cultures were derived from 
adult patients with high-grade gliomas operated in the 
University Hospital of Poitiers after informed consent of 
all patients as previously described [9, 18, 69, 70]. Briefly, 
both GSC lines were assessed for stemness, self-renewal 
and differentiation in vitro, then tumorigenicity was 
evaluated by xenografts in immunodeficient mice. Cells 
were cultured in Neurobasal® Medium (NBE) (Gibco®) 
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supplemented with B27 1%; N2 0.5%; bFGF 0.05% and 
EGF 0.005% (Gibco®) at 37°C in 5% CO2 humidified 
incubator. Culture medium was replaced twice a week 
and when spheres became large and numerous, they 
were enzymatically dissociated with accutase (Merck 
Millipore).The molecular characteristics of the GSC-2 and 
GSC-11 including MGMT promoter methylation, EGFR 
copy number, IDH1, IDH2, EGFR-variant III, p53, PTEN 
status as well as LOH at loci 1p36, 19q13, 9p21 and 10q23 
are provided in supplemental table S1. Human Neural 
Stem Cells (H9-NSCs) (Gibco®) were cultured following 
the manufacturer’s instructions.

Cell viability assay

The MTS cell test (CellTiter 96® Aqueous Non-
Radioactive Cell Proliferation Assay (Promega)) was used 
to determine cell viability. Cells were seeded in a 96-well 
plates at 50 000 cells per plate and treated one day after with 
appropriate dose of Stattic (Merck Millipore) or WP1066 
(Santa Cruz Biotechnology). Five days later, quantification 
of viable cells was performed at 492 nm with a micro plate 
reader (Dynex Technologies, Chantilly, France).

Cell irradiation

Cell irradiation was performed at the Department 
of Radiotherapy of the University Hospital of Poitiers. 
Cells were submitted to gamma irradiation with a linear 
accelerator Elekta Synergy Beam Modulator (4.56 Gy/min).

Western blot

Cells were lysed 7 h after Stattic treatment, 6 h after 
WP1066 treatment or 24 h after irradiation with a cold 
RIPA buffer and protein concentration was determined 
using a Bradford assay (Bio-rad). An equal quantity 
of protein samples was separated by SDS-PAGE and 
transferred onto a nitrocellulose membrane (Bio-rad). 
Membrane was blocked with Phosphate-buffered saline 
(PBS 1X) containing 0.1% Tween 20 (Sigma) and 5% non-
fat dry milk. Primary antibodies were incubated overnight 
at 4°C (Stat3 1:1250 (#9136); phosphor-Stat3 Tyr705 
1:500 (#9131); phosphor-Stat3 Ser727 1:500 (#9136) Cell 
Signaling Technology; Actin 1:5000 (#ab3280) Abcam). 
Secondary antibodies were incubated for 1h 30 at room 
temperature (Anti-mouse HRP-linked 1:2000 (#7076); 
Anti-rabbit HRP-linked 1:2000 (#7074) Cell Signaling 
Technology). Immunoblotting signals were detected 
using an enhanced chemiluminescence method (ClarityTM 
Western ECL Substrate, Bio-rad) with Luminescent 
Image Analyzer LAS-3000 (FUJIFILM). Densitometry 
analyses were performed using ImageJ software (imagej.
nih.gov/ij/). Relative amounts of pY705 and pS727 were 
normalized to total STAT3 and Actin.

Clonogenic assay

Neurospheres were dissociated and treated with 
appropriate doses of Stattic (<IC20; 0.5 µM for GSC-11 
and 0.25 µM for GSC-2) or WP1066 (<IC20; 1.5 µM) 
for 7 h and 6 h respectively prior to irradiation. Cells were 
plated in triplicate at a density of 4 × 104 cells per 35 mm 
dish in methylcellulose medium (Neural Cell Cloning 
Medium-S1, Stem Cells Technology) supplemented with 
B27 1%; N2 0.5%; bFGF 0.05%; EGF 0.005% and subjected 
to various doses of irradiation (2, 4, 6, 8 and 10 Gy).  
After 21 days of incubation, formed colonies were counted 
under inverted microscope (Nikon). Survival curves were 
obtained using linear-quadratic model: Surviving Fraction 
= e–α(D + βD2). The mean inactivation dose equal to the area 
under the survival curves was calculated and the cell survival 
enhancement ratio (ER) was determined as the ratio of the 
mean inactivation dose under control conditions divided by 
the mean inactivation dose after inhibitor treatment. A ratio 
superior to 1 indicates radiosensitization of GSCs.

Tissue Microarray (TMA) construction, 
immunohistochemistry and scoring

TMAs were constructed using formalin-fixed 
paraffin embedded tissue samples that represent a total 
of 61 GBM from surgical resection or biopsy patients 
operated at the University Hospital of Poitiers. Patient 
characteristics are summarized in supplemental table 
S2. All of these patients were treated with radiotherapy 
and temozolomide. Original slides were reviewed to 
confirm GBM histology according to the 2007 World 
Health Organization classification system. For each case, 
a minimum of 3 cores were transferred from the selected 
areas to the recipient block, using a TMA workstation 
(Alphelys, Plaisir, France). The recipient block was 
cut into 3 μm thick section, and immunochemistry was 
performed with an automated system (BenchMark XT, 
Ventana, Roche). Briefly, slides were deparaffinized 
and heated in sodium citrate pH6 solution for antigenic 
retrieval. Primary antibodies were incubated overnight 
at 4°C (phospho-Stat3 Tyr705 1:100 (#9131); phospho-
Stat3 Ser727 1:200 (#9136); Stat3 1:1250 (#9136) Cell 
Signaling Technology) and revealed using the streptavidin-
biotin-peroxidase method with diaminobenzidine as 
chromogen (UltraView universal DAB detection kit, 
Roche). Scoring of antibody staining was evaluated 
independently by two pathologists in a blind manner. For 
both pY705 and pS727 staining, the percentage of stained 
tumor cells was multiplied by staining intensity (weak = 1,  
moderate = 2 or strong = 3) to get a score between 0 and 
300. Patient samples were categorized according to the 
statistical distribution of staining scores into 3 groups: 
Low, Medium or High. Survival rates were estimated by 
the Kaplan–Meier method.
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Cell cycle analysis

GSCs were treated with 5 μM of Stattic during 7 
hours. Then, cells were fixed with 70% ethanol at –20°C, 
washed once with cold PBS 1X and resuspended in DNA 
staining solution (2.5 µg/ml Propidium Iodide, 0.5 mg/
ml RNase A) (MerckMillipore). Cell cycle redistribution 
was measured by flow cytometry on a FACS Canto II (BD 
Biosciences). Data analysis was performed using FlowJo® 
software (LLC). A total of 10 000 events were analyzed in 
4 independent experiments.

Statistical analysis

Descriptive statistics of the results were calculated 
with GraphPad Prism 6 (La Jolla, CA, USA). All 
experiments were performed at least three times. The 
results are presented as mean ± standard error of the 
mean (SEM) and statistical significance was evaluated 
by Mann-Whitney test or multiple comparison t-test 
(*p < 0.05). Log-rank (Mantel-Cox) test was applied to 
Kaplan-Meier survival curves and exact p-values were 
indicated.
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