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Therapeutic Advances in 
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Introduction
Immunotherapy has emerged as a cornerstone of 
cancer treatment, significantly improving patient 
outcomes through enhanced progression-free 
survival (PFS) and overall survival (OS).1 
Immune checkpoint inhibitors (ICIs), notably 

anti-PD-1 and anti-PD-L1 antibodies, have 
become standard care for advanced non-small-
cell lung cancer (aNSCLC).2 Camrelizumab, a 
humanized monoclonal antibody against PD-1, 
has demonstrated significant antitumor activity 
and acceptable safety profiles in NSCLC and a 
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Abstract
Background: Given that only a small subset of patients with advanced non-small-cell lung 
cancer (aNSCLC) benefit from immune checkpoint inhibitors (ICIs), the effectiveness of ICIs is 
often compromised by the complex interplay within the tumor microenvironment (TME).
Objectives: To identify predictive biomarkers associated with ICI resistance at a multi-omics 
spatial level.
Design: A total of eight aNSCLC patients who received first-line anti-programmed cell death 
protein-1 (PD-1) monoclonal antibody camrelizumab at Shandong Cancer Hospital and 
Institute between 2021 and 2022 were included in the discovery cohort. An additional validation 
cohort of 45 samples from camrelizumab-treated aNSCLC patients was also enrolled.
Methods: NanoString GeoMx® digital spatial profiling was conducted at the transcriptomic 
and proteomic level within pan-cytokeratin (panCK+), CD45+, and CD68+ compartments. For 
validation, multiplex immunofluorescence (mIF) staining was performed.
Results: Distinct spatial expression patterns and levels of immune infiltration were observed 
between tumor and leukocyte compartments. Higher CD34 expression in the macrophage 
compartment correlated with poorer prognosis and response to camrelizumab (p < 0.05). 
mIF validation confirmed the association of elevated CD34 expression level with reduced 
progression-free survival (PFS; hazard ratio (HR) = 5.011, 95% confidence interval: 1.057–
23.752, p = 0.042), outperforming traditional tumor markers in predictive accuracy.
Conclusion: Our findings identify CD34 as a novel spatial biomarker for anti-PD-1 therapy 
efficacy, potentially guiding the selection of aNSCLC patients who are more likely to benefit 
from ICI treatment.
Trial registration: ChiCTR2000040416.
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range of other cancers.3–7 Despite the potential of 
camrelizumab, evidenced by an open-label, rand-
omized, multi-cancer, phase III clinical trial that 
showed enhanced PFS when combined with 
chemotherapy,8 not all aNSCLC patients 
respond. Identifying factors influencing treat-
ment response remains crucial for optimizing 
patient care.9

The current FDA-approved clinical biomarkers 
for anti-PD-1 therapy, tumor mutation burden 
(TMB)10 and immunohistochemistry (IHC) for 
PD-L1 expression,11 have significant limitations 
in sensitivity, specificity, and predictability. These 
markers fail to fully capture the complex tumor 
microenvironment (TME), where diverse cell 
populations, such as cancer cells, immune cells, 
and stromal cells, interact to influence immuno-
therapy response.12,13 It is evident that both 
patients with high TMB or positive PD-L1 
expression and those with low TMB or negative 
PD-L1 expression may either respond or resist 
ICIs. Consequently, reliance on these markers 
alone falls short in effectively predicting aNSCLC 
patient outcomes, underscoring the need for a 
more comprehensive understanding of the TME 
to enhance the prognostic accuracy.

The TME is a dynamic ecosystem where cell 
composition, density, and spatial arrangement 
impact response to ICIs.14–16 Yet, the interplay 
between tumor cells and the surrounding cellular 
environment within the TME, which may signifi-
cantly influence the effectiveness of ICIs, is still 
not well understood. Traditional sequencing 
approaches have been limited to providing aggre-
gate information, often masking the crucial cel-
lular heterogeneity that characterizes the TME.17 
Intratumor heterogeneity (ITH), the variation of 
tumor cells within a single tumor, further com-
plicates treatment optimization. To improve 
immunotherapy outcomes, a more detailed 
understanding of the TME, including spatial 
biomarkers, is essential.

CD34 is a glycoprotein traditionally recognized 
as a marker of hematopoietic stem cells,18 which 
is involved in various cellular processes such as 
cell adhesion, recognition, activation, and signal 
transduction. Furthermore, it collaborates with 
E-selectin and P-selectin to initiate inflammatory 
responses, augmented by chemokine activity.19–21 
It has been implicated in tumor progression and 
poor prognosis in several cancer types.22–24 
Despite its established role in these cancers, the 

potential of CD34 as a predictive biomarker for 
immunotherapy remains underexplored. Given 
its involvement in immunological processes,25 
CD34 may influence the immunological land-
scape of the TME, potentially impacting the effi-
cacy of ICIs.

This study utilizes the GeoMx digital spatial pro-
filing (DSP) platform to quantitatively analyze 
the distribution of RNAs and proteins within spe-
cific regions of the TME, including tumor, leuko-
cyte, and macrophage areas. By mapping the 
expression of these molecules, we aim to discover 
novel spatial biomarkers linked to treatment 
response and investigate how ITH influences 
immunotherapy sensitivity.

Through this spatial profiling, we identified a 
novel marker, CD34, that exhibited significant 
correlations with therapeutic outcomes. Notably, 
CD34 was found to be overexpressed in the mac-
rophage and leukocyte compartments of non-
responders compared to responders, while no 
significant difference was observed in the tumor 
compartment. This differential expression was 
further validated using multiplex immunofluores-
cence (mIF) in a larger, independent validation 
cohort of 45 patients, reinforcing the potential of 
CD34 as a prognostic marker for resistance to 
camrelizumab. The mIF analysis confirmed that 
higher levels of CD34 within the macrophage 
regions were associated with poorer PFS.

By integrating these spatial multi-omics data, our 
study provides new insights into the role of CD34 
in modulating the response to immunotherapy. 
This research aims to contribute to the develop-
ment of more accurate predictive tools for immu-
notherapy, ultimately improving the clinical 
management of patients with advanced NSCLC.

Materials and methods

Patient characteristics and cohort description
Our study employed a discovery cohort com-
prising eight patients with aNSCLC who under-
went anti-PD-1 therapy at Shandong Cancer 
Hospital and Institute within the years 2021–
2022. These patients’ pre-treatment lung tumor 
punch biopsy tissues were preserved as forma-
lin-fixed paraffin-embedded (FFPE) samples 
within the pathology department archives of  
the same institution. All participants were 
enrolled in a broader, multicenter, prospective, 
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real-world study that involved 19 hospitals 
across China (Trial registration number: 
ChiCTR2000040416). Inclusion in our discov-
ery cohort necessitated patients to be 18 years of 
age or older, with histologically or cytologically 
confirmed stage IIIB or IV non-squamous 
NSCLC. Moreover, they had to test negative 
for epidermal growth factor receptor mutations 
and anaplastic lymphoma receptor kinase gene 
rearrangements, and not have received prior 
chemotherapy treatments. Exclusion criteria 
included a history of other malignancies, prior 
immunotherapy treatments, or concurrent 
enrollment in other clinical trials. The treat-
ment regimen for these patients included cam-
relizumab in combination with pemetrexed/
cisplatin or pemetrexed/carboplatin, adminis-
tered every 3 weeks as a first-line treatment, 
continuing until disease progression or the onset 
of intolerable toxicity was observed. The flow 
diagram is presented in Supplemental Figure 1.

For validation purposes, an additional cohort of 
45 patients with advanced or metastatic non-
squamous NSCLC from our hospital, who 
received first-line camrelizumab therapy between 
2020 and 2023, was also included. These patients 
were subject to a diagnostic percutaneous tumor 
needle biopsy preceding the administration of 
camrelizumab treatment. The clinicopathological 
characteristics of the discovery and validation 
cohorts have been thoroughly documented in 
Table 1 and Supplemental Table 1, respectively. 
This study adheres to the Equator network guide-
line for Diagnostic and Prognostic Studies26 
(Supplemental Table 4).

Immunotherapy efficacy assessment
The effectiveness of the administered immuno-
therapy was evaluated using the standardized 
Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1. Patient outcomes were 
stratified based on the observed immune response: 
those achieving complete response or partial 
response were categorized as the response (R) 
group. Conversely, patients exhibiting stable dis-
ease or progressive disease (PD) were designated 
as the non-response (NR) group.27–31 OS was 
delineated as the interval from the commence-
ment of immunotherapy until the patient’s death 
or the last follow-up date. PFS was determined as 
the duration from the initiation of immunother-
apy to the occurrence of disease progression, any 
cause of death, or the last recorded follow-up, 

serving as key metrics in our assessment of thera-
peutic impact.

Digital spatial profiling
NanoString GeoMx DSP system was performed 
on FFPE sections as described previously.32 The 
slides underwent a standard preparation process 
involving deparaffinization, rehydration, and 
antigen retrieval. For proteomics profiling, sec-
tions were incubated with two sets of antibodies. 
Fluorescence-labeled primary antibody panel, 
targeting key morphological markers, including 
antibodies for pan-cytokeratin (PanCK), CD45, 
and CD68. The unique UV-photocleavable oligo 
primary antibody mix included 43 additional 
antibodies that spanned several modules (as 
detailed in Supplemental Table 2). For transcrip-
tomics profiling, slides were hybridized with a 
probe mixture at 37°C overnight. The barcoded 
oligo probes consisted of 18,000 targets from the 
whole transcriptomic atlas (WTA) panel. Then, 
the above-mentioned fluorophore-tagged anti-
bodies were incubated with the sections. Next, 
once the prepared slides were loaded onto the 
GeoMx instrument for digital fluorescence imag-
ing, images were assessed by two experienced 
pathologists to select regions of interest (ROIs) 
suitable for DSP analysis. Colocalization tech-
niques for compartment-specific detection were 
employed, delineating three distinct molecularly 
defined tissue compartment areas of interest 
(AOIs) for further investigation: the tumor com-
partment (PanCK+), the leukocyte compartment 
(CD45+), and the macrophage compartment 
(CD68+). Each selected AOI was illuminated 
with UV light to cleave the oligonucleotide bar-
codes from the antibodies and probes. These 
freed oligos were then collected in 96-well plates 
using microcapillary aspiration. Subsequently, 
collected samples were hybridized overnight with 
Hyb Code Pack Master Mix and quantified 
through the NanoString nCounter Analyzer for 
proteomic analysis. For the transcriptomics anal-
ysis, the dried oligos, along with the 5× PCR 
Master mix and primers, were allocated into a 
fresh plate to begin library construction for 
sequencing. Finally, rigorous quality control 
(QC) and normalization procedures were exe-
cuted using the GeoMx DSP Analysis Platform.

mIF staining
Five-micrometer FFPE tissue sections from the 
validation cohort were deparaffinized with xylene 
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Table 1.  Baseline characteristics of discovery cohorts.

Characteristics RNA
N = 8

Protein
N = 6

Age

  ⩽60 5 (62.5%) 4 (66.7%)

  >60 3 (37.5%) 2 (33.3%)

Gender

  Male 7 (87.5%) 5 (83.3%)

  Female 1 (12.5%) 1 (16.7%)

KPS

  ⩽80 4 (50.0%) 2 (33.3%)

  >80 4 (50.0%) 4 (66.7%)

TNM stage

  III 0 (0.00%) 0 (0.00%)

  IV 8 (100.0%) 6 (100.0%)

Tumor site

  Left lung 3 (37.5%) 2 (33.3%)

  Right lung 5 (62.5%) 4 (66.7%)

Liver metastasis

  Yes 3 (37.5%) 1 (16.7%)

  No 5 (62.5%) 5 (83.3%)

Brain metastasis

  Yes 4 (50.0%) 4 (66.7%)

  No 4 (50.0%) 2 (33.3%)

Smoking history

  Yes 5 (62.5%) 3 (50.0%)

  No 3 (37.5%) 3 (50.0%)

Drinking history

  Yes 5 (62.5%) 3 (50.0%)

  No 3 (37.5%) 3 (50.0%)

Adjuvant radiotherapy

  Yes 5 (62.5%) 3 (50.0%)

  No 3 (37.5%) 3 (50.0%)

PD-L1 expression

  <1% 2 (25.0%) 1 (16.7%)

  ⩾1% 4 (50.0%) 3 (50.0%)

  Not available 2 (25.0%) 2 (33.3%)

Patient response

  Response 3 (37.5%) 3 (50.0%)

  Non-response 5 (62.5%) 3 (50.0%)

KPS, Karnofsky Performance Status.

https://journals.sagepub.com/home/tam
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and rehydrated through a graded ethanol series. 
The slides were then treated with a citric acid-
based solution in a microwave to unmask anti-
gens, followed by a blocking step using normal 
goat serum. Following blocking, slides were 
sequentially incubated with primary antibodies 
followed by horseradish peroxidase-conjugated 
goat anti-rabbit/mouse secondary antibody. The 
mIF signal was boosted using a tyramide signal 
amplification kit as per the manufacturer’s 
instructions. All washing steps were done using 
Tris Buffered Saline with Tween-20 (TBST) 
solution. Subsequently, any loosely bound anti-
bodies were eluted using microwaving. This cycle 
of staining and washing was repeated to ensure 
complete antigen labeling. The final step was 
staining the nuclei with 4’,6-diamidino-2-phe-
nylindole (DAPI). Once the staining was finished 
and excess liquid was blotted off, the slides were 
sealed with an anti-fluorescence quenching seal-
ing tablet and then examined under a fluores-
cence microscope.

A four-color panel compatible with the DSP 
approach (PanCK/CD68/CD34/DAPI) was 
selected to characterize the immune microenvi-
ronment in aNSCLC and confirm findings from 
the discovery cohort. This preliminary work 
informed the final sequence for applying the mul-
tiplex antibodies. A complete list of the antibod-
ies and fluorophores used in the mIF process is 
available in Supplemental Table 3. The stained 
tissue was then imaged using the PANNORAMIC 
SCAN II Imaging System (3Dhistech) at 200× 
digital magnification. These images were pro-
cessed and analyzed with the QuPath software, 
version 0.4.3.33 Cells were automatically identi-
fied and categorized based on their DAPI-stained 
nuclei to separate tumor and macrophage regions. 
The mean fluorescence intensity (MFI) for each 
fluorescent marker was recorded, providing a 
measure of protein expression. For CD34, the 
MFI was determined within the CD68-positive 
regions by calculating the ratio of CD34 fluores-
cence to the area marked by CD68.

Statistical analysis
All data were processed and analyzed using the 
GeoMx DSP Control Center V.1.0, the R soft-
ware package V.4.2.1, and GraphPad Prism 
V.9.5. Differences in the characteristics between 
the discovery and validation cohorts were com-
pared using Chi-square or Fisher’s exact tests. 
The Pearson correlation test was employed for 

the analysis of correlations. For comparisons 
across multiple groups, the Kruskal–Wallis test 
was utilized, and the Wilcoxon test was used for 
pairwise comparisons. Dimensionality reduction 
was achieved using UMAP V.4.2.1. Heatmaps 
and clustering were produced with pheatmap 
V.1.0.12. Differential expression of genes was 
analyzed using DESeq2 V.1.3.7, with the results 
depicted on volcano plots. Optimal cutoff values 
were determined using X-tile software V.3.6.1. 
Kaplan–Meier plots and log-rank tests for sur-
vival analysis were generated using the survival 
and survminer package. Independent prognostic 
factors were identified through Cox proportional 
hazard regression models, and the results were 
presented in forest plots. The predictive ability 
and clinical utility of the model were assessed 
with decision curve analysis (DCA) and clinical 
impact curve (CIC). The receiver operating char-
acteristic curve was also used to analyze the sensi-
tivity and specificity of the model. For the creation 
of plots, ggplot2 V.3.4.0 was utilized. All tests 
conducted were two-sided, and a p-value < 0.05 
was considered statistically significant.

Results

Patient characteristics
Initially, the discovery cohort enrolled 44 patients 
diagnosed with stage IIIB–IV non-squamous 
NSCLC who received first-line treatment com-
bining camrelizumab with pemetrexed and plati-
num-based chemotherapy. Pre-treatment biopsy 
specimens from these patients were processed into 
FFPE slides (Figure 1(a)). After careful evalua-
tion of FFPE block quality, eight patients were 
selected for further analysis. All eight patients 
underwent transcriptomic analysis, while prot-
eomic analysis was performed on six patients due 
to two failing to meet DSP QC standards. Detailed 
exclusion criteria are presented in Supplemental 
Figure 1. Patient characteristics for the RNA and 
protein analysis cohorts are summarized in Table 
1. Within the RNA analysis cohort, 37.5% were 
categorized as responders and 62.5% as non-
responders. Liver metastases were observed in 
three patients (37.5%), and brain metastases were 
identified in four patients (50%). The protein 
analysis group was evenly divided between 
responders and non-responders. Liver metastases 
were present in one patient (16.7%), while brain 
metastases were noted in four patients (66.7%). 
No significant differences were found in variables 
such as age, gender, Karnofsky Performance Score 
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Figure 1.  Schematic overview of the study. (a) Flow diagram of the DSP and mIF validation. (b) Representative 
AOIs of tumor cells (PanCK+), leukocytes (CD45+), and macrophages (CD68+) from ROI segmentation.  
(c) Correlation analysis of proteomics and transcriptomics in all AOIs, PanCK+ AOIs, CD45+ AOIs, and CD68+ AOIs.
AOI, areas of interest; DSP, digital spatial profiling; mIF, multiplex immunofluorescence; panCK, pan-cytokeratin;  
ROI, regions of interest.
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(KPS), TNM stage, primary tumor location, pres-
ence of liver or brain metastases, smoking or 
drinking habits, receipt of adjuvant radiotherapy, 
or levels of PD-L1 expression between the 
responder and non-responder groups (Table 1 
and Supplemental Table 1).

The validation cohort was composed of 45 
patients with advanced stage IIIB–IV NSCLC, all 
of whom received first-line camrelizumab therapy 
(Supplemental Table 1). Responder and non-
responder rates were 33.3% and 66.7%, respec-
tively, based on RECIST v1.1 criteria. At the 
time of follow-up, survival was noted in 66.7% of 
the response group and 36.7% of the non-
response group. Patient characteristics were simi-
lar between responders and non-responders, such 
as age, gender, KPS score, TNM stage, primary 
tumor site, liver and brain metastases, smoking 
and drinking status, adjuvant radiotherapy, and 
PD-L1 expression levels.

Multi-omics spatial analysis
The study design is outlined in Figure 1(a). The 
variation within ROIs presents a challenge in dis-
tinguishing specific cellular population signals, 
which is a barrier to exploring the intricacies of 
TME heterogeneity. To overcome this, we subdi-
vided the ROIs into distinct spatial areas, and by 
integrating morphological marker staining with 
digital optical barcode technology, we achieved 
precise identification and in-depth analysis of 
particular cell subsets, as shown in Figure 1(b). 
This approach allowed for the main ROIs to be 
further separated into tumor, leukocyte, and mac-
rophage AOIs, with a total of 102 AOIs undergo-
ing both DSP protein and RNA analysis. 
Specifically, 33 AOIs were in the tumor zone, 32 
in the leukocyte zone, and 37 in the macrophage 
zone (Supplemental Figure 2).

For mRNA measurements, we used a WTA panel 
capable of analyzing 18,000 transcripts. Protein 
expression was assessed using four panels that 
included 43 protein targets and 6 reference con-
trols, covering immune cell profiling, immuno-
oncology (IO) drug target, immune activation 
status, and immune cell typing modules 
(Supplemental Figure 2 and Supplemental Table 
2). QC and normalization steps were then imple-
mented to guarantee data integrity and consist-
ency. Expression levels of RNA and protein across 
different AOIs for all targets are presented in 
Supplemental Figure 3(A) and (B). All AOIs 

passed the QC benchmarks. Digital counts for 
RNA and protein targets were normalized using 
the geometric mean of housekeeping genes 
(Supplemental Figure 3(C) and (D)).

Subsequent correlation analyses showed a signifi-
cant positive relationship between RNA and pro-
tein expression data across all AOIs (r = 0.425, 
p = 0.0045), in tumor AOIs (r = 0.437, p = 0.0034), 
leukocyte AOIs (r = 0.38, p = 0.012), and mac-
rophage AOIs (r = 0.463, p = 0.0018). This indi-
cates a reliable consistency between RNA and 
protein analytical methods (Figure 1(c)).

Regional expression pattern reveals inter- and 
intra-tumoral heterogeneity
NSCLC presents with remarkable heterogeneity 
at both morphological and molecular levels.34,35 
To explore this intratumor diversity, we con-
ducted a spatially resolved analysis of protein and 
RNA expressions. Our results indicate that the 
tumor and adjacent immune regions exhibit dis-
tinct region-specific expression profiles, tran-
scending individual patient characteristics and 
treatment responses (Supplemental Figure 4(A) 
and (B)). This distinct distribution pattern was 
further elucidated through UMAP dimensional-
ity reduction analysis, which starkly differentiated 
the expression signatures of tumor cores from 
their leukocyte and macrophage counterparts 
(Figure 2(a) and Supplemental Figure 4(C)).

Delving into these regional expression profiles, 
we aimed to identify molecular markers that var-
ied between tumor and immune areas. Regions 
enriched with tumor cells had elevated levels of 
proteins linked to the tumor phenotype, such as 
PanCK and Ki67 alongside IDO1, and reduced 
levels of immune-related markers like CD4, 
CD14, CD163, VISTA, beta-2 microglobulin, 
and ICOS. This pattern suggests a lower preva-
lence of tumor-infiltrating immune cells in these 
areas. By contrast, leukocyte and macrophage 
areas displayed a higher presence of immune 
cells marked by a more robust expression of 
immune markers compared to tumor markers, 
indicative of heightened immune activity (Figure 
2(b) and (c)).

Correlational protein target analysis within 
tumor, leukocyte, and macrophage AOIs showed 
a significant positive association between epithe-
lial cell markers (PanCK) and proliferative indi-
cators (Ki67, S6). Similarly, the pan-immune cell 
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Figure 2.  Regional expression pattern reveals ITH. (a) UMAP dimensionality reduction analysis of proteomics. (b) Volcano plot of 
differentially expressed proteins between tumor and leukocyte regions. (c) Volcano plot of differentially expressed proteins between 
tumor and macrophage regions. (d) Correlation analysis of all protein markers. (e) Immune infiltration abundance across various 
spatial regions at the RNA level. (f) Box plot of typical immune cell abundance across spatial regions at the RNA level.
ITH, intratumor heterogeneity.
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marker (CD45) correlated strongly with T-cell 
markers (CD3, CD4, CD8, CD45RO, CD20, 
CD27, and HLA-DR). In addition, a marked co-
expression of CD68 with myeloid markers 
(CD80, CD163, and CD11c) was observed 
(Figure 2(d)). Such correlation-based clustering 
underscores the distinct molecular identities of 
tumor versus non-tumor regions. Complementary 
transcriptomic analyses further revealed the dis-
tinct expression patterns across regions. The 
genes that were most associated with the tumor 
signature were EPCAM and KRT8. Immune sig-
nature-related genes, including IGHA1, JCHAIN, 
C1QA, and CD14, were significantly increased in 
the CD45+ and CD68+ regions (Supplemental 
Figure 4(D) and (E)).

To dissect the heterogeneity between tumors at 
the spatial level, we profiled molecular character-
istics across different patients’ spatial regions. 
Notably, protein expression patterns varied 
widely between individuals. Utilizing the RECIST 
v1.1 criteria, patients 1, 2, and 3 were deemed 
responders to immunotherapy, while patients 5, 
6, and 8 were non-responders. In responding 
patients, expression levels of immune activation 
markers CD25, GZMB, and GITR were elevated 
in patients 1 and 2 compared to patient 3, indi-
cating a more active immune status (Supplemental 
Figures 4(B) and 5(A)). In addition, patient 1 
exhibited increased CD40 and B7-H3, and 
patient 2 demonstrated higher CD27, PD-L2, 
and 4-1BB levels. The elevated CD66b in patient 
3 may suggest a unique adaptation of their pri-
mary tumor to the treatment (Supplemental 
Figure 5(A)). Similar individual variations in 
immune infiltration were observed among non-
responders (patients 5, 6, and 8). For instance, 
OX40L and PD-L1 expression were prominent 
in patient 5, while HLA-DR was significantly 
expressed in patient 6, and STING and IDO1 in 
patient 8 (Supplemental Figure 5(B)). Notably, 
transcriptomic data between patients did not 
reveal the same distinctions observed at the pro-
tein level (Supplemental Figure 5(C) and (D)). 
Collectively, these findings emphasize the pro-
nounced inter- and intra-tumoral heterogeneity 
inherent in aNSCLC.

The tumor expression signatures and 
immunological hallmarks were associated with 
response to camrelizumab
Current insights into immune cell infiltration 
within the TME of NSCLC, especially across 

distinct spatial regions, remain incomplete. DSP 
transcriptomics was employed to quantify 
immune cell-type expression profiles across dis-
tinct spatial regions. Our analysis revealed a sig-
nificantly lower immune cell density in tumor 
areas compared to immune regions dominated by 
leukocytes and macrophages, with macrophages, 
fibroblasts, memory CD8+ T cells, memory 
CD4+ T cells, plasma cells, monocytes, regula-
tory T cells, and dendritic cells being particularly 
prominent in the leukocyte and macrophage 
compartment (p < 0.001, Figure 2(e) and (f)). 
This variation in immune cell infiltration may 
critically influence therapeutic outcomes. To that 
end, we assessed the expression programs of 
patients categorized by their response to immu-
notherapy, to link cellular functions, metabolic 
processes, and signaling pathways to tumor and 
immune responses.

Responders to immunotherapy, particularly to 
camrelizumab, were characterized by heightened 
lymphocyte trafficking (p = 0.0033), lymphocyte 
regulation (p = 0.0017), and cytotoxicity (p = 0.012) 
signatures. Moreover, pathway scores for 
chemokines (p = 0.00074), type II interferon 
(p = 0.027), tumor necrosis factor (p = 0.0028), 
nuclear factor kappa B (p = 0.00074), and various 
interleukins (p = 0.0017) were also significantly ele-
vated. Conversely, markers indicative of cell senes-
cence (p = 0.048), differentiation (p = 0.045), and 
stemness (p = 0.0076) were prevalent among non-
responders, suggesting an active tumor cell com-
partment capable of self-renewal, multidirectional 
differentiation, and evasion of senescence. In  
non-responders, pathways related to energy meta
bolism, including the tricarboxylic acid cycle 
(p = 0.0012), isocitrate dehydrogenase 1/2 
(p = 0.02), and fatty acid synthesis (p = 0.0013), 
alongside ERBB2 (p < 0.0001), Notch (p = 0.0017), 
p53 (p = 0.0075), and HIF1 (p = 0.0047) signaling, 
were notably intensified (Figure 3(a)).

Further comparative analysis of immune cell infil-
tration between immunotherapy efficacy groups 
showed significantly higher levels of macrophages 
(p = 0.013), dendritic cells (p = 0.0026), neutro-
phils (p = 0.0037), and fibroblasts (p = 0.034) in 
the responders. By contrast, T cells (both CD4+ 
and CD8+), B cells, and NK cells did not differ 
significantly between groups (Figure 3(b)). 
Proteomic profiling also revealed that panels 
measuring immune activation (p = 0.018), 
immune cell typing (p = 0.3), core immune cell 
profiling (p = 0.049), and immunotherapy (IO) 

https://journals.sagepub.com/home/tam


Therapeutic Advances in 
Medical Oncology Volume 16

10	 journals.sagepub.com/home/tam

Figure 3.  Gene expression signatures and immune cell infiltration in the tumor microenvironment associated with camrelizumab 
response. (a) Box plot of signatures about tumor and immune cell functions, metabolic processes, and signaling pathways to tumor 
and immune responses between responders and non-responders. (b) Box plots comparing immune cell infiltration abundance 
by proteomics between responders and non-responders. (c, d) Heatmap (c) and boxplot (d) of DSP protein panels (IO drug target 
module, immune activation status module, immune cell profiling core, and immune cell typing module) between responders and 
non-responders.
DSP, Digital Spatial Profiling; IO, immuno-oncology.

https://journals.sagepub.com/home/tam


X Huang, B Tian et al.

journals.sagepub.com/home/tam	 11

drug targets (p = 0.018) were more pronounced in 
patients with a favorable response to immuno-
therapy (Figure 3(c) and (d)). These findings 
underscore the complexity of the TME, indicat-
ing that distinct immune cell phenotypes and 
activation states may contribute to the varying 
clinical response to camrelizumab.

Identification of CD34 as a potential biomarker
In our quest to discern spatial biomarkers linked 
to camrelizumab efficacy, we engaged DSP tech-
nology to perform a differential analysis of protein 
markers across tumor, leukocyte, and macrophage 
compartments. The standard thresholds for 
selecting differential proteins were set as p < 0.05 
and |log2FC| > 1. This comparative study 
between responders and non-responders to the 
immunotherapy highlighted the upregulation of 
CD40, CTLA-4, Tim-3, PD-L1, and IDO1 
within the tumor regions of responders (Figure 
4(a)). Furthermore, STING and CTLA-4 expres-
sions were elevated in both leukocyte and mac-
rophage compartments of the responder group. 
In addition, higher expressions of CD80, CD66b, 
and ARG1 were exclusively detected in mac-
rophage regions (Figure 4(a)). These molecular 
distinctions were pronounced only upon the seg-
regated analysis of these three areas. Intriguingly, 
non-responders exhibited significantly higher 
CD34 protein expression in macrophage and leu-
kocyte areas compared to responders, while no 
significant difference was observed in the tumor 
region between groups. Pearson correlation anal-
ysis showed a strong correlation between CD34 
expression and leukocytes (Figure 4(d), r = 0.51, 
p < 0.0001) and macrophages (Figure 4(e), 
r = 0.32, p < 0.0001), suggesting its potential as a 
spatial biomarker for camrelizumab resistance.

To corroborate the relevance of CD34 expression 
within the macrophage compartments in response 
to camrelizumab treatment, mIF analysis was 
conducted on a separate cohort comprising 45 
patients who were administered first-line camreli-
zumab. Representative tissue images depicting 
the overall morphology and CD34 expression are 
presented in Supplemental Figure 6(A). Utilizing 
PanCK and CD68 as markers, we distinguished 
the tumor and macrophage areas within the mIF 
images. Tumor regions were demarcated by 
PanCK positivity, whereas macrophage regions 
were identified by CD68 positivity. We quanti-
fied the presence of CD34 by measuring the geo-
metric MFI within the macrophage regions. 

Stratifying the IO cohort into groups with high 
and low CD34 expression based on X-tile opti-
mized cutoff values revealed that non-responders 
exhibited a markedly elevated MFI of CD34 
compared to responders, suggesting that increased 
CD34 is indicative of PD post-immunotherapy 
(Figure 4(f)–(h), p = 0.0123). In addition, we 
observed a stark contrast in immunotherapy 
response rates: 76% of non-responders mani-
fested high CD34 levels, significantly higher than 
the 42% recorded within the high CD34 express-
ing responders (Figure 4(g), p = 0.032).

CD34: A prognostic indicator for progression-
free survival
An exploration of the link between CD34 levels 
and patient survival outcomes revealed that 
higher CD34 expression is a notable indicator of 
shorter PFS (Figure 5(a), log-rank p = 0.012). 
Although a trend toward lower OS was observed 
in the high CD34 expression group, statistical sig-
nificance was not attained (Figure 5(b), p = 0.555). 
Our analysis extended to a multivariate context, 
assessing the impact of CD34 alongside factors 
like age, gender, KPS score, TNM stage, smok-
ing history, drinking history, adjuvant radiother-
apy, and PD-L1 expression. Initial univariate 
Cox regression identified high CD34 levels 
(p = 0.027, hazard ratio (HR) = 5.160; 95% confi-
dence interval (CI): 1.209–22.026) alongside 
PD-L1 expression (p = 0.046, HR = 0.320; 95% 
CI: 0.104–0.980) and drinking history (p = 0.082, 
HR = 2.193; 95% CI: 0.905–5.312) as predictors 
of PFS (Figure 5(d)). Factors meeting the 
p < 0.10 threshold in univariate analysis were sub-
sequently evaluated in a multivariate Cox regres-
sion, where CD34 expression persisted as an 
independent risk factor for PFS (p = 0.042, 
HR = 5.011; 95% CI: 1.057–23.752, Figure 
5(e)), after adjusting for confounders. Moreover, 
DCA was utilized to appraise the potential clini-
cal utility of the CD34 spatial marker. DCA pro-
vides a quantitative method to measure the net 
benefit across different threshold probabilities, 
incorporating patient preferences regarding the 
risks of both undertreatment and overtreatment, 
thereby facilitating more informed decisions 
regarding model selection and application.36 The 
DCA curve indicated that the predictive capabil-
ity of CD34 expression for PFS surpassed that of 
both the TNM stage and PD-L1 expression 
(Figure 5(c)). The clinical effectiveness of CD34 
was demonstrated by the CIC. The number of 
patients identified as high risk (positives) closely 
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Figure 4.  Identification of macrophage CD34 as a potential biomarker. (a, b) Volcano plot (a) and boxplot (b) of differentially 
expressed proteins between responders and non-responders within PanCK+, CD45+, and CD68+ compartments. (c) Violin plot of 
CD34 expression in the PanCK+, CD45+, and CD68+ compartment. (d) Correlation analysis between CD34 expression and leukocytes. 
(e) Correlation analysis between CD34 expression and macrophages. (f) Representative fluorescence region of low and high CD34 
expression in the CD68+ compartment. The scale bar denotes 50 µm. PanCK (green), CD68 (red), CD34 (yellow), and DAPI (blue).  
(g) The MFI of CD34 in the CD68+ compartment compares responders and non-responders. (h) The proportion of responders and 
non-responders according to CD34 expression in the CD68+ compartment.
MFI, mean fluorescence intensity; panCK, pan-cytokeratin.
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Figure 5.  CD34 independently predicts clinical outcomes. (a, b) Kaplan–Meier curves of PFS (a) and OS (b) stratified by macrophage 
CD34 expression as measured by DSP. (c) DCA curve comparing the predictive efficacy of CD34 expression, PD-L1 expression, and 
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DCA, decision curve analysis; DSP, digital spatial profiling; OS, overall survival; PFS, progression-free survival.
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matched the number of true positives (high-risk 
subjects with outcomes). When the threshold 
probability was above 65% (Supplemental Figure 
6(B)). Moreover, the Area Under Curve (AUC) 
values of CD34 expression, TNM stage, and 
PD-L1 expression were 0.690, 0.621, and 0.595, 
respectively (Supplemental Figure 6(C)). Thus, 
the data demonstrate a distinct advantage of 
CD34 expression in prognostic prediction and in 
evaluating the clinical response to camrelizumab 
compared to traditional markers.

Discussion
This study employed the NanoString GeoMx 
DSP platform to conduct a comprehensive spatial 
transcriptomic and proteomic analysis of FFPE 
tumor samples from eight patients enrolled in a 
clinical trial. By spatially mapping molecular pro-
files within distinct TME regions, we aimed to 
identify predictive biomarkers of response to 
camrelizumab in NSCLC. Our study revealed 
that distinct regions within individual samples, 
and across different patient samples, exhibited 
unique molecular and immune expression signa-
tures that correlated with therapeutic outcomes. 
Moreover, by comparing the spatial expression of 
biomarkers between groups with varying thera-
peutic efficacies, we identified overexpression of 
CD34 in the macrophage compartment, rather 
than in the tumor compartment, to be closely 
linked with tumor progression and poorer clinical 
outcomes. Subsequent mIF analysis of an inde-
pendent validation cohort of 45 patients rein-
forced the value of DSP in identifying spatial 
biomarkers predictive of immunotherapy resist-
ance. To our knowledge, this study represents the 
first to identify CD34 as a potential prognostic 
biomarker for camrelizumab efficacy in NSCLC.

Camrelizumab, a humanized monoclonal anti-
body targeting PD-1, disrupts the interaction 
between PD-1 on T cells and PD-L1 on tumor 
cells. This interruption is crucial in reactivating 
immune cells’ ability to recognize and eradicate 
tumor cells, thereby intensifying the immune 
response against cancer.8 Although camrelizumab 
has demonstrated considerable antitumor activity 
and maintained a favorable safety profile across 
various clinical trials, the absence of robust bio-
markers to predict treatment efficacy and patient 
prognosis has kept its objective response rate sub-
optimal, with a subset of patients experiencing 
significant adverse events. Our findings under-
score the critical need for integrating spatial 

biomarker analysis into clinical practice to 
enhance the predictive precision of immunother-
apy responses and guide treatment strategies for 
aNSCLC.

The predictive power of current primary bio-
markers for immunotherapy, notably PD-L137 
and TMB,11 remains suboptimal. Studies like 
those by Kazdal et  al.38 demonstrate significant 
spatial variability in TMB across tumor regions, 
while Wang et  al.39 highlight that dynamic and 
spatially heterogeneous PD-L1 expression in 
tumor cells undermines the efficacy of PD-L1-
targeted therapies. Consistently, ITH is increas-
ingly recognized as a pivotal factor contributing 
to resistance to immunotherapy,40–42 and it is fre-
quently associated with a poor prognosis across 
various cancer types, including NSCLC.43–47

The recent advancements in high-throughput 
spatial sequencing have catalyzed a surge of stud-
ies dissecting tumor spatial heterogeneity. Among 
them, DSP stands out with its high-dimensional, 
multi-omics capabilities. DSP synergizes quanti-
tative expression data with in situ tissue analysis, 
allowing for the simultaneous examination of 
hundreds of proteins and thousands of mRNAs 
within FFPE tissue sections, thereby harmoni-
ously integrating histopathology, tumor immu-
nity, and expression profiling.32,48 Early 
investigations using DSP for melanoma immuno-
therapy marker identification found PD-L1 
expression in CD68+ cells rather than tumor 
cells, signifying its prognostic value for PFS and 
OS.49 Jon et al’s exploratory work with NSCLC 
employed DSP for proteomic analysis on TMA 
samples, uncovering that a high density of CD56+ 
immune cells within the stroma markedly corre-
lates with extended PFS and OS50. Furthermore, 
DSP studies on NSCLC TMA samples have suc-
cessfully pinpointed CD44 as a marker indicative 
of sensitivity to anti-PD-1 treatment.51 While spa-
tial analyses provide a substantial advancement 
over preceding bulk sequencing techniques, the 
ROI strategy of TMA in prior studies limits the 
potential to attribute markers to specific cell 
types, thus constraining the depth of ITH analy-
sis. Our research transcends this limitation by 
segmenting the TME of aNSCLC patients receiv-
ing camrelizumab, creating specific AOIs that 
capture the nuance of intra- and inter-tumoral 
heterogeneity. The differential analysis of these 
spatial regions revealed distinct biomarker expres-
sion patterns between tumor and immune regions. 
This study, in concert with prior 

https://journals.sagepub.com/home/tam


X Huang, B Tian et al.

journals.sagepub.com/home/tam	 15

research, underscores the critical role of spatial 
segmentation in obtaining profound insights into 
the NSCLC spatial niche during ICI treatment.

To mitigate the impact of ITH on biomarker dis-
covery for camrelizumab efficacy, our analysis 
compared therapeutic responses across various 
spatial domains. GeoMx DSP data highlighted 
CD34’s significant correlation with resistance to 
camrelizumab, particularly within the leukocyte 
and macrophage compartments. Further valida-
tion through mIF reaffirmed the higher differen-
tial expression levels of CD34 in the macrophage 
area, consistent with our DSP observations.

CD34, a highly glycosylated member of the 
sialomucin family, is prevalent in progenitor cells 
and is a recognized marker for hematopoietic lin-
eage.18 In addition, it is also recognized as a 
marker for non-hematopoietic stem cells, which 
is expressed in various cancer stem cells,52–57 
highlighting its broader role beyond hematopoi-
etic tissues. In our study, analysis of CD34 
expression in the validation cohort revealed that 
high CD34 levels were associated with poor 
prognosis in aNSCLC patients. This finding is 
consistent with previous studies that have estab-
lished CD34 as a prognostic marker in several 
cancer types. For instance, in low-grade glioma, 
CD34 has been identified as a marker of poor 
prognosis for both PFS and OS.22 Similarly, in 
NSCLC, high CD34 expression is linked to 
unfavorable prognosis,56 while in gastrointestinal 
stromal tumors, elevated CD34 levels correlate 
strongly with reduced PFS.23 In neuroblastoma, 
high CD34 expression is associated with lower 
patient survival rates.24 Besides, patients who did 
not respond to camrelizumab exhibited signifi-
cantly higher CD34 expression in macrophage 
regions compared to responders. This suggests 
that elevated CD34 in aNSCLC may contribute 
to a TME that predisposes patients to increased 
resistance to ICIs, consistent with previous liter-
ature.58–60 However, prior studies have been lim-
ited by a lack of spatial context analysis, 
highlighting the need for further research to bet-
ter define the optimal patient populations for tar-
geted therapies.

Given the association of CD34 with poor progno-
sis and resistance to ICIs, integrating CD34-
targeted therapies with existing immunotherapy 
regimens could offer a promising strategy for 
overcoming treatment resistance. Combining 
CD34 inhibition with PD-1/PD-L1 blockers may 

enhance the efficacy of immunotherapy by modi-
fying the TME to become more responsive to 
immune interventions. Preclinical studies explor-
ing the potential of such combination therapies 
are warranted, as they could pave the way for 
novel therapeutic approaches that improve out-
comes for aNSCLC patients who exhibit high 
CD34 expression.

Our differential expression analysis identified sev-
eral biomarkers intricately associated with camre-
lizumab’s therapeutic efficacy. A pivotal element 
within this landscape is STING, a cornerstone 
molecule of innate immunity that orchestrates the 
spontaneous antitumor immune response. 
Notably, STING expression was markedly 
enhanced within the leukocyte and macrophage 
AOIs of patients who responded to camrelizumab 
treatment. The current trajectory of research is 
harnessing STING agonists to leverage this path-
way for formidable antitumor effects.61 Yet, 
despite the anticipatory immune response that 
STING agonists elicit, attenuating tumor prolif-
eration, prolonged administration at high doses 
paradoxically results in immune tolerance, T-cell 
apoptosis, and upregulation of PD-L1 and 
IDO1—events that ultimately facilitate tumor 
immune escape.62–65 This phenomenon echoes 
the elevated levels of PD-L1 and IDO1 identified 
in the white cell regions in our investigation. The 
duality of STING activation, as our findings sug-
gest, underlines its ambiguous nature in tumor 
immunity, serving both as a facilitator of immune 
activation and, conversely, as a potential pathway 
to immune resistance.

Our study also uncovered differential expression 
of CD80 and ARG1 in macrophage AOIs, indi-
cating potential avenues for TAM re-education as 
a strategy to counteract immunotherapy resist-
ance.66,67 Moreover, our findings indicate sub-
stantial co-expression of STING with the 
neutrophil marker CD66b in camrelizumab-
responding patients, as recent literature  
underscores their significance in cancer immuno-
therapy.68,69 The expression of CTLA-4, a pivotal 
modulator of T-cell activity and self-tolerance, 
was also prevalent in the macrophage domains of 
responders, suggesting its involvement in the effi-
cacy of ICI therapies.70

Conclusively, the collective insights from mRNA, 
protein, and mIF analyses in our study have 
underscored the superior predictive efficacy of 
CD34 over traditional prognostic indicators like 
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TNM staging and PD-L1 expression. This sug-
gests that novel spatially resolved markers, such 
as CD34, can not only complement but also 
enhance the predictive capacity of established 
biomarkers. Such findings reaffirm the utility of 
DSP in the identification of reliable biomarkers 
for immunotherapy responses, marking a signifi-
cant stride in precision medicine.

There are several limitations to consider, despite 
the promising insight gained from this study. 
The modest sample size and retrospective nature 
of this single-center study might introduce selec-
tion bias. In addition, due to the finite area of 
puncture samples and the complex heterogene-
ity of the TME, there is a potential for misrepre-
senting biomarker expression when extrapolating 
to the entirety of the tissue section. The rigidity 
in FFPE section quality requirements further 
restricted the comprehensive proteomic analysis 
to a subset of patients, potentially leading to 
incomplete correspondence between transcrip-
tomic and proteomic data. Consequently, a cau-
tious interpretation of these results is advised. 
Future studies with expanded cohorts and multi-
center participation are anticipated to corrobo-
rate and extend upon these preliminary findings. 
Moreover, while CD34 demonstrated significant 
predictive value, the precise mechanisms by 
which macrophage CD34 modulates the immune 
response within the TME remain unclear. 
Further research is necessary to determine 
whether CD34 participates in an interactive net-
work with other cellular components within the 
TME.

Conclusion
In summary, our study provides new insights into 
understanding the ITH of aNSCLC prior to ICI 
therapy and identifies potential markers predic-
tive of differential responses to immunotherapy. 
By leveraging the DSP, we reveal distinct molecu-
lar and immune profiles associated with patient 
outcomes. Specifically, elevated CD34 expres-
sion within the macrophage compartment 
emerged as a potential prognostic indicator of 
poor response to camrelizumab therapy. These 
results underscore the importance of spatial anal-
ysis for understanding immunotherapy resistance 
and suggest CD34 as a promising biomarker for 
patient stratification. Further validation in larger 
cohorts is warranted to solidify these findings and 
inform the development of optimized treatment 
strategies.
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