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Exploration of natural red-shifted rhodopsins using
a machine learning-based Bayesian experimental
design
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Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular

tools in optogenetics. Here, a machine learning (ML)-based experimental design method is

introduced for screening rhodopsins that are likely to be red-shifted from representative

rhodopsins in the same subfamily. Among 3,022 ion-pumping rhodopsins that were sug-

gested by a protein BLAST search in several protein databases, the ML-based method

selected 65 candidate rhodopsins. The wavelengths of 39 of them were able to be experi-

mentally determined by expressing proteins with the Escherichia coli system, and 32 (82%,

p= 7.025 × 10−5) actually showed red-shift gains. In addition, four showed red-shift gains

>20 nm, and two were found to have desirable ion-transporting properties, indicating

that they would be potentially useful in optogenetics. These findings suggest that data-driven

ML-based approaches play effective roles in the experimental design of rhodopsin and other

photobiological studies. (141/150 words).
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M icrobial rhodopsins are photoreceptive membrane pro-
teins widely distributed in bacteria, archaea, unicellular
eukaryotes, and giant viruses1,2. They consist of seven

transmembrane (TM) α helices, with a retinal chromophore
bound to a conserved lysine residue in the seventh helix (Fig. 1a).
The first microbial rhodopsin, bacteriorhodopsin (BR), was dis-
covered in the plasma membrane of the halophilic archaea
Halobacterium salinarum (formerly called H. halobium)3. BR
forms a purple-colored patch in the plasma membrane called
purple membrane, which outwardly transports H+ using sunlight
energy4. After the discovery of BR, various types of microbial
rhodopsins were reported from diverse microorganisms, and
recent progress in genome sequencing techniques has uncovered
several thousand microbial rhodopsin genes1,5–7. These microbial
rhodopsins show various types of biological functions upon light
absorption, leading to all-trans-to-13-cis retinal isomerization.
Among them, ion transporters, including light-driven ion pumps
and light-gated ion channels, are the most ubiquitous (Fig. 1b).
Ion-transporting rhodopsins can transport several types of cations
and anions, including H+, Na+, K+, halides (Cl–, Br–, I–), NO3

–,
and SO4

2,8–10. The molecular mechanisms of ion-transporting
rhodopsins have been detailed in numerous biophysical, struc-
tural, and theoretical studies1,2.

In recent years, many ion-transporting rhodopsins have been
used as molecular tools in optogenetics to control the activity of
animal neurons optically in vivo by heterologous expression11,
and optogenetics has revealed various new insights regarding the
neural network relevant to memory, movement, and emotional
behavior12–15. However, strong light scattering by biological tis-
sues and the cellular toxicity of shorter wavelength light make
precise optical control difficult. To circumvent this difficulty, new
molecular optogenetics tools based on red-shifted rhodopsins,
which can be controlled by weak scattering and low toxicity
longer-wavelength light are urgently needed. Therefore, many
approaches to obtain red-shifted rhodopsins have been reported,
including gene screening, amino acid mutation based on bio-
physical and structural insights, and the introduction of retinal
analogs16–18. The insights obtained in these experimental studies,
and further theoretical and computational studies19–22 revealed
basic physical principle regulating absorption maximum wave-
lengths (λmax) of rhodopsins (also called spectral or color-tuning
rule) in which the distortion of retinal polyene chain induced by
steric interactions with surrounding residues, electrostatic inter-
action between protonated retinal Schiff base and counterion(s),
and polarizability of the retinal binding pocket play essential

role23. The λmax of several rhodopsins could be red-shifted by
20–40 nm without impairing the ion-transport function based on
these physicochemical insights17,24,25. These are successful
examples of knowledge-driven experimental approach. Recently,
a new method using a chimeric rhodopsin vector and functional
assay was reported to screen the λmax and proton transport
activities of several microbial rhodopsins that are present in
specific environments26. This method identified partial sequences
of red-shifted yellow (560–570 nm)-absorbing proteorhodopsin
(PR), the most abundant outward H+-pumping bacterial rho-
dopsin subfamily, from the marine environment. These works
identified several red-shifted rhodopsins15,16,18,27. Especially,
most successful optogenetic tools are red-shifted channel rho-
dopsins such as Chrimson27,28 and RubyACR29 which can induce
and inhibit neural firing by absorbing 590 and 610-nm light,
respectively. The rational amino acid mutation based on the
structural insight further red-shifted the λmax of Chrimson to 608
nm27. The development of next-generation sequencing technol-
ogy is expected to continue to more rapidly identify a large
number of new rhodopsin genes, including proteins with even
longer wavelength-shifted absorption. However, screening of all
of them either by experimental or theoretical methods would be
very costly. Therefore, a less expensive and more efficient
approach to screen red-shifted rhodopsins is needed, and data-
driven study is expected as the third class of approach to inves-
tigate the color-tuning rule of rhodopsins at low cost.

To estimate the λmax of rhodopsins, we recently introduced a
data-driven approach30. In this previous study, we investigated
the statistical relationship between the amino acid types at each
position of the seven TM helices and the absorption wavelength
of rhodopsins. We constructed a database containing 796 wild-
type (WT) rhodopsins and their variants, the λmax of which had
been reported in earlier studies. Then, we evaluated the strength
of the relationship with a data-splitting approach, i.e., the data set
was divided into a training set and a test set; the former was used
to construct the predictive model, and the latter was used to
estimate the predictive ability. The results of this “proof-of-con-
cept’’ study suggested that the λmax of an unknown family of
rhodopsins could be predicted with an average error of ±7.8 nm,
which is comparable to the mean absolute error of λmax estimated
by the hybrid quantum mechanics/molecular mechanics
(QM/MM)21 method. Considering the computational cost of
both approaches, the data-driven approach was found to be much
more efficient than the QM/MM approach, while the latter pro-
vides insights on the physical origin controlling λmax.

Fig. 1 Structure and phylogenetic tree of microbial rhodopsins. a Schematic structure of microbial rhodopsins. b Phylogenic tree of microbial rhodopsins.
The subfamilies of light-driven ion-pump rhodopsins targeted in this study are differently colored; non-ion-pump microbial rhodopsins and ion-pumping
microbial rhodopsins from eukaryotic and giant viral origins are shown in gray.
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Encouraged by this result, in this study, we introduced a
machine-learning (ML)-based experimental design method which
enables us screening more efficiently the candidates of rhodopsins
that are likely to have red-shift gains with data-driven assist com-
pared to the random or knowledge-driven screening. For this aim,
we constructed a new dataset of 3022 wild-type putative ion-pump
rhodopsins which were collected from public gene databases (NCBI
non-redundant protein sequences, and metagenomic proteins31 and
the Tara Oceans microbiome and virome database32) and for which
λmax have not been experimentally investigated yet to explore new
red-shifted rhodopsins. The goal of the present study was to identify
rhodopsins with λmax longer than the wavelengths of the repre-
sentative rhodopsins in each subfamily of microbial rhodopsins for
which the λmax has already been reported (base wavelengths). Here,
we call the degrees of red-shift of the wavelength from the base
wavelength the “red-shift gain”. We focus on rhodopsins with large
red-shift gains because this would lead to the identification of amino
acid types and residue positions that play important roles in red-
shifting absorption wavelengths. Also, it is practically important in
optogenetics applications to have a wide variety of ion-pumping
rhodopsins from each subfamily to construct a new basis for rho-
dopsin toolboxes with red-shifted absorption and various types of
ion species that can be transported. We constructed the ML-based
experimental design method so that it could properly predict the
expected red-shift gains, and applied this new method to 3022
putative ion-pumping rhodopsins derived from archaeal and bac-
terial origins that can be easily expressed in Escherichia coli (Fig. 1b).

We conducted experiments by introducing the synthesized
rhodopsin genes into E. coli to measure the absorption wave-
lengths of 65 candidates for which the ML-based experimental
design method predicted that the expected gains were >10 nm. Of
these 65 selected candidates, 39 showed substantial coloring in E.
coli cells, 32 showed actual red-shift gains, 6 showed blue-shifts,
and 1 showed no change, i.e., 82% (=32/39, 7.025 × 10−5) of the
selected candidates showed actual red-shift gains. We then
investigated the ion-transportation properties of the rhodopsins
for which the red-shift gains were >20 nm, and found that some
actually had desirable ion-transporting properties, suggesting that
they (and their variants) could potentially be used as new opto-
genetics tools. Furthermore, the differences in the amino acid
sequences of the newly examined rhodopsins and the repre-
sentative ones in the same subfamily could be used for further
investigation of the red-shifting mechanisms. This result suggests
that it should be possible to find rhodopsins that have desired
properties without conducting exhaustive biological experiments,
and suggests that data-driven ML-based approaches should play
effective roles in the experimental design of rhodopsin and other
photobiological studies.

Results
Construction of an ML-based experimental design method for
predicting expected red-shift gain. To screen rhodopsins that
would have large red-shift gains, it is necessary to consider the
uncertainty of prediction in the form of “predictive
distributions”33. By using predictive distributions, it is possible to
consider appropriately the “exploration–exploitation trade-off” in
screening processes34,35, where exploration indicates an approach
that prefers candidates with larger predictive variances, and
exploitation indicates an approach that prefers candidates with
longer predictive mean wavelengths (Fig. 2). Here, the term
“exploration–exploitation’’ is a technical term used in the fields of
active learning and experimental design, and “explorations’’ in the
title of this paper is used in a broader sense and is not directly
related to the former technical terminology. We employed a
Bayesian modeling framework to compute the predictive

distributions of candidate rhodopsin red-shift gains. We then
consider an exploration–exploitation trade-off by selecting can-
didate rhodopsins based on a criterion called “expected red-shift
gains”.

To compute the expected red-shift gains of a wide variety of
rhodopsins, we developed ML-based experimental design method
based on the statistical analysis in our previous study30. Figure 3
shows a schematic illustration of the ML-based experimental
design method. First, we added 88 WT microbial rhodopsins and
their variants for which the λmax had recently been reported in the
literature or determined by our experiments, to a previously
reported data set30. In other words, the new training data set
consisted of the amino acid sequences and λmax of 884 WT
microbial rhodopsins and their variants (Supplementary Data 1).
Second, the new ML model used only N= 24 residues located
around the retinal chromophore (Supplementary Fig. 1) because
our previous study30 indicated that amino acid residues at these 24
positions play significant roles in predicting absorption wave-
lengths (Fig. 3a). Third, M= 18 amino acid physicochemical
features (Supplementary Data 2) were used as inputs in the ML
model, as opposed to the amino acid types used in the previous
statistical analysis. This enabled us to predict the absorption
wavelengths of a wide range of target rhodopsins that contain
unexplored amino acid types in the training data at certain
positions. Therefore, an amino acid sequence is transformed
into an M ×N= 432 dimensional feature vector x 2 RMN by
concatenating xi,j, the j-th feature of the i-th residue (Fig. 3b). We
consider a linear prediction model f xð Þ ¼ μþ∑N

i¼1 ∑
M
j¼1 βi;jxi;j,

where βi,j is the parameter for the j-th feature of the i-th residue,
and μ is the intercept term.

Finally, to consider the exploration–exploitation trade-off
appropriately in the screening process, we introduce a Bayesian
modeling framework, which allows us to compute the predictive
distributions of red-shift gains. Specifically, we employed
Bayesian sparse modeling called BLASSO36 (see the Methods
section for details). This enables us to provide not only the mean,
but also the variance of the predicted wavelengths. Unlike
classical regression analysis, BLASSO regards the model para-
meters βi,j and μ as random variables generated from underlying
distributions, as illustrated in Fig. 3c. Therefore, the wavelength
prediction f(x) is also represented as a distribution. The red-shift
gain is defined as gain=max(f(x)−λbase’0), where λbase is the
wavelength of the representative rhodopsin in the same subfamily
whose λmax has been experimentally determined and reported in
the literature (Supplementary Data 3). Note that the red-shift gain
is positive if f (x) is greater than λbase; otherwise, it takes the value
of zero. Since f (x) is regarded as a random variable in BLASSO,
the red-shift gain is also regarded as a random variable.
Therefore, we employ the expected value of the red-shift gain,
denoted by E½gain�, as the screening criterion where E represents
the expectation of a random variable. Illustrative examples of
E½gain� are shown in Fig. 3d. Unlike the simple expectation of the
wavelength prediction E½f ðxÞ�, E½gain� depends on the variance
of the predictive distribution (For example, E½gain� of target #4 is
larger than #1 in Fig. 2f though E f xð Þ½ � � λbase of #4 is smaller
than #1 in Fig. 2e). This encourages the exploration of rhodopsin
candidates having large uncertainty (for exploration), as opposed
to only those having longer wavelengths with high confidence (for
exploitation).

Screening potential red-shifted microbial rhodopsins based on
expected red-shift gains. The target data set to explore red-
shifted microbial rhodopsins was constructed with putative
microbial rhodopsin genes collected by a protein BLAST (blastp)
search37 of the NCBI non-redundant protein and metagenome

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01878-9 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:362 | https://doi.org/10.1038/s42003-021-01878-9 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


databases31, as well as the Tara Oceans microbiome and virome
databases32. As a result, we obtained a non-redundant data set of
5558 microbial rhodopsin genes (Fig. 1b). The sequences were
aligned by ClustalW and categorized to subfamilies of microbial
rhodopsins based on the phylogenic distances, as reported
previously38. Among these, 3022 rhodopsin genes, which did not
have identical sequences in the training data and from bacterial
and archaeal origins, were extracted because their λmax can be
easily measured by expressing in E. coli cells. We calculated the
E½gain� of these 3022 genes (Supplementary Data 4), and then
selected 65 genes of putative light-driven ion-pump rhodopsins
showing an E½gain� >10 nm for further experimental evaluation,
as ion-pump rhodopsins can be used as new optogenetics tools.

Experimental measurement of the absorption wavelengths of
microbial rhodopsins showing high red-shift gains. We syn-
thesized the selected 65 genes that showed an E½gain� > 10 nm.
These were then introduced into E. coli cells, and the proteins
expressed in the presence of 10 μM all-trans retinal. As a result,
39 E. coli cells showed substantial coloring, indicating high
expression of folded protein, and their λmax were determined by
observing ultraviolet (UV)-visible absorption changes upon

bleaching of the expressed rhodopsins through a hydrolysis
reaction of their retinal with hydroxylamine, as previously
reported30 (Fig. 4). The observed gains were compared with the
E½gain� shown in Table 1. A full list of unexpressed genes is
shown in Supplementary Data 5. In total, 32 out of 39 genes
showed a longer wavelength than their base wavelength (that is,
positive red-shift gain; Fig. 5), suggesting that our ML-based
model can significantly improve the efficiency of screening to
explore new red-shifted microbial rhodopsins compared with
random sampling (p= 7.025 × 10−5 by a binomial test assuming
that the probability of red-shift gain for random choice is 50%).

Ion-transport function of red-shifted microbial rhodopsins.
Overall, 4 of the 39 rhodopsins showed red-shifted absorption
≥20 nm compared with the base wavelengths (Table 1): three
were halorhodopsins (HRs) from bacterial species10,39,40 (to
distinguish classical HRs from archaeal species, these are hereafter
referred to as bacterial-halorhodopsins [BacHRs]), and one was a
PR41. Their ion-transport activities were then investigated by
expressing in E. coli cells and observing the pH change in external
solvent whose pH was initially set to 7 (Fig. 6a). Upon light
illumination, BacHRs from Rubrivirga marina and Myxosarcina

Fig. 2 Illustrations of exploration–exploitation for screening rhodopsins with red-shift gain. a Bayesian prediction model constructed using the current
training data (black crosses). The prediction model is represented by the predictive mean and predictive standard deviation (SD). The horizontal axis
schematically illustrates the space of proteins defined through physicochemical features. The four vertical dotted lines indicate target proteins (candidates
to synthesize). b Predictive mean. This function is defined as the expected value of the probabilistic prediction by the Bayesian model. c Predictive SD.
Since the predictive SD represents the uncertainty of the prediction, it has a larger value when the training data points do not exist nearby. d The
distributions on the vertical dotted lines represent the predictive distributions, and the horizontal dashed lines are the base wavelengths of the target
points. The base wavelength is different for each target point because it depends on the subfamily of the protein. e The density of the predictive distribution
of each target protein on its red-shift gain value. The gain is defined as the predicted wavelength subtracted by the base wavelength, and if it is negative,
the value is truncated as 0. This can be seen as a “benefit” that can be obtained by observing the target protein. f Expected value of the red-shift gain. This
provides a ranking list from which the next candidates to be experimentally investigated can be determined. Target #4 has the largest expected gain,
although target #1 has the largest increase in the predictive mean compared with base wavelength in e. Because of its larger SD (as shown in a, c, d, and e),
target #4 is probabilistically expected to have a larger gain than the other targets.
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sp. GI1 showed alkalization of external solvent, which was
enhanced by addition of the protonophore (CCCP), which
increases the H+ permeability of the cell membrane, and the
light-dependent alkalizations disappeared when anions were
exchanged from Cl– to NO3

–, indicating that these were light-
driven Cl– pumps, similar to other rhodopsins in the same BacHR
subfamily10,39. By contrast, Cyanothece sp. PCC 7425 did not
show any substantial transport. While no transporting function
can be attributed to the heterologous expression in E. coli, it
would have considerably different molecular properties from
other BacHRs. PR from a metagenome sequence (ECV93033.1)
showed acidification of external solvent that was abolished by the
addition of CCCP and was independent from ionic species in the
solvent. Hence, this was a new red-shifted outward H+ pump
compared with typical PRs whose λmax are present at ca. 520

nm41. Furthermore, these rhodopsins are needed to be functional
in mammalian cells for their optogenetic applications. To verify
this issue, we carried out electrophysiological experiment to
measure the photocurrent of BacHRs from Rubrivirga marina
and PR from a metagenome sequence (ECV93033.1) in mam-
malian cells (ND7/23; Fig. 6b). Both of them showed substantial
photocurrent even in the mammalian cells. These light-driven
ion-pumping rhodopsins with red-shifted λmax have the potential
to be applied as new optogenetics tools, and thus, warrant further
study in the near future.

Discussion
Microbial rhodopsins show a wide variety of λmax by changing
steric and electrostatic interactions between all-trans retinal

Fig. 3 Overview of the ML-based exploration of natural red-shifted rhodopsins. a Using existing experimental data, a training data set consisting of pairs
of a wavelength λmax and an amino acid sequence was constructed. A particular focus was placed on the 24 amino acid residues around the retinal
chromophore to build an ML-based prediction model. A set of protein sequences with no known wavelength was also collected as target proteins. b All
amino acid sequences were transformed into physicochemical features, leading to 24 ×18= 432 dimensional numerical representations of each protein. c
A linear regression model was constructed using the Bayesian approach. Each regression coefficient βi,j was estimated as a distribution (shown as a gray
region). The broadness of these distributions represent the uncertainty of the current estimation. d The expected red-shift gain values were evaluated for
the target proteins. The green region is the standard deviation of the prediction. The red shaded region in the vertical distribution corresponds to the
probability that the wavelength is larger than the base wavelength (dashed line), which is determined by the subfamily of the microbial rhodopsin. The bar
represents the expected red-shift gain, defined by the expected value of the increase from the base wavelength.
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chromophores and surrounding amino acid residues. An under-
standing of the color-tuning rule enables more efficient screening
and the design of new red-shifted rhodopsins that have value as
optogenetics tools, and our ML-based data-driven approach
therefore provides a new basis to identify color-regulating factors
without assumptions.

We previously demonstrated that an ML-based model based
on ∼800 experimental results could predict the λmax of micro-
bial rhodopsins with an average error of ±7.8 nm. Encouraged
by this result, in the present study, we constructed a new ML-
based model to compute expected red-shift gains for a wide
range of unknown families of microbial rhodopsins. As a result,

Fig. 4 λmax of 39 microbial rhodopsins in solubilized E. coli membrane observed upon hydroxylamine bleach reaction. The difference absorption spectra
between before and after hydroxylamine bleaching reaction of microbial rhodopsins in solubilized E. coli membrane. The λmax of each rhodopsin was
determined by the peak positions of the absorption spectra of the original proteins, and the absorption of retinal oxime produced by the reaction of retinal
Schiff base and hydroxylamine was observed as a negative peak at ~360–370 nm.
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32 out of 39 microbial rhodopsins were found to have red-
shifted absorption compared with the base wavelengths of
each subfamily of microbial rhodopsins (Table 1), suggesting
that our data-driven ML approach can screen red-shifted

microbial rhodopsin genes more efficiently than random choice
(p= 7.025 × 10−5).

By considering the exploration–exploitation trade-off, that is,
to consider not only the expected value of the prediction, but also
the uncertainty, it was possible to construct a red-shift protein
screening process, as shown in Fig. 7. Figure 7a shows the rela-
tionships between the prediction uncertainty (as measured by the
standard deviation) and the observed red-shift gains. It can be
seen that rhodopsins with red-shift gain are found in areas of not
only low (small standard deviation), but also high prediction
uncertainty (large standard deviation). Figure 7b shows the two-
dimensional projection of the d= 432 dimensional feature space
by principal component analysis. It can be seen that red-shift
gains (red) are found for target proteins not only close to training
proteins (green), but also far from training proteins. Figure 8
shows that the observed wavelengths and red-shift gains tend to
be smaller than the predicted ones. We conjecture that these
differences between the observed and predicted wavelengths and
red-shift gains are due to modeling errors, possibly caused by a
lack of sufficient information (e.g., three-dimensional structures)
and modeling flexibility (e.g., nonlinear effects); in other words,
rhodopsins having high prediction values partly by modeling
errors have a high chance of being selected. Therefore, it would be
valuable to develop a statistical methodology to eliminate selec-
tion bias due to modeling errors.

Four rhodopsins showed red-shifted absorption ≥20 nm than
the base wavelength, three of which showed light-driven ion-
transport function. Interestingly, while one BacHR from Rubri-
virga marina (accession No.: WP 095512583.1) showed a 40-nm
longer λmax (577 nm) than the base wavelength, another 11-nm
red-shifted BacHR (WP 095509924.1) was also identified from the

Fig. 5 Observed wavelengths and expected red-shift gains. The predicted and
observed red-shift (and blue-shift) gains for the 39 candidate rhodopsins that
showed substantial coloring in E. coli cells. Differences between observed and
base wavelengths are shown by the bars. The red bars indicate red-shift from
the base wavelength, while the blue bars indicate observed wavelengths that
were shorter than the base wavelengths. Proteins are sorted in the descending
order by E½gain�, as shown by the black line. Among the 39 candidates, 32
(82%) showed red-shift gains, suggesting that the proposed ML-based model
can screen red-shifted rhodopsins more efficiently than random choice.

Table 1 Predicted and observed gains of 39 microbial rhodopsins expressed in E. coli.

Origin Accession Subfamily Motif Base
wavelength/nm

E [gain] Observed
wavelength/nm

(Observed wavelength)–
(base wavelength)/nm

Rubricoccus marinus WP 094550238.1 BacHR TSA 537 40.7 541 4
Rubrivirga marina WP 095509924.1 BacHR TSA 537 39.8 548 11
Rubrivirga marina WP 095512583.1 BacHR TTD 537 35.5 577 40
Bacillus sp. CHD6a WP 082380780.1 XeR DTA 565 35.3 566 1
Bacillus horikoshii WP 063559373.1 XeR DTA 565 35.3 565 0
Cyanothece sp. PCC 7425 WP 012628826.1 BacHR TSV 537 32.9 566 29
Cyanobacterium TDX16 OWY65757.1 BacHR TSD 537 32.9 546 9
Myxosarcina sp. GI1 WP 052056058.1 BacHR TTV 537 31.2 557 20
Nanohaloarchaea archaeon SW 7 43 1 PSG98511.1 XeR DSA 565 29.2 572 7
Metagenome sequence SAMEA2621839 1737175 2 ClR NTQ 530 25.7 520 −10
Metagenome sequence SAMEA2620666 5055 4 ClR NTQ 530 25.1 525 −5
Nonlabens sp. YIK11 AIG86802.2 PR DTE 520 21.5 531 11
Metagenome sequence SAMEA2622673 750013 58 ClR NTQ 530 21.4 534 4
Metagenome sequence EBN24473.1 PR DTE 520 20.0 525 5
Metagenome sequence SAMEA2620404 88891 6 PR DTE 520 20.0 527 7
Parvularcula oceani WP_051881578.1 NaR NDQ 525 19.7 534 9
Rubrobacter aplysinae WP 084709429.1 DTG DTG 535 19.5 541 6
Metagenome sequence SAMEA2619531 1917517 3 PR DTE 520 18.0 537 17
Metagenome sequence SAMEA2622766 213679 12 XeR DSA 565 17.8 572 7
Reinekea forsetii WP 100255947.1 PR DTE 520 17.1 524 4
Bacteroidetes bacterium PSR14004.1 PR DTE 520 15.4 537 17
Metagenome sequence SAMEA2620980 19116 14 PR DTE 520 15.4 536 16
Hassallia byssoidea VB512170 KIF37192.1 BacHR TSD 537 15.1 535 −2
Erythrobacter gangjinensis WP 047006274.1 NaR NDQ 525 13.7 531 6
Pontimonas salivibrio WP 104913209.1 PR DTE 520 12.2 538 18
Cyanobacteria bacterium QH 1 48 107 PSO50292.1 CyanDTE DTD 545 12.0 548 3
Sphingopyxis baekryungensis WP 022671827.1 ClR NTQ 530 11.0 518 −12
Sphingobacteriales bacterium BACL12
MAG120802bin5

KRP08428.1 PR DTE 520 10.9 531 11

Metagenome sequence SAMEA2621401 1198262 5 PR DTE 520 10.9 534 14
Spirosoma oryzae WP 106137740.1 NaR NDQ 525 10.8 533 8
Aliterella atlantica WP 045053084.1 BacHR TSD 537 10.8 533 −4
Rosenbergiella nectarea WP 092678153.1 DTG DTG 535 10.8 533 −2
Metagenome sequence SAMEA2620980 1827033 1 PR DTE 520 10.4 537 17
Fluviicola sp. XM24bin1 PWL28924.1 PR DTE 520 10.4 538 18
Metagenome sequence SAMEA2622173 654706 7 PR DTE 520 10.4 530 10
Metagenome sequence SAMEA2619399 1397592 7 PR DTE 520 10.4 529 9
Sphingomonas sp. Leaf34 WP 055875688.1 DTG DTG 535 10.3 540 5
Sphingomonas sp. Leaf38 WP 056475157.1 DTG DTG 535 10.3 540 5
Metagenome sequence ECV93033.1 PR DTE 520 10.3 542 22
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same bacteria (Table 1). These BacHRs are highly similar to each
other (55.2% identity and 70.6% similarity), and only four of 24
amino acid residues around the retinal chromophore differ. Hence,
R. marina evolved two BacHRs with 29-nm different λmax by

a small number of amino acid replacements; the amino acid
residue(s) responsible for this color-tuning should be investigated
in the future.

The differences in amino acids in three of 24 retinal-
surrounding residues are known to play a color-tuning role in
natural rhodopsins without affecting their biological function.
These correspond to positions 93, 186, and 215 in BR (BR Leu93,
Pro186, and Ala215, respectively)17. Position 93 is known to be
diversified in the PR family (the well-known position 105 in PRs).
Green-light-absorbing PRs (GPRs) have leucine as a BR, whereas
glutamine is conserved in blue-light-absorbing PRs5,26. This
color-tuning effect by the difference between leucine and gluta-
mine is known as the “L/Q-switch”42. Interestingly, while 29.8%
of 3022 candidate genes have glutamine at this position, all 39
genes whose large red-shift gains were suggested by our ML-
based model have amino acids other than glutamine, which
suggests that our ML-based model avoided the genes having
glutamine at position 93. Especially, 12 (37.5%) of 32 genes that
actually showed red-shifted absorption compared with the base
wavelengths had methionine at this position (Supplementary
Data 6), which is substantially higher than the proportion of
methionine-conserving genes in the 3022 candidates (16.1%). The
red-shifting effect of the L-to-M mutation of this residue in GPRs
previously reported42 and the current result imply that many
rhodopsins have evolved methionine to absorb light with longer
wavelengths. Position 215 in BR is also known to have a color-
tuning role. The mutation from alanine to threonine or serine (A/
TS switch) has a blue-shifting effect of 9–20 nm17,43–45. Five of six
genes that showed blue-shifted λmax compared with the base
wavelengths have threonine or serine at this position, suggesting
that these types of genes should be avoided to explore red-shifted
rhodopsins. By contrast, asparagine was conserved in more than
half (58.4%) of the 3022 candidate genes, especially in those
belonging to the PR subfamily. A substantial portion (37.5%) of
the genes with red-shifted absorption compared with the base
wavelengths also had asparagine at this position (Supplementary
Data 6). The A-to-N mutation at this position had a smaller effect
(4–7 nm)30,44 than that of the A-to-S/T mutation; thus, the dif-
ference between alanine and asparagine is not so critical to
explore red-shifted rhodopsins. Position 186 in BR is proline in
most microbial rhodopsins (in 98.7% of the 3022 candidate
genes), and the mutation to non-proline amino acids induces red-
shift of absorption17. We identified sodium pump rhodopsin
(NaR) from Parvularcula oceani, which also has a threonine at
this position, and showed 10-nm longer absorption than the base

Fig. 7 Diversity of the selected proteins. a Predicted standard deviation
(horizontal axis) vs. observed gain (vertical axis). The marker shape
represents the subfamily of each protein. b Two-dimensional projection
created by principal component analysis. The original d= 432 dimensional
feature space is projected onto the first two principal component directions.
The first component (horizontal axis) explains 33% of the total variance of
the original space, and the second (vertical axis) explains 17%. The green
markers are the training data, and the black markers are the target data. For
the synthesized proteins, differences in the observed and base wavelengths
are shown by the color map. The results indicate that, by considering the
exploration–exploitation trade-off, it was possible to make a red-shift
protein screening process that considered not only the expected value of
the prediction, but also the uncertainty.

Fig. 6 Light-driven ion-transport activities of microbial rhodopsins showed longer λmax. a The light-induced pH change in the external solvent of E. coli cells
expressing four microbial rhodopsins that showed a λmax ≥ 20 nm longer than the base wavelength of the subfamily. The data obtained without and with 10 μM
CCCP are indicated by the blue and green lines, respectively, in 100mM NaCl, CsCl, and NaNO3. Light was illuminated for 150 s (yellow solid lines). b Rubrivirga
marina BacHR or PR (ECV93033.1 metagenome) were expressed in the membrane of ND7/23 cells (top image) and generated positive photocurrent in
response to a green light pulse (200ms, 549 nm, 28mW/mm2). The traces in the bottom are typical records at a holding potential of 0 mV.
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wavelength. Although genes having non-proline amino acids are
rare in nature, it would be beneficial to identify new red-shifted
rhodopsins. These results indicate that ML-based modeling can
provide insights for identifying new functional tuning rules for
proteins based on specific amino acid residues.

The number of reported microbial rhodopsin genes is rapidly
increasing due to the development of next-generation sequencing
techniques and microbe culturing methods. New microbial rho-
dopsins with molecular characteristics suitable for optogenetics
applications are expected to be included in upcoming genomic
data. Data-driven approaches would be able to efficiently suggest
promising rhodopsins which should be investigated preferentially.
Although the absorption of the most red-shifted rhodopsin found
in this study (BacHR from Rubrivirga marina, λmax= 577 nm) is
shorter than the peak activation wavelength of eNpHR3.0 (590
nm) which is extensively used in optogenetic studies46, our ML-
based model could be expected to reduce the costs associated with
identifying red-shifted rhodopsins from upcoming genomic data.
Especially, we expect that our ML-based model could be applied
to ion channel and enzymatic rhodopsins, which were not a focus
of this study because of their eukaryotic origins; however, their
use in optogenetics research could help identify more useful
optogenetics tools with red-shifted absorption in the future.

Methods
Experimental design. The objective of this study was to introduce and demon-
strate the effectiveness of a data-driven experimental design method to screen
candidates for rhodopsin proteins with desired properties from more than several
thousand candidates identified in various microbial species. To this end, we con-
structed a training dataset for developing a ML model and a target dataset for
screening targets (Construction of training and target data sets). A machine
learning model was constructed using the training dataset (ML modeling), which
was used to select the 65 candidates from 3022 in the target dataset. The protein
expressions of selected candidates were induced (Protein expression), and the

absorption spectra and λmax of the selected rhodopsins were measured (Measure-
ment of the absorption spectra and λmax of rhodopsins by bleaching with hydro-
xylamine). Furthermore, we investigated the ion-transportation properties of the
rhodopsins that showed large red-shift gains (Ion-transport assay of rhodopsins in
E. coli cells). Statistical significance of the effectiveness of the data-driven experi-
mental design method was assessed by a binomial test.

Construction of training and target data sets. In this study, we constructed a
new training data set (Supplementary Data 1) by adding 88 genes for which the
λmax had recently been reported in the literature or determined by our experiments,
to a previously reported data set30. The sequences were aligned using ClustalW47

and the results were manually checked to avoid improper gaps and/or shifts in the
TM parts. The aligned sequences were then used for ML-based modeling.

To collect microbial rhodopsin genes for the training data set, BR48 and
heliorhodopsin 48C1249 sequences were used as queries for searching homologous
amino acid sequences in NCBI non-redundant protein sequences and
metagenomic proteins31 and the Tara Oceans microbiome and virome database32.
Protein BLAST (blastp)37 was used for the homology search, with the threshold E-
value set at <10 by default, and sequences with >180 amino acid residues were
collected. All sequences were aligned using ClustalW47. The highly diversified C-
terminal 15-residue region behind the retinal binding Lys (BR Lys216) and long
loop of HeR between helices A and B were removed from the sequences to avoid
unnecessary gaps in the alignment. The successful alignment of the TM helical
regions, especially the 3rd and 7th helices, was checked manually. The phylogenic
tree was drawn using the neighbor-joining method50, and the microbial rhodopsin
subfamilies were categorized based on the phylogenetic distances, as reported
previously38. Based on the phylogenetic tree, 3022 putative ion-pumping rhodopsin
genes from bacterial and archaeal origins were extracted, and their aligned
sequences were used as the training data set for the prediction of λmax. The original
training and test sets are provided in Supplementary Data 1 and Table 1,
respectively, and the entire transformed datasets with physicochemical features (see
Supplementary Data 2) are provided in Supplementary Data 7.

ML modeling. Suppose that we have K pairs of an amino acid sequence and an

absorption wavelength x kð Þ; λðkÞmax

� �� �K

k¼1, where x
(k) ∈R MN is the feature vector of

the k-th amino acid sequence and λðkÞmax 2 R is the absorption wavelength of the k-
th rhodopsin protein. The least-absolute shrinkage selection operator (LASSO) is a
standard regression model in which important regression coefficients can be

Fig. 8 Comparisons of experimental observations and ML predictions. In these two plots, the red points have longer observed wavelengths than the base
wavelength λbase, while the blue points have shorter observed wavelengths than λbase. a ML-based prediction of λmax (horizontal axis) vs. experimentally
observed λmax (vertical axis). b Expected red-shift gain (horizontal axis) vs. observed gain (vertical axis). Since we selected rhodopsins having expected
red-shift gains of ≥10 nm, all the points on the horizontal axis are ≥10 nm. The observed gain, defined by max (λmax−λbase,0), is nonnegative by definition.
For blue points whose observed gain is equal to 0, the value of λmax−λbase is also shown as blue outlined circles. The green and orange dashed lines are the
averages of the horizontal and vertical axes (19.2 nm and 9.5 nm), respectively. The results indicate that the observed wavelengths and red-shift gains
tended to be smaller than the predicted ones. We conjecture that these differences between the observed and predicted wavelengths are due to modeling
errors (see the Discussion for details).
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automatically selected by the penalty on the absolute value of the coefficient, as
follows:

min
μ; β

∑
K

k¼1
λ kð Þ
max � μ� ∑

M

i¼1
∑
N

j¼1
βi;jx

kð Þ
i;j

� �2

þ γ ∑
M

i¼1
∑
N

j¼1
jβi;jj;

where β 2 RMN is a vector of βi,j and γ > 0 is the regularization parameter.
BLASSO is a Bayesian extension of LASSO for which the model is defined through
the following random variables:

λ kð Þ
max � N μþ β>x kð Þ; σ2

� �
; β � π βjσ2� �

;

where N(μ,s2) is a Gaussian distribution with mean μ and variance s2, and π β j σ2� � ¼
ΠM

i¼1Π
N
j¼1

γ
2pσ2 e

�γjβi;j j=pσ2 is the conditional Laplace prior. In this model, the max-

imum of the conditional distribution of the parameter β j x kð Þ; λ kð Þ
max

� �� �K

k¼1; λ; σ is
equivalent to the LASSO51 estimator. For γ, a hyper-prior is set through the gamma
distribution prior on γ2, and the inverse gamma prior is assumed for σ2. For the
computational details, see the original paper36. We used the “monomvn” package of R
in our implementation. The prediction f (x) was sampled through the Gibbs sampler
of β and μ. The number of samplings was set as T= 10,000 times. For each candidate
x, we approximately obtain E½gain� by

E gain
� 	 � 1

T
∑
T

t¼1
max μ tð Þ þ β tð Þ>x � λbase; 0

� �
;

where μ(t) and β(t) are the t-th sampled parameters. The parameters of the trained
model is provided in Supplementary Data 8.

Protein expression. The synthesized genes of microbial rhodopsins codon-
optimized for E. coli (Genscript, NJ) were incorporated into the multi-cloning site
in the pET21a(+) vector (Novagen, Merck KGaA, Germany). The plasmids car-
rying the microbial rhodopsin genes were transformed into the E. coli C43(DE3)
strain (Lucigen, WI). Protein expression was induced by 1 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) in the presence of 10 μM all-trans retinal for 4 h.

Measurement of the absorption spectra and λmax of rhodopsins by bleaching
with hydroxylamine. E. coli cells expressing rhodopsins were washed three times
with a solution containing 100 mM NaCl and 50 mM Na2HPO4 (pH 7). The
washed cells were treated with 1 mM lysozyme for 1 h and then disrupted by
sonication for 5 min (VP-300N; TAITEC, Japan). To solubilize the rhodopsins, 3%
n-dodecyl-D-maltoside (DDM, Anatrace, OH) was added, and the samples were
stirred for overnight at 4 °C. The rhodopsins were bleached with 500 mM hydro-
xylamine and subjected to yellow light illumination (λ > 500 nm) from the output
of a 1-kW tungsten−halogen projector lamp (Master HILUX-HR; Rikagaku)
through colored glass (Y-52; AGC Techno Glass, Japan) and heat-absorbing filters
(HAF-50S-15H; SIGMA KOKI, Japan). The absorption change upon bleaching was
measured by a UV-visible spectrometer (V-730; JASCO, Japan).

Ion-transport assay of rhodopsins in E. coli cells. To assay the ion-transport
activity in E. coli cells, the cells carrying expressed rhodopsin were washed three
times and resuspended in unbuffered 100 mM NaCl. A cell suspension of 7.5 mL at
OD660= 2 was placed in the dark in a glass cell at 20 °C and illuminated at λ > 500
nm from the output of a 1-kW tungsten–halogen projector lamp (Rikagaku, Japan)
through a long-pass filter (Y-52; AGC Techno Glass, Japan) and a heat-absorbing
filter (HAF-50S-50H; SIGMA KOKI, Japan). The light-induced pH changes were
measured using a pH electrode (9618S-10D; HORIBA, Japan). All measurements
were repeated under the same conditions after the addition of 10 μM CCCP.

Imaging and electrophysiological assays. For heterologous expression in
mammalian cultured cells, the synthesized rhodopsin genes were inserted into the
cloning site between the CMV promoter and eYFP in phKR2-3.0-EYFP52 using
EcoRI and BamHI. All experiments were carried out using ND7/23 cells, lined
hybrid cells derived from neonatal rat dorsal root ganglion neurons fused with the
mouse neuroblastoma, which were transfected with plasmids as previously
described53. EYFP fluorescence (543 nm) in the ND7/23 cells expressing the rho-
dopsins were imaged under a confocal laser scanning microscopy (LSM510, Carl
Zeiss, Oberkochen, Germany) at 512 × 512 pixels using a water-immersion
objective (×63/0.95, Achroplan, Carl Zeiss) and Ar laser (514 nm). Currents were
recorded using an EPC-8 amplifier (HEKA Electronic, Lambrecht, Germany)
under a whole-cell patch clamp configuration while a 200 ms pulse illuminations at
549 ± 15 (nm, >90% of the maximum) and 28 mW‧mm−2 was given at 0.1 Hz
using a SpectraX light engine (Lumencor Inc., Beaverton, OR). The internal pipette
solution contained (in mM) 121.2 KOH, 90.9 glutamate, 5 Na2EGTA, 49.2 HEPES,
2.53 MgCl2, 2.5 MgATP, 0.0025 ATR (pH 7.4 adjusted with HCl). The extracellular
Tyrode’s solution contained (in mM): 138 NaCl, 3 KCl, 2.5 CaCl2, 1 MgCl2, 10
HEPES, 4 NaOH, and 11 glucose (pH 7.4 adjusted with HCl).

Statistical analysis. We assessed the effectiveness of the data-driven experimental
design method by comparing it with random selection in terms of the proportions

of observing red-shift gains in the selected rhodopsins. The statistical significance
of the effectiveness was quantified by comparing the red-shift gain proportions 0.82
(=32/39, p= 7.025 × 10−5) with the probability of observing red-shift gains from
randomly selected rhodopsins, i.e., 0.50, based on a binomial test. Since we set the
base wavelength of each subfamily to the λmax of rhodopsin which was studied in
detail in previous work and equal or longer than the empirical median of the λmax

in each subfamily (Supplementary Fig. 2), it is reasonable to assume that the
probability of observing red-shift gains from randomly selected rhodopsins must be
smaller than or equal to 0.50. For statistical analysis of the ML model building and
the evaluation of its performance, see the ML modeling section above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data shown in main figures were deposited in Supplementary Data 9. Data supporting
the findings are available from the corresponding authors upon reasonable request.

Code availability
The computational code of this manuscript is available at http://www-als.ics.nitech.ac.jp/
~karasuyama/BLASSO-for-Rhodopsins/.
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