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Abstract: Multiple phases with phase to phase transitions are important characteristics of many batch
processes. The linear characteristics between phases are taken into consideration in the traditional
algorithms while nonlinearities are neglected, which can lead to inaccuracy and inefficiency in
monitoring. The focus of this paper is nonlinear multi-phase batch processes. A similarity metric is
defined based on kernel entropy component analysis (KECA). A KECA similarity-based method is
proposed for phase division and fault monitoring. First, nonlinear characteristics can be extracted
in feature space via performing KECA on each preprocessed time-slice data matrix. Then phase
division is achieved with the similarity variation of the extracted feature information. Then, a series of
KECA models and slide-KECA models are established for steady and transitions phases respectively,
which can reflect the diversity of transitional characteristics objectively and preferably deal with
the stage-transition monitoring problem in multistage batch processes. Next, in order to overcome
the problem that the traditional contribution plot cannot be applied to the kernel mapping space,
a nonlinear contribution plot diagnosis algorithm is proposed, which is easier, more intuitive and
implementable compared with the traditional one. Finally, simulations are performed on penicillin
fermentation and industrial application. Specifically, the proposed method detects the abnormal
agitation power and the abnormal substrate supply at 47 h and 86 h, respectively. Compared with
traditional methods, it has better real-time performance and higher efficiency. Results demonstrate
the ability of the proposed method to detect faults accurately and effectively in practice.

Keywords: KECA; fault monitoring; fault diagnosis; batch process; multi-stage

1. Introduction

With the considerable advances of modern society and rapid market changes, there is a growing
demand for a wide variety of high-quality products. Batch processes, characterized by flexibility,
have been widely used in small-scale manufacturing of high-added-value products, and has become
the major mode of production in the medical, biological and chemical fields. Therefore, developing
an effective monitoring system for such processes is critical for the security and reliability of
batch processes.

Most batch processes consist of multiple phases, each of which possesses its own characteristics
and dominant variables [1]. Readers should note that the multiple phases mentioned in this paper
are based on statistics and do not necessarily correspond to physical phases of the real process.
For example, the data in the same phase have the same distribution or the variables have the same
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level of correlation. Currently, the traditional multi-way principal component analysis (MPCA)
method has been successfully applied to monitoring batch processes [2–4]. If the monitoring model
is established by considering a complete set of batch data as a statistical sample, local features of the
behavior conducted during the batch process are ignored, making it hard to determine the change
in correlation between procedure parameters. MPCA is a linear modelling method in nature and is
thus ineffective for nonlinear multi-phase batch processes. Kosanovich proposed a two-phase MPCA
algorithm [5], and pioneered the research of batch process phases. Lu et al. proposed a K-means
clustering-based algorithm to automatically partition a batch process into several stable sub-phases [6],
in which the time data was partitioned into corresponding sub-phases to produce desirable results.
If several sub-phases are executed during the production process, it is impossible to make a direct
transition from one steadily operating sub-phase to another. Therefore, it is insufficient to only focus
on the stable sub-phases, since transitions between different stable sub-phases need attention as well.
In [7], Zhao et al. proposed an improved multiphase method which considers both hard partitioning
and soft transition between different phases. An automatic step-wise sequential phase partition
(SSPP) algorithm was also developed to overcome the problem of hard-partition and disorder in
clustering-based division algorithm [8]. Hu et al. proposed a novel multi-phase monitoring method,
based on batch weighting, soft classification, auto-regression and principal component analysis [9].
It alleviates false and missing alarms of the traditional method, where only hard dividing of the process
is considered and the process is modelled without taking the dynamics of the process into account.

All the methods mentioned above study the variation of process correlation within the execution
time, with the help of which infer the variation of the process’ inherent operation mechanism.
Specifically, the process features are extracted from time-slice matrices of batch processes through
PCA, forming the so-called loading matrices which are fed as the input of the clustering algorithm.
Alternatively, the sub-phases are partitioned or modelled using the correlation among the neighboring
time slice load matrices. However, the PCA method can only extract the linear features of processes,
without considering nonlinearities between variables. Therefore, this kind of method is inappropriate
for complex batch processes with heavy nonlinearities. In contrast, the kernel entropy component
analysis (KECA) method is able to extract non-linear features effectively via the non-linear mapping
method. Note that the non-linear function is unknown during the kernel mapping. Therefore, most of
the clustering algorithms require the information about the loading matrices, particularly when
calculating the cluster center. As a result, unlike the linear methods, during the partitioning of the
nonlinear batch process into sub-phases, the loading matrices cannot be fed directly as the input of the
clustering algorithm. To tackle this problem, in this context, a KECA-based similarity metric is defined
and a KECA similarity-based nonlinear clustering algorithm is proposed.

Among the various models available for monitoring the faults of batch processes, the PCA method
has been widely used in practical applications [10,11]. However, the PCA algorithm is based on the
assumption that the production process is linear. However, this assumption is invalid for the complex
and non-linear batch processes which reduces its performance to a great extent. In [12], Scholkopf et al.
proposed kernel principal component analysis (KPCA). In this method, the original input region is
first mapped to the high-dimensional feature space through kernel mapping. PCA is then performed
in this high-dimensional feature space. In this way, the non-linear data from the input region is
transformed into the linear region in the feature space [13], providing a viable approach to solving data
non-linearity. Based on KPCA, Jenssen proposed the KECA algorithm for data conversion and data
dimensionality reduction [14], which showed the unique superiority in terms of data feature extraction.
Compared with the traditional KPCA, the criterion for the choice of the principal component in
KECA is the amount of information entropy rather than the contribution of the variance of feature
data. The influence of the eigenvalues and the feature vectors on the monitored results is taken into
account. It is proven that the principal component selected by KECA have a rigid angular structure,
i.e. the principal components of different types of data concentrated in the neighborhood of different
coordinate axes, thereat facilitating data classification [15]. In this paper, the KECA method is used
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to choose the principal component’s angular structure represented by a divergence statistic. With
this statistic in hand, the similarity under probability density distributions can be represented more
effectively to distinguish from anomalous distribution [16].

The commonly used methods for fault detection include the contribution plotting and the fault
reconstruction. Li et al. [17] did a review of recent progress on decoupling diagnosis of hybrid
failures in gear transmission systems using vibration sensor signal and a potential methodology
based on the bounded component analysis (BCA) for hybrid faults decoupling was discussed. In [18],
Rostami et al. firstly applied the well-known support vector machine (SVM) classifier to detect the
abnormal observations. Fault fingerprints can be extracted by principal component analysis (PCA).
This research focused on proposing an efficient data-driven fault diagnostic method to monitor the
equipment condition, and consequently to detect and classify the faults. In [19], Nguyen et al. proposed
a data-driven prognostic method for BMP organized in three steps. The emphasis is on the use of the
percentile measure to process the raw health index. The remaining useful life (RUL) is then estimated
using an aggregate probability density function (pdf) with a confidence interval (CI). The proposed
method is applied on semiconductor manufacturing equipment. In [20], Wang G. introduced the
contribution plot for fault diagnosis. However, in the traditional methodology, the plot represents
the contribution of the original measuring variables to the monitoring statistic. It is thus necessary to
derive corresponding formula of the contribution for each given monitoring method. For complicated
fault monitoring methods (e.g., kernel entropy learning), it is very hard or even impossible to construct
an appropriate formula to compute the contribution, which enormously limits the application of the
contribution plot [21]. Yue et al. [22] proposed a fault diagnosis method based on fault reconstruction.
Unlike the contribution plot, it requires a large amount of historical data for various faults, before
identifying the procedure parameter of the fault. In order to address the limitations of the contribution
plot and fault reconstruction method, a standard vector kernel contribution plot (SV-KCP) method
is proposed in this paper. The monitoring samples collected at the moment of fault are directly
reconstructed. After the diagnosis is determined at a specific moment, all variables of the fault samples
are used to substitute the corresponding standard samples. Their statistics are computed accordingly
to determine the procedure variables that could cause the fault. The proposed method provides a
quantitative description via the histogram, which makes it easier, more intuitive and practical to use.

To sum up, this paper focuses on a complete multiphase strategy for monitoring and diagnosing
the fault of complicated batch processes with heavy nonlinearities. The phases are partitioned by
using a KECA-based similarity metric, and then KECA models and slide-KECA models are established
for steady phases and transitions respectively. After that, a SV-KCP-based fault diagnosis method is
proposed to locate the fault causing variables via the kernel plotting. Experiments are performed on
the penicillin ferment to highlight the advantages of the proposed method.

This article is organized as follows: a KECA based similarity metric is defined in Section 2 and
simultaneously a phase partitioning algorithm is proposed. In Section 3, corresponding monitoring
models are established for each steady phases and transitions, and CS statistic is introduced for
fault diagnosis. SV-KCP method is also presented in Section 3. Simulation results and industrial
application results are exhibited to validate the effectiveness of the proposed method in Sections 4
and 5, respectively. Ultimately, conclusions are drawn in Section 6. An overall block diagram of the
algorithm in this paper is shown in Figure 1.
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2. Phase Partitioning Based on KECA Similarity

2.1. KECA

Kernel entropy component was first proposed by Jenssen [14] in 2010. It was underpinned by two
concepts: Renyi entropy and Parzen window density estimation. The first one can be written as:

V̂(x) = − log V(p) = − log
∫

p2(x)dx, (1)

and the second can be written as:
p̂(x) =

1
N ∑

xi∈D
kσ(x, xi), (2)

where x denotes the sample, V(p) = εp(p), εp(•) denotes expectation with regard to the density p(x),

N denotes its dimensionality, p(x) is the probability density function of x, kσ(x, xi) = exp
(
− ‖x−xi‖

2σ2

)
,

whose width is controlled by the parameter σ. By approximating V̂(p) with the mean value, we have:

V̂(p) =
1
N ∑

xt∈D
p̂(xi) =

1
N2 ∑

xt
∑
xt

kσ(x, xi) =
1

N2 ITKI, (3)

where I denotes the (N × 1) vector and K denotes the (N × N) kernel matrix. Now, the quadratic Renyi
entropy can be approximated using the sample’s kernel matrix. In the diagonalization of the kernel
matrix K, K = EDET , in which D = diag(λ1, . . . , λN) is a diagonal matrix storing the eigenvalues and
E is a matrix with the eigenvectors [23,24]. Substituting E = {e1, . . . , eN}. into Equation (3), we have:

V̂(p) =
1

N2

N

∑
i=1

(√
λieT

i 1
)

, (4)

From Equation (4), it can be seen that the contribution to Renyi entropy varies with the eigenvalues
and eigenvectors. Therefore, during the kernel entropy analysis, by selecting the top one eigenvalue
and feature vectors with most contributions to the Renyi entropy, the data of the feature space,

i.e., the principal component matrix ϕeca = D
1
2
i ET

i , can be obtained. Afterwards, we calculate the inner
product of the data points in the feature space as Keca = ϕT

ecaφeca.

2.2. Definition of the KECA-based Similarity Metric

For nonlinear batches, phase localization should be checked by revealing the changes in nonlinear
behaviors throughout the operation duration. To better capture the multiplicity of nonlinear phases,
the clustering should be implemented in the mapped high dimensional feature space, where the
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nonlinearity underlying process measurement has been converted into linearity. Then, the key is to
determine which analysis object can be used to reveal the changes of inherent nonlinear behaviors.
Consider the three-way reference data X ∈ RN By mapping the data into the feature space F via KECA,
we have: {

ϕ : RN → F, x → ϕ(x)
}

, (5)

where φ =
{

φ(x1)
, . . . , φ(xM)

}
. By defining Equation (4) as the criterion for the choice of KECA

mapping direction, the projection vector P is given as follows:

P =
1√
λi

ϕei, (6)

The similarity is defined in Equation (7) to measure the degree of similarity between two
projection vectors:

D = diss(P1, P2) =
4
J

J

∑
j=1

(
λ

j
1 − 0.5

)2

=
4
J

J

∑
j=1

(
λ

j
2 − 0.5

)2
, (7)

It can be seen that D ranges from 0 to 1. Given the kernel entropy load matrices P1 and P2, if the
value λ

j
1 approaches 0.5, it indicates a high level of similarity between them; if it approaches 1 or 0,

it means a high level of dissimilarity.
The KECA-based similarity measures the similarity between two kernel entropy load matrices.

The smaller the value of D is, the higher the level of similarity between the two matrices becomes.
The standardized data is extended along the direction of the variable and then it is mapped on the
high-dimensional space through KECA mapping, by constructing a projection vector P. Similarity
Pk(I × J) of the two neighboring kernel entropy load matrices is computed. The value of the similarity
metric is used as the input of the clustering algorithm. By clustering the data using the load matrices
of all batches, the proposed method fully utilizes the non-linear data. The process duration is thus
properly divided into different nonlinear phases, making it very robust by effectively overcoming the
disruption from a few batches.

2.3. Phase Partitioning Based on the KECA Similarity

Based on the KECA similarity, the sub-phases are partitioned into stable ones and transitional
ones. Because the time slices during all sub-phases have the same characteristics, the data in the same
time period can be described using the same model. Figure 2 illustrates the principles of the phase
partitioning algorithm, whose steps are detailed below:

(1) Extend the matrix of the three-way model data in the direction of the batch and standardize the
matrix. Perform vertical cutting in the direction of time to produce and standardize the time
slice matrix.

(2) Map each of the time slice matrices to the high-dimensional feature space using the kernel entropy.
Let Pi denote the load matrix, representing the correlation between procedure variables.

(3) For each Pi = (I × J), i = 1, 2, . . . , K, compute the similarity Di = (k) = diss
(

Pi, Pj
)
, where{

k = j, j = 1, 2, . . . , i− 1
k = j− 1, j = i + 1, . . . , K

, and Di is the input sample of the cluster.

(4) Perform the preliminarily partitioning of the phases using the fuzzy C-mean clustering (FCM)
algorithm. Firstly, partition the process into c phases according to the rule of maximum
membership degree. Afterwards, detect the outliers having the maximum membership degree
during each phase, using the single-variable control diagram. The succession of outliers mostly
occurs at the start or end of a phase. This can be used as the criterion to determine the start and
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the end of the transitional phase. Finally, after the transitional phase is eliminated, the remaining
phase is the stable phase.

(5) Determine the control limit of the single-variable control diagram through several iterations,
i.e., obtain the control limit for the current data in iteration using the traditional single-variable
control diagram. Then, remove the outliers beyond the control limit and update the data. Repeat
these steps until the control limit converges. Since the control limit is determined using the
local statistical method rather than subjectively, the transitional phase is determined in a more
objective and reasonable manner.
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3. Phase-Wise Monitoring and Diagnosis Based on KECA Similarity

3.1. CS Statistic

KECA was originally designed for spectral classification. The samples having similar features
under certain similarity metrics are classified into the same type and dissimilar samples are classified
into other types. Different types of data have different angles with the origin of the kernel feature space
after KECA transformation. If the utility function of a cluster is able to determine such an angular
structure, it can be very beneficial for distinguishing between normal and abnormal data. Therefore,
an adequate fault monitoring statistic is an absolute necessity. The divergence statistic, also known as
Cauchy-Schwarz (CS) statistic, is able to measure the distance or similarity between two probability
density functions p1(x) and p2(x) [26,27]. Transforming it into the kernel space yields the cosine of the
angle between vectors. Due to its remarkable ability to represent the angular distance of data features
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extracted through KECA, it can effectively distinguish between normal and abnormal data. For the
data of the three-way batch process, the CS statistic is computed as:

CS = 1− cos∠
(

Mk, Mi
k

)
= 1−

l

∑
j=1

mT
k,jm

i
k,j∥∥∥mk,j

∥∥∥∥∥∥mi
k,j

∥∥∥ , (8)

where mi
k =

[
mi

k,1, mi
k,2, . . . , mi

k,j

]
denotes the principal component matrix of the i-th batch of data

at the k-th sampling moment, Mk = 1
I∑I

i=1 Mi
k

denotes the mean of the principal component matrix

of the i-th batch at the k-th sampling moment and Mk = [mk,1, mk,2, . . . , mk,l ] denotes the number of
principal components.

Under the normal operation, the online and the old models are very similar and thus produce
a small statistic [28]. Once the error happens, the two models differ considerably and the degree of
similarity decreases quickly. On the other hand, the CS statistic decreases rapidly to a level higher than
the control limit, and the fault is detected then. The CS statistic’s control limit R is computed using the
kernel density approximation method [29].

3.2. Model of the Stable Phase

After the partitioning is performed in the stable and transitional phases, a KECA model is
established for each of the stable phases. Steps are given below:

(1) Extend the three-way reference data matrix X(I × J × Kc) in the direction of the batch and then
vertically cut the matrix in the time direction to yield the time slice matrices. Normalize each of
the time slice matrices. Combine the normalized data of all time slices during each stable phase
together and extend it into a 2-D matrix Xc(Ikc × J), where kc denotes the number of sampling
points collected in the c-th stable phase. Normalize the data.

(2) Establish the KECA model for Xc(Ikc × J) to obtain the principal component matrix. Set the
kernel function and kernel parameters. Compute the kernel matrix K for each of the pre-processed
time slice matrices. Obtain eigenvalues and feature vectors of the kernel matrix through matrix
decomposition. Obtain the Rayleigh entropy corresponding to each eigenvalue based on Equation
(4). According to the Rayleigh entropy procedure, choose the top l principal component vectors
to constitute the principal component matrix.

(3) Determine the control limit of the statistic. Compute the statistic CS based on Equation (8) at each
moment k. Obtain the control limit R1 of CS through the kernel density approximation.

3.3. Modelling of the Transitional Phase

(1) Arrange the three-way reference data Xm(I × J × km) of each transitional phase into the 2D data
matrix Xm(Ikm × J) in the direction of the variable, where km denotes the number of sampling
points at the transitional phase m.

(2) Establish a sliding KECA model using the input samples Xm. In general, at the early stage of the
transition, the process at each time instance is similar to the previous phases. Afterwards, at the
late stage of the transition, the process changes to contain the status of the next phase. Hence,
we can establish a weighted KECA model for Xm(Ikm × J) at the transitional phase, yielding a
principal component matrix M, and M = λM1 + (1− λ)M2, where M1 denotes the principal
component matrix obtained from the KECA model constructed at the stable phase before the
transitional phase starts, M2 denotes the principal component matrix obtained from the model
constructed in the subsequent stable phase after the transitional phase ends. λ = X′

X2−X1
, where X′

denotes the time instance at the current transitional phase, X1 and X2 denote the ending time of
the previous stable phase and the starting time of the subsequent stable phase. This enables the
model to make transition from the previous stable phase to the next stable phase.
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(3) Determine the control limit of the statistic. Compute the statistic CS at each time moment k based
on Equation (8). Obtain the control limit R2 of CS through kernel density approximation.

3.4. SV-KCP-based Fault Diagnosis

Due to the incapability of finding a reverse mapping from the high-dimensional feature space to
the low-dimensional input space, it is impossible to derive a formula for computing the contribution
of the statistic. Therefore, the traditional contribution plot is not appropriate for the kernel space
mapping method.

To address the problem stated above, a standard vector-based kernel space contribution plot
method (SV-KCP) is proposed in this paper. Like the traditional contribution plot, the proposed method
executes effortlessly, intuitively and without any fault samples. More importantly, the proposed
method eliminates the need to derive the exact formula, making it theoretically appropriate for kernel
mapping approaches, such as KPCA and KICA.

Figure 3 shows the principles of SV-KCP. Consider a data space with three initial dimensions
which is mapped to the high-dimensional feature space using KECA, with three principal components
retained. As seen in Figure 3a, the normal data set is mapped to the feature space at any time moment
k during the batch process. Assume that the mapping data is clustered within a sphere of radius
r. Further calculation of the statistic CS indicates that the new data is completely under the CS
control limit.
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Figure 3. Principles of SV-KCP. (a) Normal operating condition; (b) Abnormal condition [25].

Now, suppose that there is a central vector in the feature space, which is located at the mass center
of this sphere. Its corresponding point in the original data space is denoted by the point O in Figure 3.
The vector from O is considered to be the standard vector. If a fault is detected at time moment k,
each of the variables belonging to the fault’s original samples is iteratively used as a substitute for the
corresponding variable of the standard vector O at time moment k. Afterwards, the process status
is again monitored using the new input samples, i.e., KECA projection—CS statistic calculation of
difference with the control limit. In this way, the contribution of each variable to the statistic can be
described quantitatively. From the control limit, it can be determined whether the contribution is
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within a reasonable range, providing more remarkable insights into the detection of the reason behind
the fault. From Figure 3b, it is intuitive to see whether the statistic exceeds the limit after the variables
x and y of O are replaced respectively.

The problem is now transformed to determining the standard vector of the point O. Clearly, due to
the impossibility to obtain the reverse mapping from feature space to original space, it is impossible to
get the vector of original data from the mass center vector of the feature space. However, from Equation
(8), it can be seen that among the Mi

k. samples, the one with the smallest value of CS is the closest one
to the feature space’s mass center vector. Hence, the data in the original space corresponding to this
sample can be used as an approximation of the standard vector of O at the moment k.

4. Simulation Experiment

PenSim Simulation Platform

The process monitoring and technology team from the Illinois Institute of Technology developed
the penicillin manufacture simulation platform PenSim2.0 [30]. It provides a baseline application
for process monitoring and fault diagnosis of the penicillin’s batch process. The reaction time of the
fermentation process is 400 h for each batch of penicillin, and the sampling interval is 1 h. The process
is monitored using 10 variables, including the ventilation, agitation power, substrate feed rate, oxygen
concentration in the water, fermenter capacity, carbon dioxide concentration, pH value, fermenter
temperature, culture volume, and cold flow velocity as shown in Table 1. In order to further match the
actuality, all measuring variables are degraded with measurement noises. A total of 35 normal batches
are generated as the reference database of the original model, producing the three-way reference data
matrix X(35 × 10 × 400). The matrix is then pre-processed in the direction of the batch and partitioned
into 400 time slice matrices Xi(35 × 10). The similarity Di is then computed from Equation (7) as the
input sample of the cluster.

Table 1. Variables used in the monitoring of the Penicillin fermentation process.

Number Process Variable Number Process Variable

1 aeration rate (L·h-1) 6 carbon dioxide concentration (g·L−1)
2 agitator power (W) 7 pH
3 substrate feed rate (K) 8 fermentor temperature (K)
4 dissolved oxygen concentration (%) 9 culture volume (L)
5 substrate feed temperature (kcal) 10 cooling water flow rate (L·h−1)

In order to show the validity of this chapter based on KECA similarity, compare the segmentation
results of traditional clustering algorithm. As shown in Figure 4, the data vector of each batch is taken
as input sample. Figure 4a uses the k-means algorithm to cluster the data. Figure 4b original data is a
direct clustering algorithm using FCM algorithm. From the two charts, it is clear that the results of
classification are not ideal, and there is almost no way to classify the second and third stages. Figure 4a
shows the result of preliminary clustering using the KECA-based similarity metric Di. Obviously,
the classification result is desirable and well matches the mechanism of fermentation. This indicates
that during penicillin fermentation, the correlation between procedure variables does not fluctuate
with time. Instead, it varies with the characteristics of the process’ mechanism at different phases.
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clustering result.

In Figure 5b, Sim(k,c) denotes the membership degree of the k-th time slice matrix with respect
to the c-th phase. The figure shows the changes with the process’ operation or characteristics of the
mechanism. In the middle stage of the phase c, Sim(k,c) (k ∈ c) is approximated to 1, revealing a high
level of similarity between the current data block and that stage. In the start and the end of phase c,
it decreases gradually, indicating the existence of transition between neighboring phases. After the
preliminary division of sub-phases, the transition phase is identified using the single-variable control
diagram, as shown in Figure 5c. The dissimilarity of the data block, 1-Sim(k,c), is computed for each
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phase and then taken as an input in the single-variable control diagram. The range of the transition
process is determined by detecting the sequence of outliers in the start and the end of the phase.
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Figure 5d intuitively shows the characteristics of transition between successive phases. Compared
with the traditional clustering algorithm, process duration is properly divided into different
nonlinear phases, making it very robust by effectively overcoming the disruption from a few batches.
The sampling interval obtained in the way above is (1~48), (70~188) and (215~400) for the stable
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phase, (49~69) and (189~214) for the transitional phase. The monitoring model of each phase is
then established.

In order to demonstrate the effectiveness of the proposed algorithm, multiple fault batches are
generated covering a variety of procedure variables and fault types, as shown in Table 2. Each type
of fault corresponds to three fault batches with different initial values and amplitudes. The mean
value is defined as the final evaluation metric of this fault type. Comparison is made with MPCA and
sub-PCA [6].

Table 2. Fault types in the simulation.

Fault Numbers Procedure Variables Fault Types

1 Substrate supply rate Step disturbance
2 Agitation power Step disturbance
3 Ventilation rate Step disturbance
4 Substrate supply rate Slope disturbance
5 Agitation power Slope disturbance
6 Ventilation rate Slope disturbance

Figures 6 and 7 displays the monitoring results of the statistics T2 and SPE on the fault type 5,
using MPCA and sub-PCA, respectively. Figure 8 shows the statistic CS monitored using the proposed
method. In this type of fault, slope disturbance with a gradient of 1.2% is added to the agitation
power at the 47th h and then lasts until the reaction ends. From the figure, it can be seen that the
proposed method detected the anomaly in the 47th h, almost as soon as the fault happened, about
21 h and 15 h earlier than MPCA and sub-PCA, respectively. In the case of T2 monitoring, sub-PCA
detected the fault about 55 h later than the proposed method and MPCA failed to detect any anomaly.
Analysis indicated that this fault happens during the transition phase 1. The sub-PCA method strictly
partitions the phase into different sub-phases and ignores the non-linear of process, thereat it is unable
to effectively reflect the process characteristics. Compared with the nonlinear phase fault monitoring
in this paper, it has a long delay in fault detection. Regarding the data of the entire batch as a whole,
MPCA cannot accurately represent the characteristics of all phases or alternatively cover the operation
range of all phases. The control limit is thus too unclear, making it unable to generate warning in the
case of malfunction during certain phases, resulting in many alarm omissions. Therefore, variation of
the characteristics in the transition phase has a lot of influence on the monitoring result and it must be
taken into account. Fault detection is followed with fault identification and diagnosis. Figure 9 shows
the contribution plot obtained from SV-KCP. It can be seen clearly from the figures that the fault is
attributed to anomaly of the second variable, agitation power.
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Figure 9. CS of fault 5 using SV-KCP.

Figures 10 and 11 displays the monitoring results of the statistics T2 and SPE on the fault type
1, using MPCA and sub-PCA, respectively. Figure 12 shows the statistic CS monitored using the
proposed method. In this type of fault, the step disturbance which reduces the supply rate by 15% is
added to the substrate supply rate at the 70th h and then lasts until the reaction ends. From the figure,
it can be seen that the proposed method detected the anomaly in the 86th h, about 29 h and 19 h earlier
than MPCA and sub-PCA, respectively. In the case of T2 monitoring, sub-PCA failed to detect any
anomaly. In addition, in the beginning of fermentation, the MPCA method showed more false alarm
phenomena. It can be seen that the traditional linear clustering algorithm is not ideal for nonlinear
multi-stage intermittent process. In general, the indirect effect of substrate supply rate changes the
normal process of fermentation. It is mainly reflected by the changes in the parameters such as the
volume of the culture volume and the cooling water flow rate. Figure 13 shows the contribution plot
obtained from SV-KCP. It can be seen clearly from the figures that the fault is attributed to anomaly
of nine and ten variable, culture volume and cooling water flow rate. Thus, the fault is caused by
substrate feed rate.
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Table 3 compares the monitoring performance of three methods. It can be observed that
the proposed method detects all faults effectively, providing the lowest false alarm rate. Hence,
the proposed method is able to monitor the process more robustly.

Table 3. Comparison of monitoring results from three results [25].

Working Condition
Error Rate of Type I (%) Error Rate of Type II (%)

MPCA Sub-PCA KECA MPCA Sub-PCA KECA

Normal 5.71 2.51 1.78 — — —
Fault 1 1.54 0.79 0.67 13.46 43.08 6.8
Fault 2 5.69 1.43 0.47 6.97 0 0
Fault 3 7.72 2.8 1.27 12.33 0.9 0.78
Fault 4 3.84 1.89 1 23.4 41.7 5.2
Fault 5 3.13 1.36 1 8.9 38.9 2
Fault 6 3.22 0.76 0.75 55.25 42.5 3.2

5. Industrial Applications

In the pharmaceutical industry, continuous fermentation of transgenic E. coli in batches is widely
used for the production of pharmaceutical proteins. E. coli fermentation is a series of very complex
biochemical reactions, characterized by multi-variable coupling, strong non-linearity, time dependence
and uncertainty. In this section, the proposed method is applied to monitor the process of fermentation
in a Beijing Yizhuang Pharmaceutical Corporation, focusing on the production of interleukin–2 from
transgenic E. coli exogenous protein expression. Figure 14 shows the 50 L fermenter. The system uses
the peristaltic pump to control the aeration rate, mixing speed, temperature and medium supplying
rate (dextrose and ammonia). The entire fermentation period lasts about 19–20 h. The first phase is
approximately 5–6 h long for bacteria adaptation after the table nurtured inoculation is performed.
The second phase lasts about 3.5 h, during which the sugar concentration needs to be maintained at
a high level in the fermenter due to high glucose consumption. The last phase is 8–9 h long, during
which the sugar concentration needs to be maintained at a moderate level to facilitate exogenous
protein expression.
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Figure 14. Illustration of the E. coli fermentation system.

The experiment lasts 19 h with a sampling interval of half an hour. The nine major procedure
variables chosen to measure the bacteria growth and exogenous protein expression include pH value,
dissolved oxygen concentration, fermenter pressure, temperature, mixing speed, glucose supply,
culture medium supply, and ventilation. A total of 33 normal batches are selected as the model’s
reference database, yielding a three-way reference data matrix X(33 × 9 × 38). The phases are then
partitioned using the proposed method. All of the phases and the sampling interval of the transition
process finally determined are shown in Figure 15, (1–10) and (18–38) for the stable phase and (11–17)
for the transitional phase.

Figures 16–18 contain the monitoring results of the production process with the second type
of fault using sub-PCA, MPCA and the proposed method, respectively. It can be seen from SPE
monitoring that both sub-PCA and MPCA detect the fault at the 23rd h, but they make false alarms
in varying degrees. In terms of T2 monitoring, neither MPCA nor sub-PCA detected any anomaly.
On the contrary, the proposed method quickly detected the fault at the 11th h and created no false
alarms, thereby revealing the product’s quality accurately. Figure 19 shows the monitoring result of
the proposed method at the stable phase 3. Diagnosis conclusion is reached from the contribution
plotting that the fault should be attributed to the anomaly of pH value.

Through the application of the above fermentation process, it can be seen that this method in this
paper can realize the fault monitoring of batch fermentation process, reduce the false alarm rate and
false failure alarm rate of the process, improve the production efficiency of the process and accurately
detect the variables causing the failure.
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6. Conclusions

A multistage fault monitoring and diagnosis strategy, based on KECA similarity, is presented for
batch processes with heavy nonlinearities. The nonlinear features of processes are extracted effectively
with the proposed method, based on which the division of steady phases and transitions are achieved.
In terms of the phase division results, different KECA models and slide-KECA models are established,
respectively. SV-KCD is simultaneously proposed in this paper for fault diagnosis to ensure the
operation safety. In the penicillin experiment, our strategy shows more satisfactory performance,
not only in shortening the detection time but also in avoiding the occurrence of missing alarms
and false alarms, in comparison with the traditional methods. Furthermore, with SV-KCD in hand,
our method can diagnose the main fault causing variables precisely and in time. When applied to real
industrial processes, the proposed method can better reflect the diversity of features in different stages,
which shows the certain practical value of our method for solving the problem of fault monitoring
in multistage batch process. In the future, more effective algorithms should be integrated into the
development of process monitoring application software and realize the application in the actual
industrial process.
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