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ABSTRACT

Motivation: Cellular information processing can be described
mathematically using differential equations. Often, external
stimulation of cells by compounds such as drugs or hormones
leading to activation has to be considered. Mathematically, the
stimulus is represented by a time-dependent input function.

Parameters such as rate constants of the molecular interactions
are often unknown and need to be estimated from experimental data,
e.g. by maximum likelihood estimation. For this purpose, the input
function has to be defined for all times of the integration interval.
This is usually achieved by approximating the input by interpolation
or smoothing of the measured data. This procedure is suboptimal
since the input uncertainties are not considered in the estimation
process which often leads to overoptimistic confidence intervals of
the inferred parameters and the model dynamics.
Results: This article presents a new approach which includes
the input estimation into the estimation process of the dynamical
model parameters by minimizing an objective function containing
all parameters simultaneously. We applied this comprehensive
approach to an illustrative model with simulated data and compared it
to alternative methods. Statistical analyses revealed that our method
improves the prediction of the model dynamics and the confidence
intervals leading to a proper coverage of the confidence intervals of
the dynamic parameters. The method was applied to the JAK-STAT
signaling pathway.
Availability: MATLAB code is available on the authors’ website
http://www.fdmold.uni-freiburg.de/∼schelker/.
Contact: max.schelker@fdm.uni-freiburg.de
Supplementary Information: Additional information is available at
Bioinformatics Online.

1 INTRODUCTION
Mathematical modeling of biological systems has become a widely
used approach to better understand the system behavior as a whole
rather than observing isolated parts (Kitano, 2002). The rapid
development in quantitative molecular biology (Cox and Mann,
2011) enables to calibrate mathematical models to experimental
data and therefore generating model predictions. For parametric
models, such as ordinary differential equation (ODE) models,
calibration can be performed e.g. by maximum likelihood estimation
(MLE). Uncertainties of the measurements generated by biological
variability or technical limitations have to be considered in the
calibration process as they propagate to the parameter estimates.
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An accurate method for calculating confidence intervals is given by
the profile likelihood approach (Raue et al., 2009).

One unresolved issue in data-based modeling is the insufficient
consideration of input measurement uncertainties in the parameter
estimation process. In this article, we solve this problem with a
new approach. The method presented in the following includes
the input estimation into the estimation process of the dynamical
model parameters by minimizing an objective function containing
all parameters simultaneously. An illustrative model with known
parameter values and noise distributions reveals that our method is
able to (i) increase the precision of the parameter estimates and (ii)
correct the coverage of the likelihood-based confidence intervals.

Furthermore, we applied the method to a model of the JAK-
STAT signaling pathway introduced by Swameye et al. (2003)
where quantitative biological data are available, leading to different
estimated dynamics of the model trajectories compared to the
standard method.

2 METHODS

2.1 Models of biochemical reaction networks
A mathematical model M of a biochemical reaction network is given by a
set of coupled ODEs

�̇x(t)=�f (�x(t),�u(t),�p) (1)

�y(t)=�g(�x(t),�u(t),�s)+�ε(t) with εi(t)=N (0,σ 2
i ), (2)

where xi(t) are the internal states of the system, ui(t) are the time dependent
external stimuli, also called input functions and yi(t) are the noisy observables
of the system with a noise level σi .

The set of parameters that defines M uniquely contains dynamic
parameters �p, i.e. for instance rate constants, scaling and offset parameters
�s as well as the initial concentrations �x(t0)

θ ={�p,�x(t0),�s}∈R
+. (3)

All analyses have been performed on a logarithmic scale.

2.2 Parameter estimation
We performed MLE which is equivalent to the weighted least squares method
for Gaussian noise. Thus, an objective function

χ2(θ )=
N∑

i=1

(
y†

i −y(x(ti,θ ),u(ti),θ )

σi

)2

(4)

is minimized and
θ̂ =argmin

θ
χ2(θ ). (5)

is the maximum likelihood estimator where y†
i denotes the measured data

and y(x(ti,θ ),u(ti),θ ) represents the model output. In order not to rely on
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the mere point estimate, likelihood profiles will be computed as discussed in
more detail in the Supplementary Information.

2.3 Existing methods
For integration of the ODEs, a continuous representation of a discretely
measured input is required. In the past, time-dependent input functions u(t)
have been represented by constant input functions Bachmann et al. (2011),
linear interpolations of the dataset (Quach et al., 2007; Swameye et al.,
2003), cubic interpolation splines or by cubic smoothing splines (Maiwald
and Timmer, 2008; Raue et al., 2009).

If the functional representation of the input data is estimated separately
from the dynamical model parameters, the deviations from the true
underlying dynamics of the input are not considered in the estimation of
the model parameters. This can result on the one hand in biased estimates
of the dynamic parameters and on the other hand, even more likely, in
underestimated confidence intervals as the input uncertainties have not been
taken into account. This problem shall be addressed in the following by
defining a suitable input parametrization that enables to estimate input and
dynamical parameters comprehensively.

2.4 Splines
A spline is a piecewise polynomial that interpolates a given set of data points
y†

1,...,y
†
N at time points t1,...,tN in a smooth and continuous manner. The

y-values to be interpolated are called control points and the corresponding t-
values knots. Boundary conditions determine either the slope or the curvature
of the spline at the first and the last data point. Here, cubic splines with natural
boundary conditions, i.e. the curvature at both end points is set to zero, are
utilized.

A cubic interpolation spline can be described either by a set of knots and
the corresponding four coefficients for each polynomial piece or by a linear
combination of a set of basis functions in the basis spline (B-spline) notation.
For a knot sequence t1,...,tN and its corresponding control points ν1,...,νN ,
the B-spline is given by (de Boor, 1978)

S(t)=
N−p−1∑

i=1

νibi,p(t) with t ∈[t1+p,tN−p], (6)

where N is the number of data points and p is the degree of the basis functions
bi,p(t), thus, in case of cubic polynomials, p=3. The closed-form expression
of the basis functions is given in the Supplementary Information.

Another type of spline, that is frequently used, is the cubic smoothing
spline. A smoothing spline

Ŝ(t)=argmin
S(t)

⎡
⎢⎢⎢⎣

N∑
i=1

(
y†

i −S(ti)

σi

)2

+λ

∫ tN

t1

∣∣∣∣ d2S(t)

dt2

∣∣∣∣
2

dt︸ ︷︷ ︸
curvature

⎤
⎥⎥⎥⎦ (7)

can, depending on its respective measurement uncertainties σi , deviate
from the data points y†

i in order to form a smoother curve. Therefore,
an objective function is to be minimized, containing both the deviation
from the data and the curvature, i.e. the second term in (7). The so-
called smoothing or penalization parameter λ∈[0,∞) controls the trade-off
between interpolating the noisy data and obtaining a smooth function. As
a consequence, λ=0 results in an interpolation spline, whereas λ→∞
corresponds to a linear fit of the input data.

Interpolation splines often lead to strongly oscillating input function
estimates. Therefore, smoothing splines usually lead to more realistic
outcomes if the smoothing parameter λ can be chosen reasonably.

A smoothing spline can be unambiguously represented either by the data
points y†

1,...,y
†
N , the knot sequence t1,...,tN and the smoothing parameter λ

or by the knots t1,...,tN and the corresponding control points ν1,...,νN , that
are the obtained by evaluation of Equation 7, i.e. νi = Ŝ(ti). Therefore, for the
approach presented in the following, the control points ν1,...,νN are used as

input parametrization even though the spline is smoothed by penalizing the
curvature.

2.5 Assessment criteria
The performance of the approach is assessed by the accuracy

Ai :=|〈ρ(θ̃i)〉| with θ̃i = log10(θ̂i/θtrue,i). (8)

and the precision

Pi :=
√

Var(ρ(θ̃i)), (9)

i.e. the standard deviation of the distribution of the parameter estimates, if
many independent estimations are performed over simulated data for known
true parameter values.

Moreover, the deviation from the true trajectory is quantified by the score

s(yi)=
N∑

j=1

(
yi(tj,θtrue)−yi(tj,θ̂ )

)2
, (10)

where tj ∈[t0,tend] is densely sampled at 500 equidistant time points.
The coverage ratio, i.e. the probability that the true parameters are inside

the confidence intervals, is calculated using the likelihood-based confidence
intervals for many noise realization as described in more detail in the
Supplementary Information. This value can be compared to the desired
coverage, i.e. the corresponding α level.

2.6 Approach
The new approach aims to include the estimation of the input function into
the maximum likelihood estimation of the model parameters. Therefore, a
parametrization for the input measurements is needed.

A cubic spline is uniquely defined by the set of data points it is fitted to.
This is best visible in the B-spline notation introduced in Equation 6. Thus,
the input can be parametrized using the control points ν1,...,νN of the spline
as parameters.

The optimal set of parameters is then obtained by minimizing an objective
function

χ2(θ∗)=
m∑

i=1

Ni∑
j=1

⎛
⎝ y†

ij −yi(x(tj,θ∗),u(tj,θ∗),θ∗)

σij

⎞
⎠2

+λ

q∑
k=1

∫ tNk

t1

(
d2uk (t,θ∗)

dt2

)2

dt

(11)

that contains both input and downstream parameters as well as a term that
penalizes the curvature of the input functions. The smoothing parameter λ is
selected based on χ2-statistic as described in the Supplementary Information.
Note that the first term in Equation 11 accounts for the deviation of the model
yi(tj) from the data y†

ij for all observables including the input.
The extended parameter set to be optimized is

θ∗ ={�p,�x(t0),�ν,�s}. (12)

In the following, θ∗ →θ will be used to keep the notation as simple as
possible.

Input measurements are usually concentrations or relative measurements
like receptor activation and therefore strictly positive. A spline can become
negative between the positive measurement points leading to reversed
reaction fluxes and incorrect model behavior. To avoid negativity of the
spline function, the input is transformed to logarithmic scale.

3 APPLICATIONS
In the following, the novel approach, which will also be called
comprehensive approach, is compared to the standard approach,
where the input is estimated from the measurement data before
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Fig. 1. Schematic representation of the illustrative model. The forward
reaction from X1 to X2 is catalyzed by the input u. This reaction is reversible
with a rate constant k−1. Furthermore, X2 reacts to X3 with rate constants
k2 and k−2

the model parameters are calibrated. In Section 3.1 the smoothing
parameter λ was set to zero for both the standard and the
comprehensive approach. By contrast, for both approaches in
Section 3.2, the smoothing parameter was chosen optimally to
the measured data based on χ2-statistics as described in the
Supplementary Information.

3.1 An illustrative model
The first application of the new approach is a toy model with three
dynamic states X1,X2 and X3 and one input variable u. As depicted
in Figure 1, the model consists of two reversible reactions where the
first forward reaction (X1 −→X2) is catalyzed by a time-dependent
input function u(t). The second forward reaction (X2 −→X3) as well
as both reverse reactions (X3 −→X2 and X2 −→X1) are considered
to be first-order mass action kinetics and do not depend on the input
directly.

The ODE system describing the dynamics of the model is given
in the Supplementary Information. The observables are chosen
to be yi = log10(xi) for i=1,2,3 and y4 = log10(u) as for protein
measurement techniques log-normally distributed measurement
uncertainties are assumed (Kreutz et al., 2007).

For the simulation, N =12 time points between t0 =0 and tend =
50 were chosen with an equidistant sampling. The kinetic rate
constants were set to k1 =0.01, k−1 =1, k2 =0.5 and k−2 =0.1.
The initial concentrations were chosen close to the steady states, i.e.
x1(0)=30, x2(0)=20 and x3(0)=50, as this maximizes the impact
of the input on the variables. For the underlying true input dynamics,
a Gaussian function

u(t)=10−2 + 103

4
√

2π
e− 1

2

(
t−25

4

)2

(13)

was chosen which has its maximum u(tmax)≈100 at tmax =25.
In order to evaluate the assessment criteria, M =2000 noise

realizations were simulated with a noise level σX =0.1 for the
compounds Xi and σu =0.3 for the input u(t). A comparison
of several different noise levels is given in the Supplementary
Information. For each noise realization, the parameters were
estimated as described in Section algorithm in the Supplementary
Information.

In Panel A of Figure 2, the model trajectories are plotted for
one noise realization. The identifiability of the model parameters
was analyzed by the profile likelihood approach as described in
the Supplementary Information. The likelihood-based confidence
intervals were calculated for multiple confidence levels

α∈{0.05,0.1,...,0.95,0.99} (14)

to investigate the coverage.

3.1.1 Evaluation of the assessment criteria The performance
of the novel approach was challenged by the three assessment
criteria introduced in Section 2.5. In Panel B of Figure 2, the
parameter estimate distributions are shown. In terms of accuracy,
both approaches perform similarly well as the dashed lines indicating
the mean values are not distinguishable. The precision, by contrast,
is increased by a factor of 1.04 up to 1.48 when the novel method
is applied. This can also be seen in the plot where all parameter
distributions in blue are narrower than the green ones. The values
of A and P as well as the ratio of these values for both approaches
are given in the Supplementary Information.

Panel C of Figure 2 shows that for all four observables, the
deviation from the estimated to the true trajectory is significantly
smaller in case of the comprehensive approach.

In Panel D of Figure 2, the coverage ratio is plotted versus
the confidence level for both approaches. In case of the standard
approach, the measurement uncertainties of the input are not taken
into account. As a consequence, the confidence intervals, at least for
some of the parameters, are too small. This results in a coverage
ratio that is smaller than the corresponding confidence interval
as indicated by the deviation of the green solid line from the
black dashed line in Panel D of Figure 2. Underestimating the
size of a confidence interval can lead to false-positive rejections of
specific values for the respective parameter and therefore represents
a serious issue. For the comprehensive approach by contrast, the
coverage ratio almost equals the confidence level for all seven
model parameters. According to this, the uncertainty of the input
measurements is appropriately translated into parameter confidence
intervals.

Apparently, the first two rate constants k1 and k−1 are affected the
most by the choice of the estimation approach. This results from the
model structure as the fluxes of the first reaction X1 �X2 depend
directly on the input. Consistently, the coverage of the rate constants
k2 and k−2 of the second reaction X2 �X3 are barely influenced
by the input and its uncertainties.

3.2 The JAK-STAT signaling pathway
For the second application of the novel approach, a data-based
model of JAK2-STAT5 signaling pathway (Swameye et al., 2003)
was investigated. In this model the downstream system depends
on a measured input. The model structure is depicted in Figure 3.
The ODEs describing the dynamics of the model are given in the
Supplementary Information.

Swameye et al. (2003) performed quantitative immunoblotting
in order to investigate the Epo-induced activation of the JAK2-
STAT5 signaling pathway. Due to experimental limitations, only
sums of several species were measurable leading to the following
observables:

y1 =s1 ·(x2 +2x3), y2 =s2 ·(x1 +x2 +2x3),

y3 =s3 ·u,

where y1 is the total amount of phosphorylated STAT5 in
the cytoplasm, y2 the total amount i.e. unphosphorylated and
phosphorylated STAT5 in the cytoplasm and y3 is the measurement
of the input function i.e. the amount of the Epo-induced
phosphorylation of EpoR. Furthermore, the immunoblotting method
could only provide relative protein concentrations. Therefore,
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A B

C D

Fig. 2. (A) Logarithmic plot of model trajectories and simulated data. (B) Probability densities for the estimates of the model parameters. (C) Score distributions.
(D) The coverage ratio is plotted against the confidence level to check the size of the confidence intervals. The dashed line indicates identity. In all figures, the
green solid line represents the trajectory of the standard approach and the blue one of the comprehensive approach. The black lines indicate the true dynamics

scaling parameters s1 to s3 are required and the observables are
given in arbitrary units (au).

In order to calibrate the model to experimental data, a set of
initial conditions for all parameters is needed. First, the initial
concentrations of all phosphorylated model species were set to zero:

[pSTAT5](0)→0, [pSTAT52](0)→0,

[npSTAT52](0)→0.

Furthermore, in order to resolve structural identifiability issues,
the initial value of STAT5 and the scaling parameter of the input
were set to one:

[STAT5](0)→1, s3 →1.

Thereby, the forward rate constant k1 is expressed in units of the
input pEpoR and the total amount of STAT5, which is conserved in
this system, is set to one. In a second step, a set of initial guesses
for the remaining parameters was selected using Latin hypercube
sampling (LHS). Subsequently, the parameters were estimated by
maximum likelihood estimation.

Panel A of Figure 4 shows the resulting model trajectories and
the corresponding time course data. The model variables, which
correspond to the optimal set of parameters for each approach, are
depicted in Figure 5. For the model species STAT5, npSTAT52 and
for the input pEpoR, the trajectories differ only sightly. However,
for pSTAT5 and pSTAT52, a completely different scale is observed
for both approaches. This results from parameter values of k2 and
k3 that differ strongly which will be discussed later on.

The identifiability of the model parameters was analyzed by
the profile likelihood approach as described in the Supplementary
Information. The resulting likelihood profiles are shown in Panel B
of Figure 4. The corresponding values of the parameter estimates
and their confidence intervals are given in Table 1.

Fig. 3. Schematic representation of the JAK-STAT signaling pathway.
The phosphorylated Erythropoietin receptor (pEpoR) acts as input for the
signaling cascade and induces phosphorylation of STAT5. Phosphorylated
STAT5 (pSTAT5) then dimerizes (pSTAT52) and translocates to the nucleus
(npSTAT52). There it can act as transcription factor and thereby induce
protein synthesis. Furthermore, with some delay τ , the pSTAT5 dimers
dissociate to unphosphorylated STAT5 monomers and translocate back to
the cytoplasm. (Figure adapted from Swameye et al. (2003))

The parameter estimates of the rate constants k1 and k4 can be
directly compared to results of Raue et al. (2009). However, the
point estimates obtained by the standard approach do not exactly
match the previously obtained values. This is due to the choice of
the input representation: in Raue et al. (2009), a smoothing spline of
the input data was used without considering the input uncertainties
for the weighting of the data points and for the determination
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A B

Fig. 4. (A) Plot of model trajectories and experimental data. (B) Likelihood profiles for the model parameters. The red dashed line indicates the confidence
threshold for α=0.95. The green solid line represents the likelihood profile calculated with the standard approach and the blue one with the comprehensive
approach

Fig. 5. The green solid line represents the trajectory calculated with the
standard approach and the blue one with the comprehensive approach.
Note the different scaling of the left (standard approach) and the right
(comprehensive approach) y-axis for pSTAT5 and pSTAT52

of the smoothing parameter. In this article by contrast, the input
uncertainties have been estimated from several datasets as described
in the Supplementary Information. This allows for a weighting of the
data according to the first term in Equation (7) and for a data-based
selection of the smoothing parameter λ. In Raue et al. (2009), the
initial concentration of STAT5 (x1(0)) and the scaling parameters
s1 and s2 were structurally non-identifiable. In our article, the
parameter value of [STAT5](0) was set to one leading to identifiable
scaling parameters having different physical units. Therefore, these
parameter values are not comparable with previous results. The
results for the rate constants k2 and k3 are discussed later on in
this article.

3.2.1 Comparison of the results Here, the results of the standard
approach and the comprehensive approach shall be discussed
and compared. This analysis requires a different strategy than in
Section 3.1 as the underlying truth is not know for this system.

At first, it can be observed that the qualitative behavior of the fits
in Panel A of Figure 4 differs between both approaches. The input
observable y3, for instance, has a small plateau at about 25 min
in case of the comprehensively estimated input. This is due to
downstream information, as in the total concentration of pSTAT5,
i.e. the observable y1, this plateau is also present with some delay.
Furthermore, for the standard approach, the model trajectories of y1
and y2 deviate significantly from the data at the last measurement
time point, i.e. t =60 min. This is due to the input measurement

which has a higher value at the last time point (t =60 min) than for
the proceeding measurement time points (t =40,50 min). In contrast,
in case of the comprehensive approach, the experimental data
including the uncertainties of all three observables were considered,
leading to model trajectories that better reflect the measured data.

One, at first glance, confusing outcome of the model calibration is
the difference in the parameter estimates for k2 and k3 as depicted by
the likelihood profiles in Panel B of Figure 4. These two parameters
show a completely opposed behavior: for the standard approach,
the process of dimerization, which is described by k2, is faster than
estimated by the comprehensive approach. In contrast, k3, which
describes the translocation of the pSTAT5 dimers to the nucleus, is
smaller for the standard approach than the estimate resulting from
the comprehensive approach. As a consequence, the trajectories
of the dynamic variables pSTAT5 and pSTAT52 show a different
scaling for both estimation approaches. Therefore, in Figure 5, the
concentrations obtained by the standard approach are indicated by
the y-axis on the left and those of the comprehensive approach by
the right y-axis.

This opposing behavior of k2 and k3 was also observed by Raue
et al. (2009), who investigated the variability of the trajectories when
plotting all parameter sets along the likelihood profile that are within
the point-wise 95% confidence interval. This results from the fact
that only the sum of pSTAT5 and pSTAT52 is measured but not their
individual contribution.

Here, the switching from faster dimerization and slower
translocation to the opposed configuration can be explained in
terms of the χ2-landscape. For the comprehensive approach, a
local minimum can be identified by LHS, which corresponds to
the situation of the standard approach as depicted in Panels A and
B of Figure 6. Although both minima are in sufficient agreement
with the data because χ2 differs by much less than the number of
fitted parameters, the optimal point estimates change. The parameter
values of the minima are given in the Supplementary Information.
However, by optimizing the input in the comprehensive approach,
the χ2-landscape changes and another minimum with the switched
parameter configuration becomes optimal.

The selection of a different local minimum in case of
the comprehensive approach also leads to the counterintuitive
observation that the confidence intervals for the parameters k4,
s1 and s2 are larger for the standard approach than for the novel
method.
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A B C

Fig. 6. (A) Analysis of local minima for the comprehensive approach. Several local minima, indicated by dashed lines, have been identified by LHS. B and C:
Likelihood profiles for k2 and k3. The green solid line represents the likelihood profile calculated with the standard approach and the blue one represents the
profile around the optimum for the comprehensive approach. The red dashed line and the red asterisks denote a selected local minimum for the comprehensive
approach with the switched parameter configuration

Table 1. Parameter estimates and likelihood-based 95% confidence intervals for both approaches

Parameter [units] Standard approach Comprehensive approach

θ̂ conflb confub θ̂ conflb confub

k1 [min−1 ·nM−1 ·s−1
3 ] 2.79 2.18 3.70 1.95 1.27 3.33

k2 [min−1 ·nM−1] 1.00×105 4.04 ∞ 0.11 0.08 0.14
k3 [min−1] 0.12 0.09 0.17 9.84×104 0.34 ∞
k4 [min−1] 2.19 1.69 3.12 1.49 1.20 2.01
s1 [nM−1] 1.34 1.24 1.46 1.25 1.15 1.36
s2 [nM−1] 1.00 0.95 1.05 0.95 0.91 0.99

Hence, the result of the comprehensive approach reveals that an
unambiguous estimation of both rates is not feasible based on the
measured data. Therefore, additional experiments would be required
in order to clarify which parameter configuration corresponds to the
real biological situation.

4 CONCLUSIONS
It has been shown that the presented approach for estimating model
parameters and input comprehensively provides several advantages.
For a toy model with simulated data, the three assessment criteria
defined in Section 2.5 have been evaluated for different noise level
combinations of input and downstream observables. The analysis
revealed that the novel approach outperforms the standard method in
terms of (i) precision, (ii) deviation from the truth and (iii) coverage
of the confidence intervals. The accuracy of the parameter estimates
does not differ significantly for both approaches. The performance
is best when the measurement uncertainties of the downstream
observables are smaller than those of the input measurements.

By applying the new method to a model of the JAK-STAT
signaling pathway, it could be shown that also for realistic
experimental studies, one benefits from the comprehensive input
estimation. The optimal model trajectories indicate that downstream
information can be used in order to improve the fit of the input and
vice versa.
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