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Genome-wide prediction models that incorporate de novo
GWAS are a powerful new tool for tropical rice improvement

JE Spindel1, H Begum2,4, D Akdemir1, B Collard2, E Redoña2,5, J-L Jannink1,3 and S McCouch1

To address the multiple challenges to food security posed by global climate change, population growth and rising incomes,
plant breeders are developing new crop varieties that can enhance both agricultural productivity and environmental
sustainability. Current breeding practices, however, are unable to keep pace with demand. Genomic selection (GS) is a new
technique that helps accelerate the rate of genetic gain in breeding by using whole-genome data to predict the breeding value of
offspring. Here, we describe a new GS model that combines RR-BLUP with markers fit as fixed effects selected from the results
of a genome-wide-association study (GWAS) on the RR-BLUP training data. We term this model GS + de novo GWAS. In a
breeding population of tropical rice, GS + de novo GWAS outperformed six other models for a variety of traits and in multiple
environments. On the basis of these results, we propose an extended, two-part breeding design that can be used to efficiently
integrate novel variation into elite breeding populations, thus expanding genetic diversity and enhancing the potential for
sustainable productivity gains.
Heredity (2016) 116, 395–408; doi:10.1038/hdy.2015.113; published online 10 February 2016

INTRODUCTION

Rice (Oryza sativa) is a model species for crop genomics. In 2002, rice
became the first crop species to have its genome sequenced (Goff et al.,
2002), and it remains one of the best characterized crop genomes due
to its small size, abundant genetic variation and high-quality sequence
data (Ronald and Leung, 2002; Huang et al., 2013). Since the
sequencing and annotation of the rice genome, there have been
44278 publications on rice genetics, ~ 3000 genes have been
structurally and/or functionally annotated (Ouyang et al., 2007) and
3000 rice genomes have recently been sequenced at ~ 10X coverage
(Alexandrov et al., 2014). Although these numbers represent great
progress for rice biology, they have so far had little impact on rice
agriculture (Bernardo, 2008).
One of the major challenges facing the agricultural community as it

seeks to integrate genomic information into applied plant improve-
ment has been that until recently genotyping was expensive and
laborious (Desta and Ortiz, 2014; Varshney et al., 2014; Lipka et al.,
2015). As a result, genomic applications were constrained by the
number of marker data points that could be assayed per generation in
large breeding populations. Consequently, most of the characterized
genes in rice are those associated with Mendelian traits, that is, traits
controlled by a few genes of large effect. The majority of agronomic
traits of interest to plant breeders, however, are quantitative and
polygenic, governed by many genes of small effect.
This paradox has determined how molecular markers and genomic

information have been applied to breeding programs. In particular, it
has lent itself to marker-assisted selection (MAS) in rice as well as in a

variety of other species. In all cases, markers in critical large effect
genes or genomic regions are used to predict the presence or absence
of agriculturally valuable traits (Collard et al., 2005; Bernardo, 2008;
Collard and Mackill, 2008). Although MAS contributed to shortening
the time required to develop and release new rice varieties, from ~12
years to ~ 6 years, it is predicated on prior knowledge about major-
effect genes and quantitative trait loci (QTLs) that serve as the targets
of selection. Furthermore, MAS is generally used to introduce one
gene at a time into an existing and highly valued variety. It is not
designed to manage the recombination of many genes simultaneously
(Collard and Mackill, 2008; Desta and Ortiz, 2014).
Genomic Selection (GS) offers an alternative to MAS and conven-

tional phenotypic selection. GS has the capacity to use full-genome
data to increase breeding efficiency. In GS, a training population is
phenotyped for a trait(s) of interest and genotyped using genome-wide
markers. A statistical/machine learning model is built from the
training population data that take the genotypes of individuals in a
breeding population as input and outputs a measure of the value those
individuals hold as parents of future breeding – the genome estimated
breeding value (GEBV; Meuwissen et al., 2001; Lorenz et al., 2011). GS
improves breeding efficiency by providing GEBVs for all individuals in
a population, thus enabling the breeder to make informed decisions
about which individuals to use in crossing or in allocating phenotyp-
ing resources among individuals and generations. Appropriate use of
GEBVs saves time, effort and money in a breeding program by
reducing the requirement to phenotype the entire population every
generation, increasing the proportion of top performers in the
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breeding population, and enabling selection based on allele rather than
line means (Heffner et al., 2009; Bernardo, 2010). It can also accelerate
the delivery of new varieties by keeping the breeding pipeline full of
high-quality material. Unlike in MAS, in GS even infinitesimally small
effect alleles contribute to model development, and are thus tracked
and accounted for by the model. As a result, many loci can be under
selection simultaneously. GS is known to be effective for maize and
small grains, and recent studies suggest it will also be useful for rice
(Asoro et al., 2013; Massman et al., 2013b; Crossa et al., 2014; Onogi
et al., 2015; Spindel et al., 2015).
Depending on the crop, trait, and breeding population design, the

choice of statistical method used to build the GS model has been
shown to have a significant effect on prediction accuracy (Daetwyler
et al., 2013). Interestingly, for breeding crops such as rice and wheat,
in which large effect QTL are common, models that incorporate a
select number of molecular markers as fixed effects have been
shown to contribute to improved prediction accuracy. Bernardo
(2014) first proposed based on simulation experiments that when
1–3 major genes for a trait are known and each accounts for ⩾ 10% of
the phenotypic variance that these genes should be included as fixed
effects in GS models (Bernardo, 2014). Empirical results by Rutkoski
et al., 2014 confirmed the utility of the strategy for stem rust resistance
in a wheat breeding population, while Owens et al. (2014) showed that
it was effective for predicting pro-vitamin A content in a maize
diversity panel. Other groups showed similar utility by weighting
known genes of large effects in wheat (Bentley et al., 2014; Zhao et al.,
2014). It is currently unknown, however, how including markers as
fixed effects will improve rice GS models.
A second open question is how markers to be fit as fixed effects

should be identified and/or selected. The previously cited experiments
have, for the most part, relied on known functional markers for traits
of interest (Bentley et al., 2014; Owens et al., 2014; Rutkoski et al.,
2014; Zhao et al., 2014), or propose using previously published
genome-wide association study (GWAS) results (Zhang et al., 2014).
Here, we propose for the first time directly using only the results of
GWAS run using GS training population data, a method we are calling
‘GS + de novo GWAS’, or simply ‘GS+GWAS’. There are numerous
benefits to this approach. Both GS and GWAS use the same input data
sets, a phenotype data set and a genotype data set, thus no additional
data are required, only additional analysis. Furthermore, we
hypothesize that the significant single-nucleotide polymorphisms
(SNPs) identified from de novo GWAS will be more directly relevant
to the population undergoing selection than SNPs identified as
significant in previously published GWAS on potentially disparate
populations, and thus will improve prediction accuracy beyond that
which could be obtained using previously published GWAS results.
Using de novo GWAS as part of the GS model is also more accessible
to breeders, as it does not require an extensive knowledge or literature
search on the underlying genetics of a trait of interest.
There are several points in a standard pedigree breeding program

where an intervention based on GS could significantly shorten the
breeding cycle by eliminating a generation of phenotyping or
providing the breeder a mechanism for eliminating poor-performing
offspring before the next generation of costly field trials (Spindel et al.,
2015). In this study, we assess the potential of introducing fixed
variables identified using de novo GWAS into GS models to improve
prediction accuracy as compared with GS models that make use of
historical GWAS data or other standard GS models, and also consider
the contribution of multi-location field trials to GS prediction
accuracy. Using available multi-environment trial (MET) data from
the International Rice Research Institute (IRRI) irrigated rice breeding

program, we extract information from our models to evaluate which
of currently used environments in IRRI's MET program can be
combined for the purposes of model training, and thus define the best
combination of environments for trait modeling and prediction in
Southeast (SE) Asia.
The current study was undertaken as part of a rigorous evaluation

of the irrigated rice breeding program at IRRI, and was specifically
designed to investigate opportunities for integrating GS into that
program. The data sets presented here were collected in eight locations
in SE Asia between 2009 and 2012, and are used to highlight
opportunities to use existing unbalanced phenotypic data sets in
combination with genotyping-by-sequencing genotype data to develop
and optimize GS models. Given that the cost of genotyping is
continuing to decline while costs of field-based phenotyping are high
and generally increasing, it is time for the rice breeding community to
consider if and how GS can be implemented in rice breeding programs
and to define the pilot breeding studies that can be used to help test
and transition to genomics-assisted selection methods.

MATERIALS AND METHODS

Plant material and phenotyping
In all, 369 elite breeding lines (F6–F7) were selected for genotyping from the
IRRI irrigated rice breeding program based on the planned inclusion of the
lines in the 2011 Multi-Environment Testing Program and presence in the 2011
and 2012 Replicated Yield Trials (RYT) at IRRI (Los Baños).
Two phenotype data sets were used in this study, (1) the RYT data set,

consisting of field data from 2009–2012, two seasons per year (dry season (DS)
and wet season (WS)) collected in a single field at IRRI in Los Baños,
Philippines, and (2) the MET data set, consisting of field data from 2011 and
2012, two season per year (dry and wet), at a total of eight sites in SE Asia
(Table 1).
For the RYT data set, phenotypes collected included plant height, flowering

time, maturity date, number of effective tillers or panicles per plant, lodging
score, grain yield and rep number (Supplementary Materials and Methods).
For the MET data set, in addition to the phenotypes collected for the RYT

data set, data were collected on field row, field column, phenotypic acceptability
score for whole plant, phenotypic acceptability score for panicle and phenotypic
acceptability score for grain (Supplementary Materials and Methods). The eight
sites at which the MET data were collected to compose IRRI's target population
of environments for irrigated rice in SE Asia including IRRI/Los Baños (‘MET
field’), Isabela, Nueva Ecija, Agusan del Norte, Bohol, and Midsayap—all in the
Philippines, Batalagoda, Sri Lanka, and Hai Dong, Vietnam. Data were highly
unbalanced (Table 1; Supplementary Materials and Methods).

Genotyping
Genotyping by sequencing was performed on 369 breeding lines as described in
Spindel et al., 2015 (Spindel et al., 2015). For details on analysis and filtering see
the Supplementary Methods. The cross-validation (CV) results reported in
Supplementary Tables S2 and S4 were obtained using a genotype data set
consisting of 108,005 SNPs with call rates ⩾ 0.75 and monomorphic SNPs
removed. CV results reported in Supplementary Table S3 were obtained using
subsets of this SNP data set after removing SNPs with minor allele frequency
o0.05 (subsets were thus selected from a total of 58 318 SNPs, minor allele
frequency filtering was performed for purposes of making GWAS more robust),
for details on selection of SNP subsets, see 'CV using SNP subsets' below. For
all data sets, after SNP filtering, individuals with 460% missing data were
dropped from the data set, which resulted in the removal of six individuals that
failed sequencing for a total of 363 genotyped lines. Heritabilities (Table 1) were
calculated using a subset of the 108 005 SNPs with call rates ⩾ 90%.

Subpopulation and family structure analysis and CV fold design
The majority of the 363 lines were characterized a priori from pedigree records
as belonging to the indica or indica-admixed subpopulation groups. To identify
outlier individuals belonging to the japonica or japonica-admixed groups,
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principal components analysis was performed in R (version 3.0.1; https://www.
r-project.org) using a 73 147 SNP subset of the 108 005 SNPs used for GS with
imputed call rates ⩾ 0.9 (remaining missing data were then filled using the
line means). The results of the principal components analysis were used to
identify 31 subpopulation outliers belonging to either the japonica subgroup
or containing substantial japonica admixture. These 31 outliers were
removed from the data set and were not included in any further analyses
(Spindel et al., 2015).
It was also known from studying the breeding program pedigrees that

differing degrees of family relatedness existed within the remaining 332 lines,
including half sibs, full sibs, parents and offspring, and unrelated lines. The
presence of highly related individuals in the data set could have the effect of
artificially inflating prediction accuracy if the most closely related individuals
are randomly assigned to different folds, and one of those folds is then used as
training, whereas the other is used as testing. To control for this possibility
when designing our folds, we performed a partitioning around k-medoids
analysis (pamk) using the R fpc package (function pamk; https://cran.r-project.
org/web/packages/fpc/index.html) with the 73 147 imputed SNPs (Hennig,
2015; Kaufman and Rousseeuw, 1990). The largest average silhouette width was
found to occur at k= 87, so individuals found within the same cluster of 87
were assigned to the same fold, making it impossible for the most closely
related individuals to be split across training and testing folds. Full clusters were
assigned to one of five folds randomly, controlling only for cluster size to
produce three folds of 66 individuals and two folds of 67 individuals. A similar
procedure was used by Ly et al. (2013).

CV experimental design
For each CV experiment, one of the five folds served as the validation fold, and
the other four folds served as the training folds. The process was repeated five
times so that each fold served once as the validation fold, resulting in predicted
GEBV values for all individuals. Accuracy was assessed as the mean Pearson
correlation of the predicted GEBV and adjusted phenotype in the validation

population. For the RYT data, CV experiments were performed to test all

logical combinations of years and seasons in the training and validation

populations. A year's WS was never used to predict the same year's DS because

in SE Asia, the DS arrives first chronologically. We did, however, predict the

2012 WS both with and without the preceding 2012 DS present in the training

population. We tested scenarios in which both seasons per year were included

in the training population, as well as scenarios where only the data from the

seasons matching the validation population were included in the training data

(for example, using only the WS data to predict the WS). We also sought to

test scenarios using only more recent year data in the training population

(for example, only 2011, or 2010–2011) and scenarios using more historical

year data in the training population (for example, 2009–2011; Supplementary

Table S1A).
The same logic was applied to the combination of years and seasons for the

different MET CV experiments. In addition, the MET experiments were varied

in terms of the site composition in the training population. In addition to CV

experiments in which all sites were combined into a single training population

and only the validation site was used to compose the training population, other

combinations of MET sites were chosen based on (1) the geographic location of

the sites, (that is, more northern sites were placed together, more southern sites

were placed to together, where sites in between the northernmost and

southernmost sites were tested in a variety of groupings) and (2) phenotypic

data correlation, that is, if sites appeared to be correlated for any of the

phenotypes of interest, they were tested in combination (Supplementary Table

S1B). Note that Vietnam was excluded from all experiments except the

'validation site only' experiments because it was not correlated with any other

site (Supplementary Figure S1). The 2012 Isabela DS was both included and

excluded in any CV experiment in which it would normally have been included

because it also was not correlated with any other site or season, including other

Isabela years/seasons (Supplementary Figure S1). For additional details on MET

experiments, calculation of adjusted phenotypes for validation folds and

Table 1 Summary of the two data sets used in this study

Data set name Site Year Season Lines w/ data Missing data Phenotypes of interest h2

RYT LB RYT plot 2009 dry 114 218 FLW, PH, YLD F: 0.28 P: 0.24 Y: 0.31

RYT LB RYT plot 2009 wet 163 169 FLW, YLD F: 0.32 Y: 0.19

RYT LB RYT plot 2010 dry 166 166 FLW, PH, YLD F: 0.27 P: 0.35 Y: 0.07

RYT LB RYT plot 2010 wet 209 123 FLW, PH, YLD F: 0.38 P: 0.26 Y: 0.13

RYT LB RYT plot 2011 dry 327 5 FLW, PH, YLD F: 0.36 P: 0.39 Y: 0.27

RYT LB RYT plot 2011 wet 328 4 FLW, PH, YLD F: 0.39 P: 0.26 Y: 0.13

RYT LB RYT plot 2012 dry 325 7 FLW, PH, YLD F: 0.44 P: 0.35 Y: 0.32

RYT LB RYT plot 2012 wet 324 8 FLW, PH, YLD F: 0.33 P: 0.30 Y: 0.31

MET I 2011 dry 323 9 FLW, PH, YLD F: 0.38 P: 0.15 Y: 0.06

MET NE 2011 dry 327 5 FLW, PH, YLD F: 0.30 P: 0.23 Y: 0.16

MET A 2011 wet 323 9 FLW, PH, YLD F: 0.43 P: 0.30 Y: 0.23

MET A 2012 dry 202 130 FLW, PH, YLD F: 0.05 P: 0.47 Y: 0.26

MET B 2012 dry 203 129 FLW, PH, YLD F: 0.09 P: 0.14 Y: 0.16

MET I 2012 dry 203 129 FLW, PH, YLD F: 0.13 P: 0 Y: 0.07

MET LB MET plot 2012 dry 203 129 FLW, PH, YLD F: 0.39 P: 0.32 Y: 0

MET NE 2012 dry 203 129 FLW, PH, YLD F: 0.24 P: 17 Y: 0.08

MET A 2012 wet 203 129 FLW, PH, YLD F: 0.45 P: 0.09 Y: 0.05

MET B 2012 wet 203 129 PH, YLD P: 0.23 Y: 0.13

MET I 2012 wet 203 129 FLW, PH, YLD F: 0.31 P: 0.52 Y: 0.13

MET LB MET plot 2012 wet 203 129 FLW, PH, YLD F: 0.34 P: 0.39 Y: 0.06

MET NE 2012 wet 203 129 FLW, PH, YLD F: 0.19 P: 0.08 Y: 0.13

MET M 2012 wet 53 279 FLW, PH, YLD F: 0.64 P: 0.28 Y: 0.74

MET SL 2012 wet 53 279 FLW, PH, YLD F: 0.41 P: 0.40 Y: 0.26

MET V 2012 wet 53 279 FLW, PH, YLD F: 0.38 P: 0 Y:0.14

(1) the Replicated Yield Trial (RYT) data set, consisting of 4 years of data (2009–2012), two season per year (dry and wet), taken at 1 plot at IRRI, in Los Baños, Laguna, Philippines (LB, RYT
plot), and (2) the Multi-Environment Trial (MET) data set, consisting of 2 years of data (2011–2012), two seasons per year (dry and wet) taken at 7 sites in SE Asia: LB, San Meteo, Isabela,
Philippines (I), Munoz, Nueva Ecija, Philippines (NE), RTR, Agusan del Norte, Philippines (A), Ubay, Bohol, Philippines (B), Midsayap, Cotabato Philippines (M), Batalagoda, Sri Lanka (SL) and Hai
Dong, Vietnam (V). Flowering time (F/FLW), Plant height (P/PH) and grain yield (Y/YLD) were collected for both data sets, for all sites and seasons, except where marked. h2=narrow-sense
heritability. Data sets were highly unbalanced as is common for large multi-year, multi-site empirical breeding trial data sets, for additional details, see methods section.
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correlation analyses and inclusion of validation population year/season in
training population, see Supplementary Materials and Methods.

GS modeling
Seven statistical methods were used for each RYT experiment, including six GS
methods: GS + de novo GWAS, GS + historical GWAS, RR-BLUP, Bayesian
LASSO (BL), Reproducing Kernel Hilbert Spaces (RKHS) and random forest
(RF), and one non-GS method: multiple linear regression (MLR). The four non
GS+GWAS GS statistical methods were chosen based on their demonstrated
success in accurately predicting GEBVs in variety of crops and because they
represent the different types of statistical methodologies used to build GS
models, that is, linear parametric methods (RR-BLUP, BL), non-linear semi-
parametric methods (RKHS), non-linear, non-parametric methods (RF), as
well as maximum-likelihood methods (RR-BLUP, RKHS), Bayesian methods
(BL) and machine learning methods (RF; Breiman, 2001; Gianola and van
Kaam, 2008; Gianola et al., 2009; Heslot et al., 2012; Perez-Rodriguez et al.,
2012; Rutkoski et al., 2012; Crossa et al., 2014). For an overview of the
methods, see Lorenz et al. (2011).
MLR using a subset of markers derived from single marker regressions

(MLR) served as our non-GS marker-based prediction control. For each fold,
single marker regression was run for all markers and P-values determined for
each marker by F-test. Note that this is statistical equivalent of a crude GWAS.
Linear models were then tested using 1 through the first 100 most significant
markers, and the model with the best fit was returned. The returned model was
then used to calculate the accuracy for the given fold. For the marker subset
experiments where the number of markers in the subset (p) was o100, models
were tested using 1 through p markers. Note that our MLR methodology was
modified slightly from Spindel et al., 2015 to be more conservative: the
validation data were not used in this case to calculate model fit, only the
training data were used. This resulted in markedly lower MLR prediction
accuracies than those previously reported, particularly for flowering time
(Supplementary Materials and Methods).
For the RYT experiments, three CV accuracies were calculated. CV1

accuracies that are also the accuracies reported for the MET data and the CV
experiments using marker subsets, were calculated by including the validation
year/season in the training population, excluding individuals in the validation
fold, for example, for experiment 1, CV1, the training population consisted of
data on all training population individuals from years 2009 to 2011 all seasons,
as well as the 2012 (the validation season; Supplementary Table S1A). For an
explanation of CV2 and CV3, see the Supplementary Materials and Methods
'Inclusion of validation population year/season in training population'.
Narrow sense heritabilities (Table 1) were calculated for each trait in each

season, year and site (MET data only) on a per line basis using the rrBLUP
package (Endelman, 2011; https://cran.r-project.org/web/packages/rrBLUP/
index.html), function mixed.solve, with the least square means for the complete
population used as input. The narrow-sense heritabilities were calculated as the
additive genetic variance divided by the total phenotypic variance.

RR-BLUPþ Fixed effects model. When no markers are included as fixed
effects, the model is equivalent to standard RR-BLUP (Equation 1), where y is
the vector of observations, X is an incidence matrix for fixed effects containing
only a vector of 1s for the intercept, β is a vector of fixed effect estimates
containing the intercept, Z is an incidence matrix for random effects relating
individuals to observations and u is a vector of random individual effects with u
~ N(0, Gσ2μ), where G is a genomic relationship matrix calculated using all
markers (Endelman, 2011). When up to four markers are added to the model
as fixed effects, their allele dosages are added as columns to the X matrix
and β expands accordingly. The markers are then also removed from the
calculation of G. All aspects of model fitting otherwise remain the same.

y ¼ Xbþ Zuþ e ð1Þ

Selection of fixed effects for RR-BLUP+fixed effects models. The markers fit as
fixed effects were selected from GWAS output, either from a GWAS calculated
using the genotype and phenotype data on the individuals in the training

population (GS + de novo GWAS) or from previously published GWAS data
(GS + historical GWAS).

For selection of fixed effects using de novo GWAS, the algorithm described
below was used for each CV experiment:

1. Run GWAS using Genome-wide Efficient Mixed Model Association
(GEMMA) five times, once for each validation fold (Zhou and Stephens,
2012). The input to GEMMA consists of genotype and phenotype data on
the individuals in the combined four training folds. Data on individuals in
the validation fold is not included in the GEMMA input.

2. Sort the GWAS output by P-value (low to high) and perform multiple-test
correction using False Discovery Rate (FDR), then bin the SNPs on each
chromosome into 500 Kb bins and output the lowest P-value SNP in each
bin. This step was performed to group SNPs into GWAS peaks—as this was
a breeding population with extensive linkage disequilibrium (LD)
(Supplementary Figure S2), peaks were large, often spanning ~ 500 Kb. In
other population types, the bin size would need to be modified, most likely
decreased, to account for smaller peak size or lower LD. FDR was performed
for all SNPs using the R p.adjust() function, method= ‘BH’ (= benjamini
hochberg; Benjamini and Hochberg, 1995).

3. For each fold, load respective GEMMA fold output(s) and save up to the
three most significant SNPs (FDR= 0.1) for the trait of interest. If no SNPs
pass FDR, save only the lowest P-value SNP. If only one or two SNPs pass
the FDR threshold, save only the SNPs that pass the threshold. Save also the
single most significant SNP for flowering time.

4. Test the markers saved from 3. in all combinations and select the markers
that, by themselves, constitute the best linear fit using only the training data,
that is, select the combination of markers that results in the maximal
correlation between the phenotype training data and a prediction resulting
from a linear model of the selected marker genotypes. Calculate the average
of the FDR corrected P-values of the selected fixed effect SNPs= average
corrected P-value for model.

5. Proceed with model solving and validation phenotype prediction using
markers selected in 4.

For the RYT data set, both the 2012 DS and 2012 WS phenotype data were
used as the input for GEMMA for each CV experiment. For the MET data set,
the 2012 DS RYT data, 2012 WS RYT data, and the 2012 MET phenotype data
for the respective validation year, site and season of a given CV experiment
were tested as the input to GEMMA for each CV experiment.

Note that we tested models both with and without the lowest P-value SNP
for flowering time (the 'fourth' marker added to the yield and plant height top
three markers) and found that the differences between these models were
generally small, although in most cases including the flowering time SNP as a
fixed effect improved model accuracy. Given that flowering time alone can shift
performance of other agronomic traits, it is always worth controlling for its
effect in breeding populations that encounter significant differences in flower-
ing time, as is typical in many rice breeding programs. As SNP selection was
performed for each fold, the RR-BLUP+fixed effects models differed slightly in
terms of the markers fit as fixed effects by fold.

The above methodology was appropriate in our case because we had already
analyzed the GWAS results on the training population data. For a group that
wished to replicate our methodology on a new population, we recommend first
running GWAS on their training population data to broadly visualize the trait
genetic architecture. If a trait has no significant GWAS peaks or peaks that are
very near the significance threshold after applying multiple-test correction, the
above methodology is not recommended. This GS+GWAS method is intended
for traits with one or more medium–large effect QTL segregating in the
population. In other words, if random forest is NOT at all predictive for a given
trait in a given population, the GS + de novo GWAS method presented here will
also most likely be unsuitable. For a detailed analysis of the GWAS results by
themselves, including candidate gene analysis, see Begum et al. (2015).

For the GS + historical GWAS models, the same procedure was used as for
the GS + de novo GWAS models, except the input to step two of the above
algorithm (the GWAS results) was derived from the literature, in our case, from
the results of Zhao et al. (2011).
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The RYT CV results (reported in Supplementary Table S2) were analyzed
using analysis of variance (ANOVA) and pairwise Student's t-test (that is,
Student's t-test was performed for each pair of group levels testing only
individual comparisons) to determine the effect of statistical method, validation
population, and composition of the training population on prediction accuracy.
The MET CV results (reported in Supplementary Table S4) were analyzed using
ANOVA and pairwise Student's t-test to determine the effect of statistical
method, combination of sites in the training population, validation site and
combination of seasons/years in the training population on prediction accuracy
(Supplementary Materials and Methods).

Analysis of linkage disequilibrium
Pairwise LD matrices were calculated separately for each chromosome using
PLINK (http://pngu.harvard.edu/purcell/plink/). Heat maps were generated
using Python3 Matplotlib.pcolormesh (http://matplotlib.org) (Supplementary
Figure S2).

CV using SNP subsets
SNP subsets that were chosen to be evenly distributed across the genome
(distributed) or chosen at random were selected from the 58,318 genotyping-
by-sequencing SNPs with call rates ⩾ 75% and minor allele frequency ⩾ 0.05 as
described in the Supplemental Materials and Methods. For each marker subset,
a genotype matrix for each of the five validation folds was constructed. These
genotype matrices were used in conjunction with the phenotype data on the
training population individuals to run GEMMA for each subset, for each fold.
The GEMMA GWAS results were then used as described in the section 'RR-
BLUP + Fixed effects model' above with the marker subset genotype matrices to
run GS + de novo GWAS CV for each marker subset. RR-BLUP was also run
using the marker subsets as a means of comparison.
CV was run using the best performing experiments for each validation

season—the same experiments that are reported in Supplementary Table S2A
and Figures 1 and 2; see Supplementary Table S3. For the GS + de novo GWAS
models, the RYT 2012 DS data were used for the phenotype input for flowering
time, and the RYT 2012 WS data were used for the phenotype input for plant
height and grain yield, as these produced the best GS + GWAS models using
the full genotyped data set (Figure 1; Supplementary Table S2A).
Accuracy was calculated for each of the 10 SNP subsets. A mean accuracy

and s.e. for each subset size were also calculated by averaging the CV results of
the 10 subsets for each subset size. ANOVA and Pairwise Student's t were used
to determine the effect of SNP number, SNP type (that is, random or
distributed) and statistical method on accuracy (α= 0.05). Figure 3 plots the
accuracy of CV1 for random and distributed SNPs for each validation season
and were created using JMP v 12.0 (SAS, Cary, NC, USA).

RESULTS

Building on recently published studies reporting the results of GWAS
and GS in a population of breeding lines from the IRRI irrigated rice
breeding program (Begum et al., 2015; Spindel et al., 2015), we
investigated the possibility of improving GS prediction accuracy
through model refinement by (a) incorporating markers as fixed
effects derived from a GWAS performed using the training data set
itself (GS + de novo GWAS), (b) markers as fixed effects extracted
from the literature (GS + historical GWAS) and (c) adding data from
multiple environments to the training population. Two data sets
consisting of 108 005 SNPs on ~ 363 elite irrigated rice breeding lines
were used, a RYT data set consisting of 4 years of data (2009–2012),
two seasons per year (dry and wet), taken at a single site at IRRI in
Los Baños, Philippines, and a multi-environment trial (MET) data set,
collected over two years (2011–2012, DS and WS per year) at four
locations in 2011 and eight locations in 2012 (Table 1; Methods). For
both data sets, we focused on prediction of three traits that differed in
their genetic architecture, as shown by the results of GWAS run on the
same data sets: flowering time (FLW), a trait controlled by a few large
effect QTL, grain yield (YLD), a trait controlled by many small effect

QTL, and plant height (PH), a trait controlled by both large and small
effect QTL (Begum et al., 2015; Spindel et al., 2015). In the RYT data
set, narrow-sense heritabilities ranged from 0.27 to 0.44 for FLW,
0.24 to 0.39 for PH and 0.07 to 0.32 for YLD depending on the year
and season, while in the MET data set, heritabilities range from 0.05 to
0.64 for FLW, 0.0 to 0.52 for PH, and 0.0 to 0.74 for YLD, depending
on the year, season and site (Table 1).

Use of fixed effects extracted from the training population to
improve accuracy of GS models (GS + de novo GWAS)
One means of boosting GS prediction accuracies is to incorporate
additional genomic and/or biological information, such as that
revealed in a GWAS, into the GS model. To exemplify how such
integrated models can improve performance, we performed CV using
the RYT data set. For all CV experiments, we developed RR-BLUP
models in which 1–3 of the most significant SNPs identified by fold-
specific GWAS (run using the 2012 phenotype data on individuals in
the training population) were included as fixed effects (model=GS +
de novo GWAS; Supplementary Table S2, Methods section). GWAS
were run using both the 2012 DS and 2012 WS data, and for every
cross-validation experiment, two models were tested, one in which the
most significant SNPs (binned on a 500 Kb basis) from the DS GWAS
were tested for incorporation as fixed effects, and one in which the
most significant binned SNPs from the WS GWAS were tested. The
results of the GS + de novo GWAS were compared with 1. GS +
historical GWAS models, in which the markers fit as fixed effects were
selected from previously published GWAS data, and 2. the five other
genotype-based prediction methods previously tested in this popula-
tion: RR-BLUP without any fixed effects, RKHS, random forest (RF),
Bayesian LASSO, and multiple linear selection (MLR; Methods
section; Spindel et al., 2015). The results of all experiments are given
in Supplementary Table S2B.
The effect of training population composition and validation

population on prediction accuracy in this population has been
discussed elsewhere (Spindel et al., 2015), and is presented in
Supplementary Table S2B for the sake of completeness. We focus
here on the effect of statistical method on accuracy in the best
performing cross-validation experiments, that is, the combination of
training years/seasons that, on average, produced the best prediction
accuracies. Across all traits and experiments, the most accurate
statistical methods of those tested were the GS + de novo GWAS
models (Figure 1; Supplementary Table S2).
For the best performing CV experiments for each trait and season

(Supplementary Table S1A) the GS + de novo GWAS using the 2012
WS data as input to the GWAS outperformed simple RR-BLUP in all
cases (Figure 1; Supplementary Table S2). The percent improvement
ranged from ~29.8% for FLW in the DS, to ~ 7.0% for PH in the WS
(Figure 1; Supplementary Table S2A). Furthermore, for all traits and
seasons, the GS + de novo GWAS model (using the 2012 WS data for
PH and YLD) was also the most accurate overall, outperforming RF,
the next best performing model for some trait x season combinations
(Figure 1; Supplementary Table S2A). These gains were generally
modest, ranging from ~12.8% for YLD in the WS to ~ 7.7% for FLW
in the DS. Although not all differences were significant (Figure 1;
Supplementary Table S2), these results demonstrate that identifying
markers that tag important genes and adding them as fixed effects to
GS models can enhance GEBV prediction, sometimes markedly. In no
case did adding fixed markers identified chosen based on the GWAS of
the 2012 WS data decrease accuracy relative to RR-BLUP or any other
tested statistical method (Figure 1; Supplementary Table S2).
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It is not entirely clear why the 2012 WS data were a more effective
source of fixed SNPs for plant height and grain yield than the 2012 DS
data, however, a few possibilities exist. For YLD, the best explanation

is that the most significant SNPs identified using the 2012 WS data
were considerably more significant after multiple-test correction than
those identified using the 2012 DS data (Figure 1; Supplementary
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Figure 1 Cross-validation prediction accuracies of flowering time (FLW, top), plant height (PH, middle) and grain yield (YLD, bottom) in the RYT data set,
comparing GS + de novo GWAS models (blue) to RR-BLUP (yellow) and random forest (RF) (green) models, left axis. Plots show the results using the
optimized training population for prediction of each trait in the RYT 2012 dry season (DS) and RYT 2012 wet seasons (WS) (that is, the cross-validation
experiment that resulted in the best prediction accuracy for each trait in each validation season, see Supplementary Table S2A). GWAS for the GS + de novo
GWAS models were run using both the RYT 2012 DS data (light blue) and the RYT 2012 WS data (dark blue). Percent decrease in accuracy of RR-BLUP
and RF models versus the average of the two GS + de novo GWAS models (FLW), or the GS + de novo GWAS WS model are shown over the RR-BLUP and
RF bars, respectively. Bars not labeled with the same letter (Pairwise Student’s t-test) indicate a significant difference in accuracy of the statistical methods
across all experiments. Red X's mapped to the right axis=− log * average P-value (using the Wald test) of the SNPs fit as fixed effects in the GS + de novo
GWAS models, after FDR multiple-test correction.
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Table S2). Although all SNPs included in all models were significant
by FDR= 0.1, if the significance threshold were to be raised slightly,
some SNPs would have been dropped (Figure 1). Furthermore, for
YLD, decreased average corrected P-value of the SNPs fit as fixed
effects correlated with decreased prediction accuracy. This was not the
case, however, for plant height, where all SNPs fit as fixed effects were
well above the FDR threshold, and where using the 2012 DS data as
the GWAS input resulted in lower GS prediction accuracies, but
higher average corrected P-values of fixed effect SNPs. It thus does not
seem likely that the significance of the GWAS results was a
contributing factor in the improved performance of the 2012 WS
data for plant height (Figure 1). Instead, it is possible that stochasticity
in the data resulted in more informative QTL being identified in the
WS than in the DS, or that increased disease pressure in the WS

resulted in more reliable prediction from wet to dry than vice versa.
Overall, the results suggest that when there are highly significant peaks
identified in a GWAS, adding markers that tag these GWAS peaks as
fixed effects in an RR-BLUP+ fixed effects models improves accuracy
over those obtained from more complex models like RF.

Use of fixed effects extracted from the literature to improve
accuracy of GS models
To determine whether significant GWAS-SNPs identified for the same
traits but using different germplasm would be equally useful as fixed
variables in our GS models, we compared prediction accuracies for
flowering time and plant height of the above GS + de novo
GWAS models to three additional RR-BLUP+fixed effects GS models
in which the fixed SNPs were selected using GWAS data from
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Figure 2 Comparison of GS + de novo GWAS with GS + historical GWAS models for flowering time (FLW, top), and plant height (PH, bottom). Graphs shows
the results using the optimized training population for prediction of each trait in the RYT 2012 dry season (DS) and RYT 2012 wet seasons (WS; that is, the
cross-validation experiment that resulted in the best prediction accuracy for each trait in each validation season; see Supplementary Table S2A). GS + GWAS
models differed in the GWAS data used to select the SNPs fit as fixed effects. GS + de novo GWAS: 2012 DS (light blue)=de novo GWAS using 2012 DS
data on training population individuals, GS + de novo GWAS: 2012 WS (dark blue) =de novo GWAS run using 2012 WS data on training population
individuals, GS + historical GWAS: 44K all (red)=previously published (historical) GWAS data were used from Zhao et al., 2011 the 'all subpopulations'
results, GS + historical GWAS: 44K indica (burnt orange)= the indica subpopulation results from Zhao et al. 2011 were used, GS + historical GWAS: 44K
TRJ (green)= the tropical japonica results from Zhao et al. (2011) were used. Bars not labeled with the same letter indicate a significant difference in model
accuracies across all experiments.
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Zhao et al. (2011). (There were no previously published GWAS data
available for YLD, so it was not possible to compare the results for this
trait.) The three additional models tested utilized SNPs identified by
GWAS in a rice diversity panel representing (1) the indica subpopula-
tion, (2) the tropical japonica subpopulation, and (3) the all, or
combined subpopulations (Zhao et al., 2011). As our training
population consisted of only indica individuals (Methods section;
Spindel et al., 2015), this allowed us to test, in addition to the effect on
model accuracy of using previously published GWAS results, the effect
of using previously published GWAS results derived from individuals
from the same subpopulation undergoing selection in breeding, versus
the effect of using GWAS results derived from individuals from
different subpopulations than the one undergoing selection (Figure 2;
Supplementary Table S2).
For flowering time, using GWAS results derived from the training

population proved to be significantly more accurate than using any of
the historical GWAS results. For the DS, it made little difference which
historical GWAS data were used, all data sets performed badly. For the
WS, the all subpopulation results were significantly better than using
either the indica only or tropical japonica only results, but again, all
were significantly worse than using either the 2012 DS or 2012 WS
data. (Figure 2; Supplementary Table S2). For plant height in the DS,
using the 2012 WS data resulted in significantly more accurate GS
models than using the historical GWAS data, but for the WS, the all
subpopulation historical data performed about as well as the 2012 WS
data (Figure 2; Supplementary Table S2).

In essence, these results suggest that in some cases, the researcher
may get lucky when utilizing previously published results, that is, in
some cases, historical GWAS results will be relevant to a given
breeding population, as was the case for plant height in our WS. In
other cases, however, such as for flowering time in this breeding
population, SNPs identified in previously published GWAS will not be
relevant to a given population, and will thus decrease accuracies
relative to simple RR-BLUP models. Regardless of whether previously
published results might perform as well as de novo results, in our
experiment, the previously published GWAS data never improved
model accuracy over the GS + de novo GWAS models, thus, there
appears to be no reason to pursue this strategy (Figure 2;
Supplementary Table S2).

Number of markers and GS accuracy
We also tested the accuracy of the best performing GS + de novo
GWAS models at decreasing numbers of genome-wide markers.
(GWAS were also run with the decreasing number of markers as it
is fully integrated into the RR-BLUP+fixed effects GS model).
Consistent with previous results, we found that ~ 5000 SNPs were
as effective for prediction as the full marker set of 108 005 SNPs
(Figure 3; Supplementary Table S3). After that, accuracies began to
decrease significantly, regardless of whether the genome-wide SNPs
were evenly distributed or not. Average corrected P-value of the SNPs
fit as fixed effects generally decreased in tight correlation with
decreasing SNP number. This is to be expected given that a smaller
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pool of SNPs also means a smaller chance of identifying a SNP in high
LD with a QTL of interest.
These results suggest that it may be possible to design smaller fixed

SNP arrays for GS that reduce genotyping costs and increase turn-
around time (Thomson, 2014; Yu et al., 2014). Heat maps showing the
extent of linkage disequilibrium across each chromosome are given in
Supplementary Figure S2.

GS model refinement using multi-environment data
To evaluate the effect of multi-environment data on GS model
accuracy, we ran five-fold cross-validation using the IRRI METs
consisting of two years of yield data (2011–2012) over two seasons/
year (dry and wet) taken at IRRI headquarters in Los Baños and at
four additional sites in SE Asia during 2011, and at eight additional
sites in 2012. Because of typhoons and pests in 2011, data were
available for only two of four sites in the DS and one of four sites in
the WS, while in 2012, data were available on only a subset of lines due
to breeding program progression (Table 1). The unbalanced nature of
the data set is typical of historical public breeding program data, so it
is worth determining the value of such data sets, even if they are
statistically non-ideal.
The composition of the training population was varied in terms of

sites, seasons, and years, as is typical for MET data (Supplementary
Table S1B). We tested GS + de novo GWAS and RR-BLUP models for
all traits, as well as GS + historical GWAS and RF models for flowering
time and plant height. For the GS + de novo GWAS models we used
as GWAS inputs the results of GWAS run on the validation site and
year (on the individuals in the training population), as well as the RYT
2012 DS and 2012 WS GWAS results used previously.

Validation site, validation season, the combination of sites in the
training population, and the statistical method all contributed
significantly to prediction accuracy in the MET data set
(Supplementary Table S4). The combination of sites in the training
population was of particular importance. Across all traits, two group-
ings consistently produced the highest mean prediction accuracies for
the sites in each group, a group consisting of the sites with southern-
most latitudes: Bohol, Midsayap, Sri Lanka, and Agusan, and a group
consisting of the sites with northernmost latitudes plus Agusan: Nueva
Ecija, Isabela, Los Baños/IRRI and Agusan (Table 2). Agusan was
unusual; it could improve the prediction at the northern sites despite
the fact that it is in the southern Philippines and is best predicted by
the southern group (Table 2). One possible explanation for this may
be the unusually wet 'dry season’ at Agusan, which could mean that
individuals that do well in Agusan are likely to also do well almost
anywhere else in SE Asia.
Historically, these eight sites have been treated as representative of

the key rice growing regions in the Philippines/SE Asia, or as a single
target population of environments for breeding purposes. Our results
here indicate that splitting these sites into the 'northern' and 'southern'
groups, with Agusan included in both groups, improves prediction
accuracies up to 10-fold. Results were especially significant for
prediction of grain yield (Table 2).
These results reflect the correlation of phenotypes within the

northern and southern groupings; Figure 4 shows a multi-
dimensional scaling analysis using the 2012 WS data for grain yield,
in which the points can be superimposed on a geographical map of the
sites. The phenotypic correlation of traits measured in Agusan with
both the northern and southern sites offers an explanation for why

Table 2 Analysis of IRRI multi-environment (MET) program target population of environments (TPE) for SE Asia irrigated rice

TRAIT Site Site Lat. F-ratio P-value Highest mean grouping Mean %Δ from all Δ from all sig? Mean %Δ VP site only Δ from VP only sig?

FLW M 7.19 8.28 o0.0001 B,M,SL,A 17.96 no 1415.38 yes

FLW SL 7.53 6.82 0.0002 B,M,SL,A NS, Δ=0.05 no 266.00 no

FLW A 8.95 0.06 0.99 B,M,SL,A,LB 5.53 no 5.10 no

FLW LB 14.17 2.62 0.0383 NE,I,LB,A 1.08 no 23.81 yes

FLW I 14.70 1.56 0.17 NE,I,LB,A 3.51 no 19.90 no

FLW NE 15.72 0.81 0.5464 NE,I,A == NE,I,LB,A == ALL 0.00 no 19.03 no

PH M 7.19 20.88 o0.0001 ALL 0.00 no 136.90 yes

PH SL 7.53 37.90 o0.0001 B,M,SL,A,LB 7.50 no 6042.86 yes

PH A 8.95 23.00 o0.0001 NE,I,LB,A == B,M,SL,A 9.24 yes 32.43 yes

PH B 9.99 6.59 o0.0001 B,M,SL,A 8.22 yes 20.96 yes

PH LB 14.17 92.97 o0.0001 NE,I,LB,A 3.00 no 100.00 yes

PH I 14.70 3.14 0.0089 NE,I,LB,A 0.17 no 102.00 yes

PH NE 15.72 72.20 o0.0001 NE,I,LB,A 0.03 no 2.87 yes

YLD M 7.19 23.94 o0.0001 B,M,SL,A 2.05 yes NS, Δ=0.49 yes

YLD SL 7.53 21.18 o0.0001 B,M,SL,A 78.60 yes NS, Δ=0.31 yes

YLD A 8.95 8.81 o0.0001 B,M,SL,A 943.48 yes 98.35 yes

YLD B 9.99 4.55 0.0007 B,M,SL,A NS, Δ=0.16 yes 67.39 yes

YLD LB 14.17 13.59 o0.0001 NE,I,LB,A 50.00 yes 360.00 yes

YLD I 14.70 5.84 0.0002 NE,I,LB,A 35.48 no 125.00 yes

YLD NE 15.72 3.46 0.0054 VP site only == NE,I,LB,A 45.05 yes 0.00 no

ANOVA and pairwise Students t-test were performed using the CV MET results to model the effect of the combination of sites in the training population on prediction accuracy, by validation site,
across all experiments for each trait (Methods section). FLW=flowering time, PH=plant height, YLD= grain yield. Sites= IRRI, Los Baños, Laguna, Philippines (LB), San Meteo, Isabela,
Philippines (I), Munoz, Nueva Ecija, Philippines (NE), RTR, Agusan del Norte, Philippines (A), Ubay, Bohol, Philippines (B), Midsayap, Cotabato, Philippines (M), and Batalagoda, Sri Lanka (SL).
Site Lat.= latitude of site. F-ratio and P-value=F-ratio and P-value for ANOVA for each site and trait, respectively. Highest mean grouping= set of sites in training population that produced the
highest mean accuracy for a given trait and site across statistical methods and experiments. From this analysis two site groupings emerged, a northern grouping consisting of Nueva Ecija, Isabela,
IRRI, and Agusan, and a southern grouping consisting of Agusan, Bohol, Midsayap, and Sri Lanka. Note that whenever the highest mean grouping differed from one of the above two groups, the
difference was generally very small and not significant. Mean %Δ from all=% difference in mean accuracy of the best grouping and the mean accuracy of using all sites in the training population.
Mean %Δ VP site only=% difference in mean accuracy of the best grouping and the mean accuracy of using only the validation site (VP). NS=no solution due to need to divide by zero, 'Δ' in NS
proportions show simple difference between accuracies. A 'yes' in the 'Δ from all sig?' column indicates that the difference in mean accuracy between the best mean grouping and the all sites
group was significant, a 'yes' in the 'Δ from VP only sig' column indicates that the difference in mean accuracy between the best mean grouping and using only the VP site in the training population
was significant.
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inclusion of Agusan in both groups improves prediction accuracies of
all sites (Figure 4; Supplementary Figure S1). These results are
consistent with current breeding practice within the Philippines—
the Philippines national variety release system now makes region-
specific varietal recommendations. Notably, for all but three site x
trait combinations, the highest mean site grouping was also signifi-
cantly better than using only the validation site, evidencing the benefit
of utilizing correlated multi-environment data for genome-wide
prediction.
The maximum prediction accuracies obtained for each site and trait

using training populations containing data from the site groupings
described above are shown in Figure 4, while the highest overall
prediction accuracies for each site x season x trait combination are
shown in Figure 5. In some cases, higher accuracies were obtained
using different combinations of sites in the training population than
the northern and southern groupings, despite these groupings produ-
cing the best average accuracies. Given that many sites and seasons had
low heritabilities and low accuracies overall, we must be cautious when
drawing conclusions regarding use of statistical method from this
data set. In general, the RYT results are considered more reliable.
A few trends are, however, apparent. For the majority of site x season
combinations for flowering time, GS + de novo GWAS was clearly the
best statistical method across experiments. For the best overall
experiments for grain yield (Supplementary Table S4A), the GS + de
novo GWAS models generally outperformed the other statistical
methods, but for most sites and seasons, the difference was not
significant across experiments. For plant height, by contrast, RR-BLUP
was generally the best performing statistical method for the best
experiments, but again, in all but two cases, the difference in accuracy
when using RR-BLUP versus the other statistical methods was not
significant across experiments (Figure 5; Supplementary Table S4). In
general, using the RYT 2012 DS and RYT 2012 WS data as the GWAS
input for the GS + de novo GWAS models resulted in better prediction
accuracies than using the validation data, most likely as a result of the

higher quality of the RYT data and generally more significant P-values
(Figure 5; Supplementary Table S4).
The prediction accuracies themselves ranged for flowering time

from a high of 0.70 to a low of − 0.34 for Sri Lanka in 2012 WS. For
plant height, the highest overall accuracies ranged from 0.55 for
Midsayap in 2012 WS, the best, to 0.01 for Isabela in the 2012 DS, the
worst. For yield, the highest was 0.50 for Midsayap in the 2012 WS
and the lowest was 0.09 for Los Baños/IRRI in the 2012 WS.
These large differences in the maximum accuracies obtained at
different sites and in different seasons are largely explained by the
amount of data available for inclusion in the training population,
given the high frequency of natural disasters in the region, by the
degree of correlation between years and sites, and to a lesser extent, by
the trial heritability and statistical method. For example, prediction
accuracies at Agusan were generally high because training data were
available from 3 seasons (2011 WS, 2012 DS and WS), and Agusan
was well correlated with the other southern sites (Figures 4 and 5;
Supplementary Tables S4). Isabela, on the other hand, had very low
accuracies for prediction in the 2012 DS, very low trial heritabilities
(0 and 0.7 for PH and YLD, respectively, and the site/season was not
correlated with any other site or season, including itself in the WS, all
of which evidence that the phenotyping data for this site and season
were compromised in some way (Table 1, Figure 5; Supplementary
Figure S1, Supplementary Table S4). The highly negative accuracy for
flowering time at Sri Lanka, on the other hand, was obtained using the
GS + historical GWAS results, which could indicate that in some cases
using historical GWAS results on a population in which they are not
relevant can result in negative correlation accuracies, possibly as a
result of differences in linkage phase between the tagged SNP and QTL
in the two populations, or as a result of epistasis.
Conducting multi-location field trials is a challenging and massive

logistical operation that, in the public sector, is also under-resourced.
GS, on one hand, appears to be more sensitive to low-quality data and/
or a poorly defined target population of environments (TPE) than
phenotypic selection (Heslot et al., 2015), and our results indeed
highlight a strong need for high-quality phenotype data. They also
suggest, however, that collecting higher quality data at fewer sites
could enable good genome-based predictions at other correlated sites,
an observation in agreement with multi-environment experiments
performed in maize and wheat (Burgueño et al., 2012; Heslot et al.,
2013; Crossa et al., 2014; Zhang et al., 2015). By focusing on quality
data at a few key, representative environments, it could thus be
possible to improve gain-from-selection across an entire region.
Ultimately, GS prediction accuracies suffer when badly correlated

environments are combined due to GxE effects, that is, the fact that a
given variety may perform well in one environment, but poorly in
another. Even in a traditional pedigree breeding scheme, it is
important to accurately group common environments in order to
avoid deleterious GxE effects in released varieties. An alternative
solution to utilizing multi-environment data is to explicitly model GxE
in the GS model, as has recently been shown effective in wheat
(Lopez-Cruz et al., 2015). This strategy is likely to be more useful with
cleaner and more complete data sets, but warrants further research for
the refinement of rice GS models.

Use of GS+GWAS to expedite the introduction of novel genetic
variation into elite breeding populations
GS, while new in application, is conservative in breeding effect.
Genome-wide prediction models are trained only on alleles and
genetic diversity present in a given population, and as such, the alleles
selected for by GS are those already known to contribute to good
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Figure 4 Multi-dimensional scaling (MDS) analysis of the distance matrix of
the MET adjusted 2012 wet season yield data overlaid on a map of the
sites. Triangles= locations of sites, Circles= MDS points, site locations and
MDS points have corresponding colors. Values= highest grain yield CV
accuracy obtained for that site using the displayed site grouping, bubbles=
groupings of sites that produced the highest mean prediction accuracies at
those sites. Agusan is clearly an outlier—while it geographically belongs to
the southern group and is best predicted by southern group, blue dashed
line, it can also improve prediction accuracies of northern group, red dashed
line. Squiggle at the top of the plot indicates a break in longitudinal
map space.
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performance. In rice and many other crops, however, new diversity
and GxG interactions are important sources of trait improvement that
are essential for enhancing genetic gain (Li et al., 1997; Thomson et al.,
2006; McCouch et al., 2012; McCouch et al., 2013). As a result, to
make GS work for rice breeding, it is necessary to 1) identify and tap
sources of novel variation, and 2) to develop methods that will
introduce these favorable new alleles into adapted varieties while
retaining the highly productive allele combinations that are the
foundation of food production.
To address this issue, we propose a two-stream/two-part GS

breeding schema in which under-utilized germplasm is systematically
incorporated into a GS breeding pipeline to test for and predict the
presence of new, highly effective allele combinations (Figure 6).
Stream 1 consists of pre-breeding, in which new alleles sourced from
diverse germplasm are sequentially introduced into a population of
adapted material. After several rounds of backcrossing and recombi-
nation, necessary to break linkages after the initial F1 cross between
un-adapted and adapted material, GS + de novo GWAS models would
be used to increase the frequency of desirable exotic QTL while
simultaneously selecting against alleles from un-adapted material that
conferred negative effects. Such desirable QTL would be identified by
the de novo GWAS, and quickly fixed as a direct result of the GS +
de novo GWAS approach. Stream 2 continues the process of refining
and improving existing elite material, and by feeding the output of
Stream 1 into Stream 2, the genetic base of modern varieties would be
expanded. Valuable QTL in the Stream 2 breeding population would
also be identified via de novo GWAS and fit as fixed effects. These fixed
effects could also include the exotic QTL from Stream 1, and any other
large effect QTL a breeder might wish to target for either positive or
negative selection.

The above approach would enable the breeder to learn directly from
data on new and diverse germplasm and make rapid genetic gain in a
way that would not be possible using simple RR-BLUP models, as it is
the GS + de novo GWAS strategy that makes it possible to extract the
information necessary for fixing valuable exotic alleles during model
development as well as enhancing prediction accuracy. Furthermore,
no prior knowledge about genes, QTL, or gene networks is required.
Thus, while it is interesting to extrapolate as to which genes are
involved in a given biological process and to compare new GWAS
results to those previously published, the breeder is not required to do
so, and is not encumbered by the need to identify causal polymorph-
isms or candidate genes underlying potentially large regions of
significance a priori. As a result, this approach empowers the breeder
to move forward immediately with selection in a breeding population
based on GEBVs with the knowledge that GEBVs are derived de novo
from relevant breeding material, trait evaluations, and target environ-
ments, in keeping with the objectives and realities of the breeding
program at hand.

DISCUSSION

GS, or genome-wide prediction, has been heralded as a strategy that
can help increase the rate of genetic gain in plant and animal breeding
without prior knowledge of the genes or QTLs underlying agronomic
traits (Rutkoski et al., 2012; Asoro et al., 2013; Massman et al., 2013a;
Crossa et al., 2014; Beyene et al., 2015; Onogi et al., 2015; Spindel
et al., 2015; Zhang et al., 2015). Our work suggests that using
biological knowledge about genotype–phenotype associations, as
demonstrated by the GS+ de novo GWAS model results presented
here, can improve the prediction accuracies of GS in rice. Given the
amount of basic biological information available for many crop species

Figure 5 Cross-validation prediction accuracies of flowering time (FLW, top), plant height (PH, middle), and grain yield (YLD, bottom) using multi-
environment (MET) data. Data show the best overall MET accuracies obtained for each trait in each validation season, the 2012 dry season (DS; light
shades) and the 2012 wet season (WS; dark shades), and validation site, left axis (Supplementary Table S4A). Accuracies are compared for GS + de novo
GWAS models using, as GWAS input, the RYT 2012 DS GWAS results (blue bars), the RYT 2012 WS GWAS results (purple bars), and GWAS run using the
validation site and season (gray/black bars) to RR-BLUP results (yellow bars), and for FLW and PH only, the GS + historical GWAS results (red, orange, and
green bars for 44K all, 44K indica, and 44K tropical japonica results, respectively), and random forest (RF) results (brown bars). Bars not labeled with the
same lower case letter indicate a significant difference in the performance of statistical methods across all experiments where the validation
population=2012 DS, bars not labeled with the same capital letter indicate a significant difference in the performance of statistical methods across all
experiments where the validation population=2012 WS. Circles mapped to right axis=− log * average P-value (Wald test) of the SNPs fit as fixed effects in
the GS + de novo GWAS models, after FDR multiple-test correction.
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today, and for rice in particular, bypassing the opportunity to integrate
genic and QTL information into GS models means forfeiting a
significant component of model accuracy. However, integrating
inaccurate or inappropriate priors or fixed effects can have a negative
impact on GS models.
In this study, we aimed to develop a generically useful approach to

identifying SNPs to include in GS prediction models as fixed effects
that would take advantage of the matrix of genotypic and phenotypic
data already generated for the GS study, and would not require
independent, a priori information about known functional markers for
traits of interest. Previous work has relied on the use of historical
information to identify markers that can be fit as fixed effects (Bentley
et al., 2014; Bernardo, 2014; Owens et al., 2014; Rutkoski et al., 2014;
Zhang et al., 2014; Zhao et al., 2014; Lipka et al., 2015). Although these
examples provide evidence that introducing fixed effects can improve
the prediction accuracy of GS models, this study is the first to quantify
the benefit of including markers as fixed effects in RR-BLUP models
for a rice breeding population, and is also the first, to our knowledge,
in which the identification of SNPs to include as fixed effects in the GS
model was accomplished based entirely on de novo GWAS (informa-
tion from GWAS performed on the breeding population undergoing
selection) an easier and more stream-lined procedure than delving
into the literature to ensure that the GWAS markers tagged previously
reported genes of large effect.
In a study by Zhang et al. (2014), the authors used the results of

previously published GWAS studies to improve GS prediction in dairy
cattle and rice, but rather than performing a GWAS using data from

the training (breeding) population under selection, as we have done
here, they used generic models for each species. Although that strategy
may be effective for dairy cattle, which are characterized by an
extremely narrow genetic base and highly uniform production
environments, it was not expected to prove as effective for plant
species such as rice where deep population structure and highly
variable production environments create the need to derive popula-
tion- and environment-specific fixed variables (Zhao et al., 2011; Guo
et al., 2014; Heslot et al., 2015; Supplementary Note). To confirm this
hypothesis, we compared our models in which markers fit as fixed
effects were selected based on the results of GWAS performed on the
breeding population to models in which SNPs were selected as fixed
effects based on previously published GWAS data, both when
subpopulation did and did not match the individuals undergoing
selection. In no case did using previously published GWAS data
significantly improve accuracy over using de novo GWAS, and in the
majority of cases, the GS + historical GWAS models were significantly
worse than the GS + de novo GWAS models (Figures 2 and 5;
Supplementary Tables S2). In a few rare cases, the GS + historical
GWAS models even resulted in negative prediction accuracies,
suggesting that extreme care would need to be taken if perusing this
strategy in rice populations.
While the GS + de novo GWAS models performed well overall, the

data used as input to GS + de novo GWAS models did have a
significant effect on prediction accuracy for 2/3 traits examined, that
is, plant height and grain yield. The grain yield case is of particular
interest, because the difference in performance of the GS + de novo
GWAS models that used as GWAS input the 2012 WS data performed
significantly better than the GS + de novo GWAS models that used the
2012 DS data as input across experiments for both validation seasons.
As discussed in the results, this observation is best explained by the
difference in FDR corrected P-value of the most significant SNPs
resulting from the two GWAS. From these results, we conclude that
the utility of GS + de novo models is noteworthy when the de novo
GWAS results identify highly significant SNPs, but may not improve
accuracies significantly if GWAS P-values are borderline. Based on this
population, we would recommend utilizing the GS + de novo GWAS
model over alternatives such as RR-BLUP or RF when the -log (FDR
corrected P-values of the most significant SNPs) ⩾ 2.0. Finally, it is
worth noting that as with any GWAS-based methodology, controlling
for subpopulation structure in the population is essential, otherwise,
associations may be spurious and lead to decreased prediction
accuracies.
Our results indicate that the GS + de novo GWAS approach will be

successful for rice breeding within the boundaries described above.
The approach should allow breeders to extract information from the
training population and, simultaneously, to learn which regions of the
genome are significantly associated with traits of interest in their
material. The breeder can then use that information to improve the
accuracy of their GS models. Consequently, breeding programs can
operate with significant autonomy, unencumbered by the need to
identify genes or QTL underlying traits of interest, as was the case
for MAS and many previously tested GS plus fixed effect models.
Furthermore, the accuracy of our GS + de novo GWAS models can be
iteratively improved, as information from subsequent training popula-
tions is continuously fed back into the model to improve model fit
and accuracy.
How, then, does the GWAS and GS information generated by a

breeding program intersect with published information about genes,
QTLs, expression networks, physiological pathways, developmental
phenotypes, etc. As breeding programs increasingly invest in the

Figure 6 Diagram of proposed two-stream GS breeding program. Stream 1
(yellow boxes) consists of pre-breeding, in which favorable alleles from exotic
germplasm are introduced into adapted germplasm. Exotic parents are
crossed with elite germplasm to develop Breeding Population 1. Selection of
individuals from Breeding Population 1 is performed using a combination of
GS + de novo GWAS models (GS+), in which the exotic QTL are fit as fixed
effects, and phenotype. The training population GS would be a subset of
breeding population 1, that is, a fraction of breeding population 1 would be
both genotyped and phenotyped, while the rest of breeding population 1
would be genotyped only. Adapted materials from Breeding Population 1 are
crossed into Breeding Population 2 (Stream 2, blue boxes) where they are
further refined using GS + de novo GWAS models, where the fixed effects
would include valuable QTL identified based on GWAS performed in Breeding
Population 2, the exotic QTL from Stream 1, or any other large effect QTL a
breeder might normally target for trait improvement. Output from Stream 2
can be advanced toward variety release or fed back into Stream 1 to serve as
parents for further crossing and population development.
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sequencing, genotyping and large scale phenotyping of populations
and germplasm resources in environments that are relevant to the
development of new, commercial crop varieties, they will build
important bridges that enable data and information to flow between
the world of basic biological research and that of applied or
translational science, leading to the development of collaborations
and research networks that will help bring these two worlds closer
together. Scientists interested in population biology, molecular genet-
ics and gene discovery will help discover and characterize genes and
alleles associated with phenotypes of interest to the plant breeder,
providing useful tools and insights about natural variation that can be
help breeders, agronomists, gene bank managers, physiologists and
ecologists to better manage natural variation and to generate sustain-
able systems capable of producing the food, feed, fiber and fuel needed
for a growing world population.
Another important source of phenotype variation in breeding

populations is derived from the environment (VpE) and Genotype x
Environment (GxE) interactions (VpGE). Previous GS experiments in
wheat and barley have found that multi-environment GS models can
lead to improved accuracies by borrowing information from corre-
lated environments (Burgueño et al., 2012; Heslot et al., 2013; Crossa
et al., 2014). To see if we could likewise improve accuracies using
multi-environment data in rice, we performed CV using phenotype
data collected at an additional seven sites in SE Asia. When data were
well correlated across sites, GS accuracies increased up to 60 times that
of single site models (Table 2). However in other cases, when
uncorrelated sites were combined in the training populations,
accuracies essentially plunged to zero. These results emphasize the
importance of accurately defining a TPE before attempting to perform
GS using multi-environment data.
It has been suggested that defining a TPE is of greater importance

when performing GS than phenotypic selection because the results of
'bad data' going into a GS model can have long-term impacts on
breeding program gains (Heslot et al., 2015). Our MET results strongly
indicate two groupings of environments among the eight sites tested
here—a ‘northern’ TPE consisting of the sites at Nueva Ecija, Isabela,
Los Baños and Agusan, and a 'southern' TPE consisting of the sites at
Agusan, Midsayap, Bohol and Sri Lanka (Table 2, Figures 4 and 5;
Supplementary Table S4). Hai Dong, Vietnam, was an outlier that
should not be included in either group (Supplementary Figure S1).
Finally, the results highlight the extreme variability in phenotype data
quality across sites, seasons and years, and the strong need for
consistent phenotype quality to for GS to be implemented effectively.
This need is all the more important in the tropics where extreme
weather events (for example, typhoons) may eliminate one or more
sites/seasons of data. One useful strategy may be to collect higher
quality data at a few, key, representative sites and then predict
performance at other correlated locations.
The final question is when and how to incorporate knowledge

about GEBVs derived from GS models into applied breeding pipelines.
GEBVs offer plant breeders an opportunity to integrate knowledge
about quantitative trait performance in their breeding populations
early in their breeding pipelines, while traditionally, this knowledge is
only available at the end of a multi-environment/multi-year replicated
yield trial. Because the GEBV’s summarize information that's derived
directly from the breeders’ fields, it is, in essence, simply a more
objective measure of what a breeder practicing phenotypic selection
would use as the basis for making selections. GS also provides that
information in advance so the breeder can use it to select the lines that
merit more in-depth phenotypic evaluation. Thus, while the use of
GEBVs may differ depending on the trait, breeder and the kind of

training population from which the estimated breeding values were
derived, they provide the breeder with an additional selection criterion
that can be used to increase the rate of genetic gain.
The greatest and most accessible source of untapped genetic

diversity for plant improvement can be found in the wild and
cultivated accessions housed in the world's gene banks. Although
there have been many efforts to screen gene bank material to identify
individuals carrying specific traits of interest, it has not been feasible to
screen large numbers of accessions for favorable alleles that contribute
to useful quantitative variation (McCouch et al., 2012), particularly
where the phenotype of the donor germplasm is not obviously
superior. While we do not report doing this here, the potential to
use GS models, in combination with high throughput genotyping,
makes it possible.
The first step would be to genotype the gene bank materials to

facilitate a systematic sampling and exploration of the variation in the
gene bank. The second would be to incorporate a diverse selection of
gene bank materials into a GS breeding pipeline, generating advanced
backcross or possibly multi-parent advanced generation inter-cross
populations in adapted genetic backgrounds (pre-breeding). To
determine which lines from these populations to use as parents in
future crossing and population development, training populations
representing these new populations would be genotyped and pheno-
typed as the basis for GWAS to identify new and highly effective allele
combinations that were predictive of top-performing offspring (that is,
GWAS in breeding panels/training populations). The significant
GWAS-SNPs would then be used as fixed variables in GS models
(previously developed to facilitate the selection of adapted, elite
breeding materials) to facilitate the efficient selection of lines from
the new populations that carried favorable exotic alleles in the genetic
background of elite lines with high GEBVs.
In summary, here we demonstrate that by incorporating informa-

tion from GWAS and correlated sites into GS models, prediction
accuracies can increase to the point that genotyping and performing
GS is more cost-effective than planting and phenotyping additional
yield trials (Spindel et al., 2015). With the addition of novel diversity
from gene banks, genomics-assisted selection should be a transforma-
tive strategy for rice improvement.
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