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Modulation of Glucagon Signaling
A Metabolic Approach for Heart Failure?*
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G lucagon is secreted mainly from the a-cells
of the pancreas and regulates glucose
homeostasis through modulation of hepatic

glucose production. As elevated glucagon levels
contribute to the pathophysiology of hyperglycemia
in patients with type 2 diabetes (T2D) (1), there have
been several attempts to develop small-molecule
glucagon receptor (GCGR) antagonists. Although
promising glucose-lowering effects have been re-
ported, dose-dependent increase in LDL-cholesterol,
blood pressure, body weight, and plasma transami-
nases have been observed (2–4). In recent years, and
thanks also to the information obtained from these
clinical trials, more under-acknowledged pleiotropic
effects of glucagon on lipids and body weight have
become clearer (5). Glucagon is also reported to
have effects on the cardiovascular system, but a thor-
ough understanding of the impact of modulation of
GCGR on the heart is still lacking (6). Several drugs
already used in patients with T2D result in increased
or decreased circulating glucagon and have been
tested in cardiovascular outcome trials. The data
obtained so far have not established a clear beneficial
or deleterious directionality for glucagon. Dipeptidyl
peptidase-4 inhibitors that have a glucagonostatic
effect have shown cardiovascular neutrality or higher
risk of hospitalization for heart failure (7), whereas
glucagon-like peptide-1 receptor (GLP1R) agonists
ISSN 2452-302X

*Editorials published in JACC: Basic to Translational Science reflect the

views of the authors and do not necessarily represent the views of JACC:

Basic to Translational Science or the American College of Cardiology.

From Cardiovascular and Metabolism, Janssen Research and Develop-

ment, Spring House, Pennsylvania. Dr. Pocai is an employee of Janssen

Pharmaceutical Companies of Johnson and Johnson.

The author attests that he is in compliance with human studies

committees and animal welfare regulations of the author’s institutions

and Food and Drug Administration guidelines including patient consent

when appropriate. For more information, visit the JACC: Basic to

Translational Science author instructions page.
lower glucagon but also have additional effects on
body weight and blood pressure and are either
neutral or cardioprotective (7). Sodium glucose
cotransporter-2 inhibitors (SGLT2i), which have been
reported to increase plasma glucagon (8), result in
reduction of the rates of hospitalization for heart
failure (7).
In this issue of JACC: Basic to Translational Science,
Gao et al. (9) report the consequences of antagonizing
glucagon receptors with a monoclonal antibody
(REMD2.59) in 2 nondiabetic rodent models of heart
failure.

Mice with myocardial infarction (MI)-induced by
ligation of the left coronary artery were treated with
PBS, REMD2.59, or glucagon. Histopathologic and
morphological analysis of heart post-MI showed
reduced infarct size areas in animals treated with
REMD2.59, whereas glucagon-injected animals
showed a trend toward larger infarct size areas.
REMD2.59 also reduced myocardial fibrosis, heart
weight, and myocyte cross-sectional area. Consistent
with impact on systolic function, chamber dilation
was observed in vehicle- and glucagon-treated groups
and was blunted by treatment with REMD2.59.
REMD2.59 also improved both systolic and diastolic
parameters in the post-MI heart. The authors
concluded that REMD2.59 reduces pathological
remodeling post-MI by reducing fibrosis and car-
diomyocyte hypertrophy, leading to improvement of
cardiac function.

Treatment with REMD2.59 (REMD) at the onset of
pressure-overload (TAC) partially prevented cardiac
hypertrophy and chamber dilation with preservation
of systolic and diastolic function. Two weeks after
pressure overload, REMD2.59 (REMD therapy)
reduced the progression of cardiac pathology but no
longer had any effects on left ventricle hypertrophy
https://doi.org/10.1016/j.jacbts.2019.03.006
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while partially preserving residual function of the
heart. REMD and REMD-therapy reduced chronic
pressure–overload-induced cardiac fibrosis, suggest-
ing reduction in pathological remodeling.

The authors proposed glucagon receptor antago-
nism as a new therapeutic approach to treat onset and
progression of heart failure with different etiologies,
independently of any improvements on metabolic
status.

The data presented herein are consistent with
cardiomyocyte-specific deletion of GCRG (10),
demonstrating that heart-specific elimination of
GCGR signaling reduces mortality that is induced by
experimental ischemia in normal mice.

However, there are some experimental caveats and
questions that need to be explored further.

Glucagon was administered as 4 injections a day for
the first 6 days to post-MI mice and is expected to in-
crease glucose production with changes in overall
metabolic status (5). Also, a placebo group to control
for vehicle composition and frequency of administra-
tion was not included in this study. Consistent with
the above-mentioned metabolic changes in normal
mice, the authors reported decreased fasting plasma
glucose in mice treated with REMD2.59. Although the
animals were nondiabetic, and the injury was local-
ized to the heart, it is unclear if these metabolic
changes contributed to the effects observed.

An important consideration is the potential for
transability of these findings from mice to humans.
Ligation of the left coronary artery is 1 of the
preferred methods of inducing local injury and
subsequent heart failure. However, contrary to the
clinical situation, in which the patient has progres-
sive nonocclusive coronary artery obstruction, MI in
this model is due to occlusion of a normal artery.
Although the latter is 1 of the strengths of this
work—as it allows the evaluation of a potential
direct effect on the heart, limiting systemic meta-
bolic changes—it reduces the translational relevance
of the model. It would be important to generate
mechanistic data supporting a direct effect of
REMD2.59 on the heart: for example, by evaluating
REMD2.59 in isolated cardiomyocytes. This last
experiment would be helpful also because pharma-
cological blockade may not entirely replicate car-
diomyocytes genetic ablation of GCGR (10). As
mentioned above, small-molecule GCGR antagonists
in patients with T2D have shown increased plasma
LDL-cholesterol, blood pressure, weight, and plasma
transaminase (2–4). Of note, preliminary assessment
of a GCGR antisense did not result in any of these
adverse events in patients with T2D, opening the
possibility that some actions may not be mediated
by GCGR (11). However, there are additional changes
observed in humans that need to be evaluated
carefully, such as the impact on pancreatic abnor-
malities including a-cell hyperplasia reported in
patients with loss of function of the GCGR (12,13).
REMD 2.59 is a surrogate human antibody generated
for preclinical studies and is functionally identical to
REMD-477 (9). REMD-477 was tested in a short-term
study in patients with T1D, and the effects on
glucose and circulating hormones were monitored
between day 6 and 12 post-treatment (14). Longer-
term studies are required to demonstrate that the
antibody approach does not have similar liabilities
that might offset any direct and indirect benefit on
the heart.

In a previous publication, the same authors
reported that REMD2.59 activates adenosine
monophosphate-activated protein kinase (AMPK) in
the heart, leading to improved diabetic cardiomyop-
athy (15). Activation of heart AMPK has been shown to
result in cardiac hypertrophy without apparent
functional consequences, reminiscent of cardiac hy-
pertrophy observed in athletes. Whether this effect is
tolerable in humans with heart failure of different
etiologies has yet to be determined (16).

Recent data suggest a potential beneficial action of
ketone bodies in the failing heart (17) and, because
glucagon stimulates ketone bodies formation through
the liver, it is important to consider that GCGR
antagonism may deprive the heart of a key fuel it
requires under failing conditions.

Many questions remain regarding the potential
beneficial effects of GCGR antagonism on the failing
heart. For the reasons highlighted above, these re-
sults must be interpreted with caution.

Several combinations with metabolic targets such
as GLP-1 and SGLT2i are currently in clinical trials,
with the promise of achieving profound weight loss
and glucose lowering while leveraging their car-
dioprotective effects (18–20). These novel approaches
are expected to have important bidirectional effects
on GCGR. Modulation of metabolic pathways with
direct and indirect action on the heart may be critical
for the treatment of heart failure with and without
concurrent metabolic disorders and support the need
for continued mechanistic work to define the path-
ways involved.
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