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Abstract

The highly repetitive Alu retroelements are regarded as methylation centres in the genome. Methylation in the gene
promoters could be spreading from them. Promoter methylation of MLH1 is frequently detected in cancers, but the
underlying mechanism is unclear. The aim of this study is to understand whether the methylation in the Alu elements is
associated with promoter methylation in the MLH1 gene. Bisulfite genomic sequencing was used to analyse the CpG sites of
the 59 end (promoter, exon 1 and Alu-containing intron 1) of the MLH1 gene in colorectal cancer cells and tissues, and
gastric cancer tissues. Hypomethylation in the Alu elements and hypermethylation in the promoters and the regions
between the promoters and the Alu elements were detected in two cancer cell lines and seven cancer tissues. However,
demethylation or hypomethylation of the MLH1 promoter and regions between promoter and the Alu elements, and
hypermethylation in the Alu elements, were identified in the normal tissues. MLH1 promoter methylation may spread from
Alu elements that are located in intron 1 of the MLH1 gene. The trans-acting elements binding to the mutation sites could
play a role in the methylation spreading.
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Introduction

MLH1 is a major mismatch repair gene which plays a role in

maintaining the stability of the genome. MLH1 dysfunction may

cause a high rate of gene mutations in the genome. Promoter

methylation of MLH1, especially the C region (2310 to 2240,

relative to the initiation codon) containing 8 CpG sites, is a

frequent event in cancer, which could result in loss of MLH1

expression [1–3]. To date, the mechanism of MLH1 methylation is

unclear. Our previous studies have shown that MLH1 methylation

may be associated with MLH1 -93SNP [4,5]. However, the

molecular basis behind this is unknown.

Alu is one of the repetitive elements in the genome, which is

hypermethylated in normal cells [6]. Alu elements are believed to

be methylation centres in the genome [7]. In cancer, gene

promoter methylation may spread from adjacent repetitive

elements [7]. Graff et al. [8] mapped the methylation patterns of

E-cadherin and von Hippel-Lindau tumour suppressor genes in both

normal and neoplastic cells, and found that boundaries exist

between the unmethylated promoters and the nearby hypermethy-

lated Alu elements, to maintain the unmethylated status of the

promoters in normal cells, and that the boundaries may be

progressively overriden by methylation of the Alu elements,

resulting in promoter methylation in neoplasia.

Three Alu elements have been identified in intron 1 of MLH1

by searching a database of human Alu repeat elements (Fig. 1). No

Alu elements exist in the MLH1 promoter region. The methylation

status of each CpG site within Alu elements of MLH1 has not been

pinpointed. It is possible that MLH1 promoter methylation occurs

from nearby Alu elements. To test this, we analysed the

methylation status of all CpG sites of the MLH1 59 end (C region

containing promoter, exon 1 and majority of intron 1) (Fig. 1) in

colorectal cancer cells and tissues, gastric cancer tissues and

normal tissues using bisulfite genomic sequencing, and found that

Alu elements in the intron 1 of MLH1 are hypomethylated, and

the promoters and the regions between MLH1 promoters and Alu

elements are hypermethylated in cancers. However, in the normal

tissues Alu elements are hypermethylated, and the promoters and

the regions between promoters and Alu elements are not

methylated or hypomethylated.

Materials and Methods

Ethics statement
This research has been approved by the review board of

Huazhong University of Science and Technology. We obtained

tissue samples with written informed consent from the participants

involved in the study. The ethics committee specifically approved

the procedures.

Normal and cancer samples
Two colorectal cancer cell lines, RKO and SW48, with MLH1

promoter methylation [2] were ordered from the Chinese Academy

of Sciences (Shanghai, China). A total of 188 colorectal and 27 gastric
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cancer tissues with matched normal mucosa were obtained from

Tongji hospital (Wuhan, China). The peripheral blood of a healthy

individual was also obtained from Tongji hospital (Wuhan, China).

Cell culture and DNA isolation
Cells were grown in DMEM supplemented with 10% foetal

bovine serum at 37uC with 5% CO2 atmosphere. DNA was

extracted from cells, cancer tissues, normal mucosa and blood

samples using DNA isolation kit (Sangon, Shanghai, China) and

TIANamp genomic DNA kit (Tiangen, Beijing, China).

Characterisation of tumours
All tumours were assessed for microsatellite instability (MSI) using

five microsatellite repeats (BAT25, BAT26, D2S123, D5S346, and

D17S250), as described previously [1]. For the MSI positive

tumours, the extracted DNA was converted using EZ DNA

Methylation Kit (Zymo Research Corporation, Orange, CA,

USA). MLH1 methylation at cytosines at 2250 and 2252 relative

to the initiation codon was assessed using combined bisulfite

restriction analysis (COBRA) with BstUI [1].

Immunohistochemical (IHC) staining
IHC staining for MLH1 proteins was performed on 5-mm

sections from paraffin-embedded tumour and adjacent normal

tissue blocks with antibody MLH1 (ab92312, abcam, UK). The

sections were deparaffinised, rehydrated, and rinsed in tap water

before antigen retrieval by boiling in a 0.01 M citrate buffer

(pH 6.0) twice for 5 min. Sections were incubated with antibodies

overnight at 4uC. IHC staining was visualised using the Strep ABC

Complex/horseradish peroxidise (HPR). Tumours were graded by

intensity of staining as negative, weakly positive, moderately

positive and strongly positive.

Figure 1. A graphic overview of the 59 end (promoter, exon 1, intron 1 and exon 2) of the human MLH1 gene and 27 amplicons in
relation to it. There are three Alu elements in intron 1, whose sizes and locations are shown by nucleotide numbers. The relative sizes and locations
of the 27 PCR amplicons are depicted by bold lines, which cover a region from 2339 to 116+2876.
doi:10.1371/journal.pone.0025913.g001

Table 1. Oligonucleotide sequences of the primers for mutation analysis.

Primer name Primer sequence (59-39) Genomic position Product size (bp)

A ACCTCAGCAGAGGCACACA 2369 to 2351 393

AATAACCCCTGCCACGAAC +6 to +24

B CGTTTCCTTGGCTCTTCTGG 227 to 27 343

GGGGAGAGCGGTAAAGAAAC IVS*1+181 to IVS1+200

C GTCAGGCCTTCTCCTTTTCC IVS1+150 to IVS1+169 354

AAAGTGCATCAGCCTGTCCT IVS1+484 to IVS1+503

D ATTCATTTTGAGTTTCTTTCAAAAC IVS1+442 to IVS1+466 381

CCTACCACTCCAAACTGAAGC IVS1+802 to IVS1+822

E TGACGTCCGTACGTTAATAGAAAA IVS1+772 to IVS1+795 344

CAAGCCACCAAGCTAGTATGTTT IVS1+1093 to IVS1+1115

F TTGTACTGTGCCAGAATACTGTAAA IVS1+1060 to IVS1+1084 365

TGTAATCCCAGCACTTTGGA IVS1+1405 to IVS1+1424

G TGTCAAAACTCTCGATCTCAGG IVS1+1363 to IVS1+1384 386

TGGGCAACAGAGTAAGACTTCA IVS1+1727 to IVS1+1748

H ACAGGGGCTCATGAGAAATG IVS1+1659 to IVS1+1678 384

CCCACACAGACAATTCTTTATTCA IVS1+2019 to IVS1+2042

I CGTGCCCAGCCTATTATCTT IVS1+1994 to IVS1+2013 386

GAGACCAGCCTGACCAACAT IVS1+2340 to IVS1+2379

J CCATGCCTGGCTAATTTTGT IVS1+2314 to IVS1+2333 365

TTTTGGCAGATGTCTCTTCTCA IVS1+2657 to IVS1+2678

*IVS, intervening sequence.
doi:10.1371/journal.pone.0025913.t001
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Bisulfite genomic sequencing
For COBRA-positive samples, the methylation status of MLH1

59end was determined using bisulfite genomic sequencing. In total

there were 27 PCR amplicons designed to cover the region from

2339 to 116+2876, relative to the translation start site (Fig. 1). The

primers used are shown in Table S1. PCR was performed at 95uC
for 5 min followed by 40 cycles of 95uC for 30 sec, 55–61uC for

45 sec and 72uC for 1 min with a final extension at 72uC for 7 min.

A hot start was used by adding the enzyme during the first cycle at

about 72uC, after a preincubation time of 5 minutes at 95uC. The

PCR products were tested in 2% agarose gel and then cloned into

the pEASY-T1 vector (TransGen Biotech, Beijing, China). The

colony PCR was undertaken to screen the positive colonies. The

clones with the right sizes of PCR products were sequenced on an

ABI sequencer with dye terminators (Applied Biosystems, Foster

City, CA, USA). With sequencing results of five clones, the

methylation frequency was determined for each CpG site.

Mutation screening
The MLH1 59 end for methylation analysis was sequenced using

the unconverted DNA from cancer cells and tissues. The 10 pairs of

primers used are shown in Table 1. PCR was performed at 95uC for

5 min followed by 35 cycles of 95uC for 30 sec, 58–66uC for 30 sec

and 72uC for 1 min with a final extension at 72uC for 7 min. Then

PCR products were directly sequenced using the ABI sequencer.

Results

Screening of colorectal and gastric cancer tissue samples
with MLH1 promoter methylation

Of the 188 colorectal and 27 gastric cancer tissues, 48 colorectal

and 9 gastric cancer samples were found to have MSI positive

phenotype. The MSI positive samples were then examined for

MLH1 promoter methylation, and 4 colorectal and 3 gastric

cancer samples exhibited MLH1 promoter methylation (Fig. 2).

Figure 2. MLH1 promoter methylation assessment by COBRA with BstUI. The four colorectal cancers (C8T, C15T, C35T and C156T) and 3
gastric cancers (G9T, G19T and G24T) were analysed. Symbol ‘‘2’’ means that PCR products were digested without BstUI, and ‘‘+’’ means digestion
with BstUI.
doi:10.1371/journal.pone.0025913.g002

Figure 3. IHC staining of MLH1 expression in tumours and their adjacent normal tissues. A and B represent a colorectal tumour (T) and
the adjacent normal tissue (N) respectively; C and D display a gastric tumour (T) and the adjacent normal tissue (N). A: negative staining; C: weak
staining; B and D: strong staining.
doi:10.1371/journal.pone.0025913.g003
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Association of MLH1 methylation and negative or weak
expression of MLH1

The seven MLH1 methylation samples, together with their

adjacent normal tissues, were analysed for MLH1 expression using

IHC staining. All seven cancer tissues showed negative or weakly

positive expression of Mlh1, and their adjacent normal tissues had

strong expression (Fig. 3).

Comparison of MLH1 methylation patterns between
normals and cancers

A total of 93 CpG sites located on the region analysed were

measured for methylation status using bisulfite genomic sequenc-

ing (Fig. 4). The two colorectal cancer cell lines, four MSI positve

colorectal cancer tissues, and three MSI positive gastric cancer

tissues showed different patterns compared to the MSI negative

colorectal cancer tissue, the normal colorectal and gastric mucosa

and peripheral blood (Fig. 5). The MSI negative colorectal cancer

tissue, the normal colorectal and gastric mucosa and peripheral

blood displayed no methylation in the MLH1 promoter, and

demethylation or hypomethylation (less than 50%) in the regions

between promoters and Alu elements, whereas the regions within

or downstream of Alu elements exhibited hypermethylation (more

than 50%). In contrast, for the colorectal cancer cells and tissues

(MSI positive) and gastric cancer tissues (MSI positive), the MLH1

promoters and the regions between promoters and Alu elements

are hypermethylated, with the exception of a very few hypo-

methylated CpG sites. However, the regions within or downstream

of Alu elements showed a certain degree of hypomethylation or

demethylation compared to the normal tissues. Furthermore, the

hypomethylation and demethylation were more frequently seen in

the colorectal and gastric cancer tissues (MSI positive) compared

to the colorectal cancer cells (Fig. 5).

Mutation screening in the cancer cells and tissues
Mutations in the MLH1 59 end for methylation analysis were

screened in the 2 cancer cells and 7 cancer tissues. One colorectal

and one gastric cancer tissue were found to have mutations

compared to their adjacent normal tissues (Fig. 6). One colorectal

and one gastric cancer exhibited an identical heterozygous

mutation, ARG, at the same site, IVS1 +681 bp. Their adjacent

normal tissues did not show the mutation, indicating that it is

somatic and tumour-specific.

Discussion

The methylation patterns of Alu elements in the MLH1 have

not previously been explored in normal tissues. In this study, we

analysed the methylation status of the CpG sites within the three

Alu elements located in the intron 1 of MLH1, and found that all

three Alu elements are at levels of hypermethylation in normal

colorectal and gastric mucosa and peripheral blood (Fig. 5). It is in

line with earlier finding that Alu elements are hypermethylated in

the normal gastric mucosa, breast epithelial and kidney tissues

[6,8]. The MSI negative colorectal tumour displayed very similar

methylation pattern to the normal tissues (Fig. 5). Normally,

methylation within the Alu elements should not spread to the

adjacent CpG islands due to blockage by the Sp1 elements [9,10].

Figure 4. Partial sequencing data for 5 clones of an PCR
amplicon located at 116+1780 to 116+2059 of MLH1 in RKO
cells. The CpG sites are underscored. Clones 1, 3 and 4 displayed
methylation, and clones 2 and 5 no methylation. The methylation
frequency of the CpG site is 60%. WT, wildtype; CT, converted type.
doi:10.1371/journal.pone.0025913.g004
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Here we revealed that the regions upstream of the Alu elements

are unmethylated or hypomethylated in the normal colorectal

and gastric mucosa and peripheral blood. Clear boundaries are

seen between hypermethylated Alu elements and hypomethylated

regions upstream of them (Fig. 5). There are several hypomethy-

lated CpG sites upstream of the Alu elements in the normal

tissues, and those CpG sites are out of the C region (Fig. 5),

suggesting a limited spread of Alu methylation in normal cells.

Some CpG sites around or within the Alu elements in normal

tissues displayed less than 100% methylation (Fig. 5), suggesting

that methylation of individual sites is not clonally derived, even

though the overall pattern of methylation is transmitted from cell

to cell. In line with this, it has been shown that the mouse adenine

phosphoribosyltransferase gene has methylation patterns which

differ between liver cells [10]. The mechanism behind this could

be that the methylation centres of the identical genes in different

cells have variable strength of signal travelling upstream or

downstream [11].

Figure 5. Methylation profiles of CpG sites of the MLH1 C region containing promoter, exon 1 and majority of intron 1 in normal
colorectal and gastric mucosa and peripheral blood, colorectal cancer cells and tissues, and gastric cancer tissues. In total 93 CpG
sites are analysed. However, 92 CpG sites can be seen in the normal colorectal mucosa, due to a transition of G to A at a CpG site between Alus 1 and
2. N,m,&,%,g and # represent methylation frequency of 100%, 80%, 60%, 40%, 20% and 0, respectively. 80% indicates that of the 5 clones, 4
exhibited methylation at a CpG site. RKO and SW48: colorectal cells; C8T, C15T, C35T, C156T: MSI positive colorectal cancer tissues; C161T: MSI
negative colorectal cancer; C161N: C161T matched normal tissue; and G9T, G19T and G24T: MSI positive gastric cancers.
doi:10.1371/journal.pone.0025913.g005

Figure 6. Sequencing analysis of MLH1 59 end. One colorectal and one gastric cancer, C15T and G19T, exhibited an identical heterozygous
mutation, ARG, at the same site, IVS1 +681 bp. Their adjacent normal tissues, C15N and G19N, did not show the mutation. Arrows display the sites of
the mutations.
doi:10.1371/journal.pone.0025913.g006
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Disruption of the Sp1 elements facilitates de novo methylation of

the adjacent CpG sites [9,10,12], and induces epigenetic gene

inactivation [12]. It is proposed that Alu elements are the

methylation centres in the genome [8]. The methylation patterns

of the Alu elements in the MLH1 methylated colorectal cancer

cells RKO and SW48 have not been studied previously. RKO and

SW48 have been found to have methylation in the MLH1

promoter region, particularly in the C region (2310 to 2240,

relative to the initiation codon), which causes reduced MLH1

expression [2]. In this study we also analysed methylation patterns

in the MLH1 promoters, the three Alu elements and the regions

between promoters and the Alu elements. Compared to the

normal colorectal and gastric mucosa and peripheral blood, the

Alu elements showed hypomethylation especially in Alus 2 and 3

in both RKO and SW48. Moreover, the region downstream of

Alu 3 showed hypomethylation in both RKO and SW48 (Fig. 5).

However, the promoters and particularly the regions between

promoters and Alu elements were hypermethylated in RKO and

SW48 (Fig. 5). This strongly suggests that the MLH1 promoter

methylation spreads from the methylation centres within intron 1

of MLH1.

Because cultured cancer cell lines are considered to have a

higher degree of methylation than primary tumours [13], we

decided to analyse the primary tumours for MLH1 methylation

pattern in the same regions as the cell lines. A somewhat lower

degree of methylation was detected in the MLH1 promoter region

in the 4 MSI positive colorectal and 3 MSI positive gastric cancers

compared to the two cell lines (Fig. 5). However, hypermethylated

promoters, particularly in the C regions, and the regions between

promoters and Alu elements are seen in all seven cancers analysed.

Some regions within and around Alu elements were obviously

hypomethylated in the tumour tissues. Hence the data from the

cancer tissues strongly suggest that the methylation is spreading

from the Alu elements to the 59 region of the MLH1 in MSI

positive colorectal and gastric cancer tissues, as well as in the

colorectal cancer cell lines. Alu hypomethylation has been

identified in gastric carcinomas and melanoma cell lines [6,14].

Another repetitive sequence, LINE-1, also showed hypomethyla-

tion in malignant gastrointestinal stromal tumours [15]. Hypo-

methylation may increase the malignant potential of tumours by

inducing accumulation of chromosomal aberrations or methyla-

tion spreading to the promoters of tumour suppressor genes. Thus

methylation of the repetitive sequences may be a useful marker for

malignancy assessment.

A Sp1 element was identified at 2119 of the MLH1 promoter

region using transcription factor search software (TFSEARCH

ver.1.3). To ascertain whether there are mutations in the Sp1

element, we sequenced the entire region analysed above in the

cancer cell lines and tissues. No mutations in the Sp1 element were

detected, but one MSI positive colorectal and one MSI positive

gastric cancer showed the ARG mutation, at the same site, IVS1

+681 bp in the MLH1 gene. This site is between the promoter and

Alu elements. Our finding suggests that the region is a mutational

hotspot in the pathogenesis of colorectal and gastric cancer. We

speculate that the trans-acting elements binding to this site, or other

sites which are between promoter and Alu elements, may be

involved in the methylation spreading from the Alu elements to the

promoter region. Therefore, those trans-acting elements could

behave as guardians of the methylation centres, e.g. Alu elements.

Further studies are needed in order to search for those trans-acting

elements, which could be the therapeutic targets of cancers in the

future.
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