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Computational modeling and simulation of viral dynamics would explain the pathogenesis for any virus. Such 
computational attempts have been successfully made to predict and control HIV-1 or hepatitis B virus. However, 
the dynamics for SARS-CoV-2 has not been adequately investigated. The purpose of this research is to propose 
different SARS-CoV-2 dynamics models based on differential equations and numerical analysis towards distilling 
the models to explain the mechanism of SARS-CoV-2 pathogenesis. The proposed four models formalize the 
dynamical system of SARS-CoV-2 infection, which consists of host cells and viral particles. These models 
undergo numerical analysis, including sensitivity analysis and stability analysis. Based on the sensitivity indices 
of the four models’ parameters, the four models are simplified into two models. In advance of the following 
calibration experiments, the eigenvalues of the Jacobian matrices of these two models are calculated, thereby 
guaranteeing that any solutions are stable. Then, the calibration experiments fit the simulated data sequences 
of the two models to two observed data sequences, SARS-CoV-2 viral load in mild cases and that in severe 
cases. Comparing the estimated parameters in mild cases and severe cases indicates that cell-to-cell transmission 
would significantly correlate to the COVID-19 severity. These experiments for modeling and simulation provide 
plausible computational models for the SARS-CoV-2 dynamics, leading to further investigation for identifying 
the essential factors in severe cases.
1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused 
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. 
SARS-CoV-2 infects bronchial epithelial cells, pneumocytes, or alveo-

lar macrophages and causes severe symptoms such as acute respiratory 
distress syndrome (ARDS) due to excessive production of inflammatory 
cytokines known as a cytokine storm [2]. The first death in Wuhan 
City in January 2020 and the cumulative number of deaths world-

wide, approximately four million in July 2021, have been confirmed 
[3]. Under this situation, the attempts to address the COVID-19 pan-

demic have been promoted for uncovering the principle of SARS-CoV-2 
pathogenesis. Notable one of these attempts is computational model-

ing and simulation of transmission dynamics. Modeling and simulation 
studies of transmission dynamics between individuals for any pathogen 
have originated mathematical epidemiology more than a century be-

fore [4]. For example, Hamer built a transmission dynamics model 
of measles in 1906 [5], and Ross presented a model of malaria in 
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1911 [6]. Kermack and McKendrick et al. established mathematical 
theory for epidemics around the 1930s [7, 8]. These computational 
models have influenced the development of the various models de-

scribing the SARS-CoV-2 transmission dynamics between individuals 
[9, 10]. Nevertheless, the underlying mechanism of SARS-CoV-2 patho-

genesis has not been understood because modeling of the SARS-CoV-2 
transmission dynamics within individuals is not investigated enough to 
reproduce in vivo data on COVID-19. Namely, plausible and straight-

forward models have been required for explaining the mechanism of 
SARS-CoV-2 pathogenesis. Therefore, exploring and comparing differ-

ent SARS-CoV-2 dynamics models should provide a novel envision of 
the dynamical system’s behavior within the COVID-19 patients. The en-

deavors to quantify in vivo temporal change of cellular population or 
virulence within individuals have originated the isolation of the Hu-

man Immunodeficiency Virus (HIV) in 1983 [11]. Modeling techniques 
concerning transmission dynamics between individuals met this HIV 
isolation, forming a significant starting point for advances in the stud-

ies on viral dynamics, transmission dynamics within individuals based 
https://doi.org/10.1016/j.heliyon.2021.e08207
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on computational modeling and simulation with time-series clinical or 
experimental data [12]. The first baseline viral dynamics model with 
ordinary differential equations (ODEs) was the HIV-1 dynamics model 
introduced by Perelson in 1996 [13]. This Perelson’s model has de-

scribed experimental or clinical data on HIV-1 or hepatitis B virus and 
quantified the virulence at the cellular scale, including viral burst size, 
basic reproduction number, and viral particle copies’ or cells’ mean life-

time [14, 15]. Based on the Perelson’s model, varied viral dynamics 
models have been constructed, including a model of macrophage with 
immune cell influx in inflammation [16], a model of neural progenitor 
cells’ dynamics in neurogenesis [17], or a model with mixed infection 
[18]. Moreover, the viral dynamics models have succeeded in predicting 
intervention outcomes or planning practical experiments [19]. The pur-

pose of this paper includes the following two things: first, to build 
and compare multiple SARS-CoV-2 dynamics models based on ODEs; 
second, to fit the models to two cases of the observed COVID-19 exper-

imental data. Compared to the existing research, the foci of this paper 
are on constructing different SARS-CoV-2 dynamics models by abstract-

ing in vivo SARS-CoV-2 pathogenesis as dynamical systems and distilling 
beneficial models that describe the population dynamics of host cells 
and viral particles. On building the SARS-CoV-2 dynamics models, nu-

merical analysis enhances the quality of modeling and simulation. In 
particular, pruning the fixable parameters based on sensitivity indices 
simplifies the redundant models, thereby balancing the model complex-

ity and simplicity. Calculating the eigenvalues of the simplified models 
guarantees the solutions’ orbital stability. Further, the calibration exper-

iments fit the simulated data generated from the models to two cases 
of actual observed data. Here, the comparison of the parameter values 
estimated from the viral load data sequence in mild patients and those 
in severe cases clarifies the relationship between the key parameters 
and the COVID-19 severity. This paper is an extension of the previous 
work, which has contributed to computational modeling and computer 
simulation of SARS-CoV-2 viral load kinetics and suggested a qualita-

tive relationship between the asymptomatic carriers’ reactivation risk 
and the COVID-19 severity [20]. As an improvement of the previous 
work, this paper introduces different models, extends the scope of sen-

sitivity analysis from one model to four models to simplify the models, 
evaluates the equilibrium solution’s stability to ensure stable calibra-

tion, and conducts the calibration experiments to avoid local minima. 
The rest of the paper is organized as follows: Section 2 introduces four 
viral dynamics models. Section 3 explains the methods for data prepara-

tion, sensitivity analysis, stability analysis, and calibration experiments. 
Section 4 shows the results and expands the discussion. Section 5 is de-

voted to providing related work. Section 6 concludes with a summary 
of contributions, limitations, and future work.

2. Proposed models

This section formalizes the SARS-CoV-2 dynamical system consist-

ing of host cells and viral particles with four computational models. 
The first three of four have successfully explained viral dynamics on 
other viruses, whereas the appropriate investigation of these models for 
SARS-CoV-2 dynamics has not been conducted. The last one is a newly 
constructed model.

2.1. Perelson’s model (baseline)

Perelson’s model mentioned in the previous section has described 
the time course of three time-dependent state variables called 𝑇 , 𝐼 , 
and 𝑉 . These state variables (𝑇 , 𝐼, 𝑉 )T ∈ ℝ3 correspond to the host’s 
target cell density (susceptible cell count), the host’s infectious cell den-

sity, and viral quantification measure density, respectively. Here, the 
dynamical system is assumed as a homogeneous well-stirred reaction 
system, independent of spatial distribution within each compartment. 
The state transition diagrams of a single target cell, a single infectious 
cell, and a viral particle per unit time are illustrated in Fig. 1.
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A single target cell becomes infectious proportionally to viral par-

ticles density 𝑉 . Let 𝛽 be the proportionality constant involved in this 
infection establishment (virus infection rate). A single target cell turns 
into an infectious cell at a rate of 𝛽𝑉 . A single target cell also dies at 
a rate of 𝜇1 (target cell mortality). A single infectious cell is removed 
at a rate of 𝜇2 (infectious cell mortality) due to activated cell death 
or cell degeneration associated with virus replication or cytotoxicity 
during the immune response. A single viral particle is removed at a 
rate of 𝜇3 (virus mortality) by the culture medium exchange or physi-

ological reaction or antibody neutralization reaction. Summing up the 
population of target cells, infected cells, and viral particles whose state 
transitions are described above for any individual, viral dynamics is re-

garded as population dynamics. Additionally, infectious cells replicate, 
release and replenish new viral particles to 𝑉 in proportion to 𝐼 . Let 
𝑘 be this proportionality constant (viral shedding rate). Therefore, the 
ODEs of the baseline viral dynamics model are as follows:

𝑑𝑇

𝑑𝑡
= −𝛽𝑇𝑉 − 𝜇1𝑇 ,

𝑑𝐼

𝑑𝑡
= 𝛽𝑇𝑉 − 𝜇2𝐼,

𝑑𝑉

𝑑𝑡
= −𝜇3𝑉 + 𝑘𝐼.

2.2. Huang’s model (functional response)

While Perelson’s baseline model has demonstrated virus replication 
or host-pathogen interactions well, some experts have regarded it as 
a too simple model due to its linear infection rate 𝛽. Huang et al.

expressed a more realistic infection rate bound to overhead by intro-

ducing a nonlinear term (functional response) [21]. By introducing the 
functional response, the shape of a rectangular hyperbola indicates the 
actual incidence rate well. This nonlinear term is 𝛽𝑇𝑉 ∕(1 + 𝑎𝑇 + 𝑏𝑉 ), 
where 𝑎 and 𝑏 are constant values greater than or equal to zero. The 
term is similar to the Holling type II incidence functional response. 
Still, the additional term 𝑏𝑉 representing a mutual interference between 
viruses makes it different from Holling type II [22, 23].

2.3. Pearce-Pratt-Phillips model (viral synapse)

While the above models have taken a single transmission chance into 
account, in 1994, Pearce-Pratt and Phillips et al. explicitly presented a 
scheme of HIV transmission via two routes: cell-free transmission and 
cell-to-cell transmission [24]. Specifically, the structure mediating the 
cell-to-cell transmission as a counterpart of the cell-free transmission 
is called viral synapse [25]. Given that both SARS-CoV-2 and HIV have 
the spike glycoprotein on the surface of the viral envelope [26] and 
that it has a similar function such as viral entry, receptor recognition, 
cell attachment, and fusion [27], the viral synapse is presumably in the 
SARS-CoV-2 life cycle as well. Fig. 2 shows a schematic representation 
of the SARS-CoV-2 life cycle to explain the differences in two types of 
transmissions and wherein the viral shedding constant 𝑘 is also relevant.

A free viral particle attaches to a target cell binding to angiotensin-

converting enzyme 2 (ACE2) receptor on the cell membrane supported 
by spike protein degradation by transmembrane protease serine 2 (TM-

PRSS2) [28, 29]. Without elaborating on the detailed translation pro-

cess to replication, the copied viral particles are released at the mag-

nitude of 𝑘. The cell-free transmission involves these multiplied viral 
particles’ attachment to other cells after shedding to the extracellular 
matrix [30]. Consequently, the degree of cell-free transmission is pro-

portional to the viral particle density. 𝛽1 denotes this proportionality 
constant.

During the cell-to-cell transmission, viral particles directly enter 
neighboring cells through viral synapse mediated by cellular adhesion 
molecules [31]. Thus, the level of this direct entry is supposed to be 
proportional to the infectious cell density. 𝛽2 is set as this proportional-

ity constant. Reflecting the two transmission types, one obtains a term 
for infection rate as 𝛽1𝑇𝑉 + 𝛽2𝑇 𝐼 .
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Fig. 1. State transition diagrams of viral dynamics model. The diagrams illustrate three states, including a target (susceptible) cell, an infectious cell, and a viral 
particle, and their transitions. A single target cell turns into an infectious cell at an infection rate 𝛽 proportional to viral particles density 𝑉 . These are dead or killed 
at each mortality rate 𝜇1 , 𝜇2 , and 𝜇3 .
Fig. 2. Schematic representation of severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) life cycle. Here we assume the unknown direct viral 
transfer, cell-to-cell transmission (highlighted dense yellow), to be included in 
the SARS-CoV-2 life cycle, contrasting indirect viral transfer, cell-free transmis-

sion (highlighted skyblue). A particle of SARS-CoV-2 infects a host cell at a cell-

free transmission rate 𝛽1 , binding to angiotensin-converting enzyme 2 (ACE2) 
receptor helped by transmembrane protease serine 2 (TMPRSS2). The virus un-

dergoes the subsequent typical processes, finally being released (highlighted 
green) at a viral shedding rate 𝑘. Here, the virus in the host cell infects an-

other cell at a cell-to-cell transmission rate 𝛽2 . The rest of colors are as follows: 
black-colored texts and arrows are life-cycle processes; black-colored borders 
are cellular/vesicular membranes and membrane proteins; orange-colored texts 
and objectives are viruses, organelles, and extracellular matrix.

2.4. New model (functional response and viral synapse)

The models reviewed above could have caused one to have a bias in 
exploring models due to one’s subjective point of view [32]. Procedu-

rally generating a model outside the scope of subjective bias compen-

sated for the above models [33]. For simplicity, 𝑀1, 𝑀2, 𝑀3 denote 
the above models in short. The machinery manipulation of subtree mu-

tation of 𝑀2 and 𝑀3 generated a new model 𝑀4. Fig. 3 shows the 
parse trees reflecting the infection rate terms of 𝑀1, 𝑀2, 𝑀3, and 𝑀4. 
Substituting the dashed subtree of 𝑀3 with the dashed subtree of 𝑀2
generated the parse tree for the infection rate term of 𝑀4 .

This section has prepared the four models with different terms for 
the infection rate. Table 1 is a summary of the difference among the 
models. Table 2 is a summary of the symbols, definitions, and ranges of 
the variables and constants of the ODEs.

3. Proposed methods

This section covers data and the remaining steps; numerical analysis 
and calibration experiments. Fig. 4 shows an overview of the research 
methods.

This overview (Fig. 4) explicitly sees input as observable state vari-

able(s) and output as models and optimum conditions. The intermediate 
computation process is a workflow of three tasks: the extraction of data 
3

Fig. 3. Infection rate terms of viral dynamics models. The parse trees stand for 
the infection rate terms of different viral dynamics models; 𝑀1 , 𝑀2 , 𝑀3 , and 
𝑀4 . The trees consist of arithmetic operators and the variables and constants 
in Table 2. The trees of Huang’s model 𝑀2 and Pearce-Pratt-Phillips model 𝑀3
originate from that of the baseline model 𝑀1 . The dashed subtree mutation 
between 𝑀2 and 𝑀3 generates the tree of an original model 𝑀4 .

and models as to the inputted state variables, the numerical analysis 
simplifying the extracted models with sensitivity and stability, and the 
calibration between data and the simplified models. Here, the system 
of interest is assumed to be closed and determined only by the state 
variables of the extracted models.

3.1. Observed SARS-CoV-2 data

The literature, knowledge bases, and databases were searched to ex-

tract actual time-series data and the models with the state variable. 
Here, the state variable must be an observable viral quantification in 
clinical tests or experiments. The viral quantification includes viral load, 
which one can estimate from total viral particle copies by quantitative 
reverse transcription-polymerase chain reaction (qRT-PCR) of the spec-

imen such as mucus in nasopharyngeal swab collection [34].

As a case study, viral load data was used in this paper. The data was 
from an image of time-series data sequences of median viral load in the 
mild and severe patient populations (anonymized) published in the pre-

vious literature [35]. The primary source originated 96 patients with 
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Table 1. Summary of four viral dynamics models and their corresponding ordinary differential equations 
(ODEs).

Models ODEs

𝑀1: Perelson’s model (baseline) [13] 𝑑𝑇 ∕𝑑𝑡 = −𝛽𝑇𝑉 − 𝜇1𝑇

𝑑𝐼∕𝑑𝑡 = 𝛽𝑇𝑉 − 𝜇2𝐼

𝑑𝑉 ∕𝑑𝑡 = −𝜇3𝑉 + 𝑘𝐼

𝑀2: Huang’s model (functional response) [21] 𝑑𝑇 ∕𝑑𝑡 = −𝛽𝑇𝑉 ∕(1 + 𝑎𝑇 + 𝑏𝑉 ) − 𝜇1𝑇

𝑑𝐼∕𝑑𝑡 = 𝛽𝑇𝑉 ∕(1 + 𝑎𝑇 + 𝑏𝑉 ) − 𝜇2𝐼

𝑑𝑉 ∕𝑑𝑡 = −𝜇3𝑉 + 𝑘𝐼

𝑀3: Pearce-Pratt-Phillips model (viral synapse) [24] 𝑑𝑇 ∕𝑑𝑡 = −𝛽1𝑇𝑉 − 𝛽2𝑇 𝐼 − 𝜇1𝑇

𝑑𝐼∕𝑑𝑡 = 𝛽1𝑇𝑉 + 𝛽2𝑇 𝐼 − 𝜇2𝐼

𝑑𝑉 ∕𝑑𝑡 = −𝜇3𝑉 + 𝑘𝐼

𝑀4: New model (functional response and viral synapse) 𝑑𝑇 ∕𝑑𝑡 = −𝛽1𝑇𝑉 ∕(1 + 𝑎𝑇 + 𝑏𝑉 ) − 𝛽2𝑇 𝐼 − 𝜇1𝑇

𝑑𝐼∕𝑑𝑡 = 𝛽1𝑇𝑉 ∕(1 + 𝑎𝑇 + 𝑏𝑉 ) + 𝛽2𝑇 𝐼 − 𝜇2𝐼

𝑑𝑉 ∕𝑑𝑡 = −𝜇3𝑉 + 𝑘𝐼

Fig. 4. Overview of research methods, explicitly seeing input as observable state variable(s) and output as models and optimum conditions.
Table 2. Summary of variables and constants and their corresponding symbols, 
definitions, and ranges.

Symbol Definition Range

𝑡 unit time (e.g., day) since symptom onset 
or the start of the experiment

𝑡 ∈ [0 ∞)

𝑇 , 𝐼, 𝑉 target cell density, infectious cell den-

sity, virus density

(𝑇 , 𝐼, 𝑉 ) ∶ 𝑇 ≥ 0,
𝐼 ≥ 0, 𝑉 ≥ 0

𝛽 virus infection rate 𝛽 ∈ (0, 1)
𝑘 viral shedding rate 𝑘 ∈ (0, 1)
𝜇1 target cell mortality 𝜇1 ∈ (0, 1)
𝜇2 infectious cell mortality 𝜇2 ∈ (0, 1)
𝜇3 virus mortality 𝜇3 ∈ (0, 1)
𝑎 proportional constant 𝑎 ∈ (0, 1)
𝑏 proportional constant 𝑏 ∈ (0, 1)
𝛽1 cell-free transmission rate 𝛽1 ∈ (0, 1)
𝛽2 cell-to-cell transmission rate 𝛽2 ∈ (0, 1)

SARS-CoV-2 infection (22 mild patients and 74 severe patients) col-

lected by a COVID-19 designated hospital in Zhejiang Province, China, 
from January 19, 2020, to March 20, 2020. This source has been li-
censed under the Creative Commons Attribution-NonCommercial 4.0 
International (CC BY-NC 4.0) license, which has permitted to edit, pro-

cess, and use it as a secondary source, subject to the author’s acknowl-

edgment [36]. The image processing via an open software WebPlotDigi-

tizer version 4.3 transformed the viral load data points into coordinate 
values [37, 38].

Fig. 5 illustrates daily viral load sequences since symptom onset in 
mild and severe cases.
4

Fig. 5. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral 
load data across the days since symptom onset in mild cases (solid line with 
black markers) and severe cases (dashed line with white markers). Each of these 
data sequences is a derivative of original figure by Zheng et al., licensed under 
the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-

NC 4.0) license.

Viral load fluctuates and attenuates in both cases over time, often 
higher in severe cases except on days 7, 11, 14, and 17. The missing 
values in the original sequences have undergone an imputation by lin-

ear interpolations.

https://www.bmj.com/content/bmj/369/bmj.m1443/F3.large.jpg
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
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3.2. Sensitivity analysis

Subsequently, the sensitivity analysis was devised as the model’s 
complexity reduction process. Sensitivity analysis identifies the param-

eters with little effect on the output even if fixed within the boundary 
conditions, and thereby one is reduced to calibrating simplified models 
only [39, 40]. Given a nonlinear system of viral dynamics and inter-

activity among multiple parameters, global sensitivity analysis (GSA) 
was employed. Suppose 𝑑-th dimensional parameter set (𝑝1, 𝑝2, ⋅ ⋅ ⋅, 𝑝𝑑 ), 
where each 𝑝𝑖 is standardized as 𝑝𝑖 ∈ [0, 1]. 𝑖 and 𝑋𝑖 denote parameter 
index running over natural numbers {1, … , 𝑑} and parameter set sam-

ples with only 𝑝𝑖 fixed respectively. The contribution of 𝑝𝑖 to output 𝑌
variance with all parameters varied is given by:

𝑆𝑇𝑖
= 1 −

Var𝑋̃𝑖
(E(𝑌 |𝑋̃𝑖))
Var(𝑌 )

Where:

Var : variance

E : expected value

The Quasi-Monte Carlo sampling method generated parameter value 
sets (Sobol sequences) with lower discrepancy than random value sets, 
and thereby yielding 𝑝𝑖 with small 𝑆𝑇𝑖

[41, 42].

3.3. Stability analysis

Additionally, the stability analysis examined the dynamic behavior 
of the solution trajectory in the neighborhood of the fixed point in phase 
space. The purpose of stability analysis is to guarantee that any solution 
is stable [43]. In other words, this process can imply the necessity of 
other separate simulations or detailed analysis near the bifurcation pa-

rameter conditions whenever the equilibrium solution bifurcates [44]. 
To perform a stability analysis of stationary equilibrium solutions, one 
can ground the Routh-Hurwitz theorem wherein the behavior of the sys-

tem near the steady-state is related to the eigenvalues of the Jacobian 
matrix [45, 46].

Theorem (Routh-Hurwitz theorem). If all the eigenvalues of the Jacobian 
matrix have negative real parts, the stationary solution is asymptotically 
stable. If any eigenvalue has a positive real part, the solution is unstable; if 
the maximum real part of the eigenvalues equals zero, the Jacobian matrix 
cannot characterize the stability.

Consequently, the eigenvalues of the Jacobian matrices of the two equi-

librium solutions were calculated: the disease-free equilibrium (DFE) 
point, where the disease dies out, and the endemic equilibrium (EE) 
point, where the disease remains persistent [47]. For example, the Ja-

cobian matrix of the 𝑀1 ’s DFE point 𝐸1 = (𝑇0, 0, 0) was

𝐽 (𝐸1) =
⎡
⎢
⎢
⎣

−𝜇1 0 −𝛽𝑇0
0 −𝜇2 𝛽𝑇0
0 𝑘 −𝜇3

⎤
⎥
⎥
⎦
.

The Jacobian matrix of the 𝑀1 ’s EE point 𝐸∗
1 = (𝑇 ∗, 𝐼∗, 𝑉 ∗) was

𝐽 (𝐸∗
1 ) =

⎡
⎢
⎢
⎣

−𝜇1 − 𝛽𝑉 ∗ 0 −𝛽𝑇 ∗

𝛽𝑉 ∗ −𝜇2 𝛽𝑇 ∗

0 𝑘 −𝜇3

⎤
⎥
⎥
⎦
.

Likewise, the Jacobian matrix of the 𝑀3 ’s DFE point 𝐸3 = (𝑇0, 0, 0) was

𝐽 (𝐸3) =
⎡
⎢
⎢
⎣

−𝜇1 −𝛽2𝑇0 −𝛽1𝑇0
0 −𝜇2 + 𝛽2𝑇0 𝛽1𝑇0
0 𝑘 −𝜇3

⎤
⎥
⎥
⎦
.

The Jacobian matrix of the 𝑀3 ’s EE point 𝐸∗ = (𝑇 ∗, 𝐼∗, 𝑉 ∗) was
3
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𝐽 (𝐸∗
3 ) =

⎡
⎢
⎢
⎣

−𝜇1 − 𝛽1𝑉
∗ − 𝛽2𝐼

∗ −𝛽2𝑇 ∗ −𝛽1𝑇 ∗

𝛽1𝑉
∗ + 𝛽2𝐼

∗ −𝜇2 + 𝛽2𝑇
∗ 𝛽1𝑇

∗

0 𝑘 −𝜇3

⎤
⎥
⎥
⎦
.

The eigenvalues were calculated from these Jacobian matrices of 𝑀1
and 𝑀3 by SymPy 1.6.2. Finally, the artificially generated data by 
quadrature of the models’ ODEs got calibrated to the observed data. 
In the calibration experiments, dynamic time warping (DTW) provided 
a similarity measure between the artificial time series of viral particles 
from the models and the actual time series of viral load [48]. Here, 
DTW computes the shortest path two time-series data by finding the ab-

solute error value per point across them, which enables one to obtain 
the similarity even if their lengths and periods are different [49]. Global 
optimization of DTW distance as a cost function avoided dropping into 
local minima by Algorithm 1. Given that the well-posed inverse prob-

lems require that any solution is identifiable [50, 51], the calibration 
experiments estimated the parameter values with the finite prediction 
bands allowed.

Algorithm 1
Input: ODEs, Sobol sequences (n = 1000), observed data (mild or severe)

Output: estimated parameter value sets (n = 1000)

𝑃𝑎𝑟𝑎𝑚 ← Sobol sequences

for int 𝑖 = 1, 𝑖 ≤ 50, + + 𝑖 do

initialize DataFrame (𝐷𝐹 ) to empty

for int 𝑗 = 1, 𝑗 ≤ 1000, + + 𝑗 do

for int 𝑑𝑎𝑦𝑠 = 0, 𝑑𝑎𝑦𝑠 ≤ 200, + + 𝑑𝑎𝑦𝑠 do

𝑆𝑖𝑚𝐷𝑎𝑡𝑎[𝑗] ← ODEs integration with 𝑃𝑎𝑟𝑎𝑚[𝑗]
end for

𝐷𝑇𝑊 𝑑𝑖𝑠𝑡[𝑗] ← DTW distance between 𝑆𝑖𝑚𝐷𝑎𝑡𝑎[𝑗] and observed data

stack (𝑃𝑎𝑟𝑎𝑚[𝑗], 𝐷𝑇𝑊 𝑑𝑖𝑠𝑡[𝑗]) to 𝐷𝐹

sort 𝐷𝐹 (in descending order by 𝐷𝑇𝑊 𝑑𝑖𝑠𝑡)

initialize 𝑃𝑎𝑟𝑎𝑚∗ to top 250 sets of 𝑃𝑎𝑟𝑎𝑚
for int 𝑙 = 1, 𝑙 ≤ 3, + + 𝑙 do

for int 𝑟 = 1, 𝑟 ≤ 250, + + 𝑟 do

add random float value ∈ [−0.01, 0.01] to one element of 𝑃𝑎𝑟𝑎𝑚[𝑟] of 𝐷𝐹 [𝑟]
and stack the new parameter value set to 𝑃𝑎𝑟𝑎𝑚∗

end for

end for

end for

𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚∗

end for

These methods resulted in the optimum set of models with parame-

ter estimates. The experimental configurations were as follows: Intel(R) 
Core(TM) i7-7500U CPU@2.70GHz, 2904Mhz, 16GB of memory, and 
Microsoft(R) Windows(R) 10 Operating System.

4. Results and discussion

This section shows the results and expands the discussion.

4.1. Sensitivity analysis

As the results of GSA, the sensitivity indices with error bars are il-
lustrated in Fig. 6.

For all models, 𝜇 had low sensitivity. 𝑎 and 𝑏 had almost zero sen-

sitivities. In contrast, 𝛽 and 𝑘 had high sensitivities, where 𝛽 became 
distributed between 𝛽1 and 𝛽2 in the models considering viral synapse. 
Considering that the parameters with small sensitivities can be fixable 
[52] and that the sensitivities for parameters other than the fixable pa-

rameters were similar, the parameter values 𝜇1, 𝜇2, 𝜇3, 𝑎, and 𝑏 were 
set to zero. This parameter pruning simplified the four models into two 
models. In particular, 𝑀2 was reduced into 𝑀1 and 𝑀4 merged into 
𝑀3. The above model simplification implied that it would be sufficient 
to perform stability analysis and calibration experiments only for 𝑀1
and 𝑀3.
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Fig. 6. Sensitivity analysis results. Each figure includes the bars reflecting sensitivities to the parameters about four models; (a) Perelson’s model 𝑀1 (b) Huang’s 
model 𝑀2 (c) Pearce-Pratt-Phillips model 𝑀3 (d) original model 𝑀4 . Each error bar is a 95% confidence interval.

Fig. 7. Calibration results (Perelson’s model 𝑀1). The curves (blue: mild) (red: severe) are plotting the mean of estimated parameter value sets of (a) virus infection 
rate 𝛽 (b) viral shedding rate 𝑘 corresponding to the iteration number with prediction bands allowed. The dashed lines and the filled areas are the margins of errors 
and the prediction bands ±2SE (standard error of the mean), respectively.
4.2. Stability analysis

Next, according to the stability analysis results, all the eigenvalues 
of 𝐽 (𝐸0), 𝐽 (𝐸∗

0 ), 𝐽 (𝐸3), and 𝐽 (𝐸∗
3 ) had negative real parts. These eigen-

values guaranteed the solution’s orbital stability based on the Routh-

Hurwitz theorem. Namely, it could be postulated that the two equilib-

rium solutions, DFE point and EE point, would remain asymptotically 
stable, which meant no requirement of specific constraints on parameter 
conditions in the calibration experiments. However, it would be curious 
that there existed no chaos or bifurcation, and the models’ stability did 
not correspond to the fluctuation in the observed data sequences. There-

fore, further searching experimental data sequences without fluctuation 
over a longer period would deal with this inconsistency.

Hereinafter, the calibration results of 𝑀1 and 𝑀3 are shown. Fig. 7

shows the calibration results of 𝑀1.

The horizontal and vertical axes correspond to the iteration number 
and the estimated parameter value sets. The blue curve stands for mild 
cases and the red one for severe cases. The solid lines are not regression 
curves but the plots of the mean of estimated values. The dashed lines 
are margins of errors, and the filled areas are prediction bands ±2SE
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(standard error of the mean). The narrower prediction band reflects the 
higher prediction accuracy of the mean parameter value. Considering 
𝛽 converged to (0.70, 0.30), whereas 𝑘 to (0.19, 0.21) for mild and severe 
cases, 𝑀1 would be an identifiable model. If the relationship between 
the COVID-19 severity and infection rate were not subject to other fac-

tors, it could be speculated that smaller 𝛽 would have reproduced severe 
cases. As for 𝑘, there was little difference in the estimates between mild 
and severe as for viral shedding, making it difficult to give a biologically 
meaningful interpretation.

Fig. 8 shows the calibration results of 𝑀3.

𝛽1 converged to (0.32, 0.42), 𝛽2 to (0.25, 0.0050), and 𝑘 to (0.195, 0.200)
for mild and severe cases. Regarding viral shedding term 𝑘, the same 
discussion as above for the 𝑀1 results holds. The calibration experi-

ments could not determine the true values of 𝛽1 and 𝛽2 accompanied 
with the prediction bands. Although 𝑀3 is more complicated than 𝑀1, 
𝑀3 would be a partially identifiable model. This difference in the pre-

diction bands would reflect that the model complexity could be a trade-

off with the identifiability in the simple model. As for the comparison 
between 𝛽1 and 𝛽2, 𝛽2 was eightieth of 𝛽1 in severe cases. Suppose it 
is true that the smaller 𝛽 in Fig. 7a results in the more severe COVID-
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Fig. 8. Calibration results (Pearce-Pratt-Phillips model 𝑀3). The curves (blue: mild) (red: severe) are plotting the mean of estimated parameter value sets of (a) 
cell-free transmission rate 𝛽1 (b) cell-to-cell transmission rate 𝛽2 (c) viral shedding rate 𝑘 corresponding to the iteration number with prediction bands allowed. The 
dashed lines and the filled areas are the margins of errors and the prediction bands ±2SE (standard error of the mean), respectively.

Table 3. Summary of models and their corresponding converged values of estimated parameters. The values 
of (𝛽, 𝑘) in Perelson’s model 𝑀1 and (𝛽1, 𝛽2, 𝑘) in Pearce-Pratt-Phillips model 𝑀3 are shown in mild cases 
and severe cases.

Model Parameter Mild Severe Description

𝑀1 𝛽 0.70 0.30 virus infection rate

𝑘 0.19 0.21 viral shedding rate

𝑀3 𝛽1 0.32 0.42 cell-free transmission rate

𝛽2 0.25 0.0050 cell-to-cell transmission rate

𝑘 0.195 0.200 viral shedding rate
19 symptoms. Then, 𝛽2, which is smaller in severe cases in Fig. 8b, 
would be related to the severity rather than 𝛽1. In other words, the 
cell-to-cell transmission would be essential for severe COVID-19 than 
cell-free transmission. The recent papers have reported the correlation 
between the COVID-19 severity and the expression level of the spe-

cific genes related to the cell-to-cell transmission on other viruses [53]. 
Therefore, one ideal interpretation from the calibration results would be 
the correlation between the cell-to-cell transmission and the COVID-19 
severity. If accurate, it would lead to claiming the efficacy of drug inter-

vention for 𝛽2 such as a cell-to-cell transmission blocking. However, it 
has been still unclear whether the genes are involved in the cell-to-cell 
transmission in COVID-19. Hence, it is necessary to carefully validate 
the relationship between the cell-to-cell transmission and the COVID-19 
severity. Table 3 shows the summary of the above calibration results.

5. Related work

This section compares the models in this paper with other model ex-

tensions in terms of two types of computational modeling: Agent-based 
modeling (ABM) and Equation-based modeling (EBM) [54]. These two 
modeling approaches differ in heterogeneity and homogeneity, social 
behavior, and schematic representation [55]. ABM is characterized by 
heterogeneity, i.e., different characteristics at the individual level; state, 
location coordinates in space, age, gender, speed, degree of interaction 
[56]. Each individual is assumed to be a social, intelligent agent that 
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constantly modifies its own behavioral rules through feedbacks called 
micro-macro loops [57, 58]. There have existed studies that employed 
ABM to describe the interaction of the immune system between tuber-

culosis and cancer [59]. In contrast, EBM is not subject to heterogeneity 
but relatively homogeneous, i.e., the stratification is more straightfor-

ward than that of ABM, and the individual characteristics differ de-

pending on the categorized units such as age groups, rather than on the 
personal level [60]. EBM often assumes neither social individual nor 
behavioral change; every individual is habituated as an identical parti-

cle [61]. Indeed, assuming that viruses and cells lack sociality would be 
reasonable. Accordingly, EBM represents a sum of individual state tran-

sitions as a stock-flow diagram or a compartment model. The choice 
of which modeling approach, ABM or EBM, has required consistency 
with the modeling goals, such as immunization policymaking [62]. This 
paper has opted for EBM in place of ABM for two reasons: first, the 
homogeneous group of cells and viral particles; second, the difficulty 
in procuring the spatial information required for ABM. The model ex-

tensions on EBM include the models taking into account the discrete 
nature of the molecules and temporal changes in the host immune re-

sponse, rather than assuming a uniform probability of infection. If the 
number of molecules in the reaction volume is sufficiently large, the 
continuous ODEs, including stochastic or discrete stochastic models as 
more appropriate models, are sometimes helpful [63]. Compared with 
the asymptotically stable models, fractional models with a non-integer 
order derivative can reproduce more complex behavior [64]. For ex-
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ample, the fractional model in the Caputo-Fabrizio derivative with a 
nonsingular kernel has successfully described the dynamics of hepati-

tis B virus or tuberculosis [65, 66]. Otherwise, the fractional model in 
the Atangana-Baleanu derivative with nonsingular and nonlocal kernels 
for the crossover behavior in the model has described the complexity of 
dynamics [67].

6. Conclusion

This paper investigated the different SARS-CoV-2 dynamics mod-

els with numerical analysis based on ODEs. GSA simplified the models, 
and stability analysis revealed that the models satisfied the stability cri-

terion. The subsequent calibration experiments fitted the models to the 
observed viral load data across two types of hospitalized COVID-19 pa-

tients. The comparison of optimum parameter conditions in mild cases 
and severe cases indicated that cell-to-cell transmission would signifi-

cantly correlate to the COVID-19 severity. As a limitation, the fidelity 
and sample size of data were not appropriate to negate the inconsis-

tency with the experimental data fluctuation. These limitations made 
the arguments only from the interpretations in this paper unsound. To 
surmount these limitations, fetching fine-grained SARS-CoV-2 data in a 
longer duration would be desirable. Otherwise, systematic review and 
metasynthesis on the open data platform [68] could also ensure the inte-

grated data with higher fidelity. Given the above, further investigation 
would include the validation of the relationship between the cell-to-cell 
transmission and the COVID-19 severity and the identification of the 
essential factors in severe cases. Overall, future work remained, includ-

ing data integration and the above relationship’s validation. Still, the 
experiments for modeling and simulation in this paper would have con-

tributed to exploring the plausible SARS-CoV-2 dynamics models based 
on numerical analysis and differential equations.
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