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Simple Summary: Plants usually adopt different strategies to adapt to their surrounding environ-
ments. Accurately quantifying plant strategies is of great interest in trait-based ecology, in particular
to understand the responses of ecological structures and processes. In the last two decades, these
strategies have been described qualitatively; however, the use of quantitative methods is still lacking.
In this study, we used a plant functional trait approach to discuss plant strategies along an aridity
gradient. We found that eight functional traits divided into four dimensions represent four adaptation
strategies: energy balance, resource acquisition, resource investment and water use efficiency. We
also concluded that climate and soil together with family (vegetation succession) were the main
driving forces of trait covariations. Our study provided a new perspective to understand plant
functional responses to aridity gradients, which is helpful for ecological management and vegetation
restoration programs in arid regions.

Abstract: A trait-based approach is an effective way to quantify plant adaptation strategies in
response to changing environments. Single trait variations have been well depicted before; however,
multi-trait covariations and their roles in shaping plant adaptation strategies along aridity gradients
remain unclear. The purpose of this study was to reveal multi-trait covariation characteristics, their
controls and their relevance to plant adaptation strategies. Using eight relevant plant functional
traits and multivariate statistical approaches, we found the following: (1) the eight studied traits
show evident covariation characteristics and could be grouped into four functional dimensions
linked to plant strategies, namely energy balance, resource acquisition, resource investment and
water use efficiency; (2) leaf area (LA) together with traits related to the leaf economic spectrum,
including leaf nitrogen content per area (Narea), leaf nitrogen per mass (Nmass) and leaf dry mass
per area (LMA), covaried along the aridity gradient (represented by the moisture index, MI) and
dominated the trait–environmental change axis; (3) together, climate, soil and family can explain
50.4% of trait covariations; thus, vegetation succession along the aridity gradient cannot be neglected
in trait covariations. Our findings provide novel perspectives toward a better understanding of plant
adaptations to arid conditions and serve as a reference for vegetation restoration and management
programs in arid regions.
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1. Introduction

Aridity acts as a strong environmental filter for plant survival, growth and devel-
opment and therefore has considerable effects on community structure and ecosystem
functions, including primary productivity and nutrient cycling [1,2]. For instance, aridity
favors species with small leaves as a part of their adaptation strategy to adapt soil to
water deficits and nutrient limitations [3]. Plants undergo environmental adaptation and
evolve an optimal phenotype, forming a set of adaptation strategies at both the commu-
nity and individual levels [4]. To date, researchers have usually ascribed the single axis
of a plant’s adaptation strategy to environmental changes, but strategies explained by
covariation and a tradeoff in traits related to nutrient acquisition and conservation have
been neglected [5,6]. These strategies can be quantified by the covariation of several plant
functional traits, which are any morpho-physio-phenological traits that have an impact on
plant growth, reproduction and survival [7,8]. From the perspective of trait-based ecology,
more information on plant adaptation to aridity gradients is needed.

Functional trait covariation may reflect plant strategies to stressful aridity conditions.
In fact, variability in environmental conditions is considered as a filter of traits [9,10];
therefore, variations in plant functional traits reflect shifts in plant adaptation strategies
under changing environmental conditions. For example, changes in plant height, leaf
mass per area (LMA) and leaf nitrogen content per area (Narea) are directly linked to
resource acquisition and drought tolerance, which have been widely reported [8,11,12].
Meanwhile, plants in resource-poor environments prone to arid conditions are expected to
favor conservative trait syndromes, such as slower growth rates, lower production and
higher root density [13]. Within arid sites, C3 plants show higher values of leaf 13C, which
reflect higher water use efficiency [14]. Thus, it has been reported that plants balance
their investment in either enzymatic reactions or electronic transport in the process of
photosynthesis to avoid wasting resources [15].

Several studies have successfully quantified plant adaptation to arid
environments [1,14,16]; nonetheless, only a few of them have yielded results that con-
sider the interpretation difficulty of trait covariation and their controls. Some issues remain
to be resolved:

(1) Traits do not vary independently but show covariation and tradeoff relationships [17].
However, from the perspective of plant functional traits, plant strategies adopted to
simultaneously balance conservation and resource acquisition remain unclear.

(2) Climate and soil are widely recognized to control trait variation [18–20]. However,
the effects of climate and soil intersections have not been fully quantified, especially
under arid conditions.

(3) Vegetation succession along an aridity gradient resulted in the replacement of larger
leaf plants by plants with small and high-efficiency leaves [21]. The contribution of
vegetation distribution (family) to trait covariations is still unknown along aridity
gradients.

In the past few decades, the Loess Plateau in China has implemented many large-
scale ecological protection and restoration projects [22,23]. The observed regional climate
changes (especially in precipitation trends) has caused great effects on ecosystem composi-
tion and functions [24]. Therefore, quantifying plant adaption to regional climate changes,
especially in arid areas, is a matter of urgency. In this study, taking the Loess Plateau as
the study area and using multivariate statistics, we aim to (1) quantify the covariation
characteristics of eight functional traits and their representative dimensions (adaptation
strategies); (2) reveal trait variation along the precipitation and temperature gradients;
and (3) explore the controls of eight key traits along the aridity gradient on the Loess
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Plateau. Hence, the aim of this study is to reveal the adaptation strategies of plants to
aridity gradients throughout quantifying the covariation of eight fictional traits.

2. Materials and Methods
2.1. Study Area and Sampling Strategy

The Loess Plateau is a highland area located in the middle of the Yellow River basin
in China (Figure 1a) and is prone to serious soil and water loss [25]. With an area of
more than 620,000 km2, this region features a temperate continental climate with a mean
annual temperature ranging from 4 ◦C to 14 ◦C and annual precipitation ranging from
approximately 200 mm to 800 mm, forming three distinct zones along an aridity gradient:
semihumid (moisture index, MI > 0.67), semiarid (0.55 < MI ≤ 0.67) and arid (MI ≤ 0.55).
From southeast to northwest, precipitation decreases on the Loess Plateau (Figure 1b).
Thus, from south to north, the temperature (represented by a growing-season monthly
mean temperature above 0 ◦C (mGDD0)) increases and is closely related to changes in
elevation. In the past few decades, many ecological projects have been implemented on
the Loess Plateau (Figure 1c), and, therefore, the effects of the local climate and plant
adaptation to environmental changes have been widely studied.
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Figure 1. Distributions of the sampling sites across the aridity gradient on the Loess Plateau. (a) Vegetation distribution—
the numbers represent the site IDs in Table 1. (b) Distribution map for moisture index (MI). (c) Distribution map for
growing-season monthly mean temperature above 0 ◦C (mGDD0).

Eight morphological, chemical and photosynthetic traits were measured and sampled
from 105 species and 271 records along 22 sites in August 2016 and 2017 (Figure 1a,
Tables 1 and A1). The 105 species were grouped into 38 families, and the main families are
described in Table A2. The sampling procedure allows one to cover all of the vegetation
types and climate gradients of the Loess Plateau, which represents an ideal design to reveal
plant responses and functional strategies to aridity gradients. Sampling was restricted
to dominant species and communities with no clear human disturbance. Thus, along
the sampling transect, the vegetation types changed from forestland to shrubland and
desert, with noticeable vegetation succession, making it ideal to study changes in ecological
structure and functions from the perspective of plant functional traits.



Biology 2021, 10, 1066 4 of 16

Table 1. Characteristics of the studied sites from the China Loess Plateau transect.

Scheme Site Name Latitude
(Degree)

Longitude
(Degree)

Elevation
(m)

Vegetation
Types

No. of
Species
Samples

Moisture
Index (MI)

01 Jiumen 35.64 110.58 440.3 grassland 10 0.54
02 Wangfeng 35.72 110.44 721 grassland 12 0.61
03 Qiaozigou 35.81 110.27 1219.9 forestland 24 0.69
04 Caijiachuan1 35.75 109.89 1603.2 forestland 26 0.82
05 Caijiachuan2 35.82 109.91 1244.92 forestland 20 0.75
06 Laohugou 35.97 110.16 1061.32 forestland 21 0.69
07 Zhonglousi 36.21 109.92 1087.42 forestland 32 0.68
08 Lushanmiao 36.67 109.48 1220 grassland 14 0.63
09 Houjiacun 36.77 109.42 1200 grassland 11 0.62
10 Jiugou1 36.8 109.36 1071 grassland 10 0.61
11 Jiugou2 36.8 109.36 1067 grassland 8 0.61
12 Caozhuang 36.86 109.3 1154 grassland 10 0.61
13 Liuping 36.91 109.27 1204 grassland 7 0.61
14 Caohe 36.97 109.16 1311 grassland 15 0.6
15 Fengcigeda 37.09 109.05 1434 grassland 7 0.59
16 Liandaowan 37.19 108.97 1476 grassland 10 0.56
17 Tianciwan 37.32 108.91 1592 grassland 8 0.56
18 Lugouqu 37.44 108.91 1560 grassland 8 0.53
19 Xiasandun 37.5 108.87 1584 grassland 7 0.54
20 Shuanghaize 37.69 108.87 1347 desert 4 0.46
21 Guojiazhuang 37.94 108.88 1153 desert 4 0.4
22 Batuwan 37.99 108.74 1155 desert 3 0.38

2.2. Data Descriptions of Traits, Climate and Soil

All plots were located on sunny slopes, and middle-aged plants were sampled. Eight
leaf functional traits, namely leaf area (LA), leaf nitrogen content (Nmass), Narea, LMA, leaf
dry mass content (LDMC), maximum carboxylation rate standardized to 25 ◦C (Vcmax25),
maximum electron transport rate standardized to 25 ◦C (Jmax25) and the ratio of intercellular
to ambient CO2 concentration (ci:ca, termed χ in this study), which could capture most plant
functions, were measured. All traits were measured following standardized protocols,
as proposed by Cornelissen et al. [26]. LA is the projected area of a leaf (or leaflet for
compound leaves), which is linked to the leaf energy balance [27]. LDMC is the oven-dry
mass divided by its fresh mass. LMA is the oven-dry mass divided by fresh LA, which
is the inverse of specific leaf area (SLA) and highly related to the resistance of plants to
both herbivory and drought [28]. Nmass is the leaf nitrogen per mass, and Narea is the leaf
nitrogen per area, which are two indicators of photosynthetic capacity [29]. LDMC, LMA,
Nmass and Narea are key traits in the leaf economics spectrum (LES), which reflects a plant’s
investment of nutrients along the acquisition–conservation continuum [30,31].

Vcmax and Jmax were calculated using a one-point method from the light-saturated rate
of net CO2 fixation at ambient CO2 (Asat) and the light-saturated rate of net CO2 fixation at
high CO2 (Amax) [32]. Vcmax and Jmax were standardized to 25 ◦C following the proposed
methods of Niinemets et al. [33]. From the 272 records, 46 records for Vcmax25 and Jmax25
were not measured, and, therefore, we used a multilayer perceptron (MLP) [34], which
is a class of feedforward artificial neural networks with high simulation accuracy. In this
experiment, the training and validation accuracy for Vcmax25 and Jmax25 reached 0.55. χ was
converted from leaf δ13C measurements after eliminating the effects of sampling year and
latitude, following the method proposed by Cornwell et al. [35]. χ is a useful indicator in
aridity areas because it determines the balance between carbon gain and water loss, which
is closely regulated by the stomata and reflects the adaptation of plants in arid conditions.

The climate of each site was defined using three climate variables, namely growing de-
gree days above 0 ◦C (mGDD0), monthly accumulated photosynthetically active radiation
during the thermal growing season (mPAR0) and the ratio of mean annual precipitation
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to annual equilibrium evapotranspiration (moisture index, MI). MI is a widely recom-
mended indicator of aridity stress, which is the inverse of dry index and can reflect the
plant-available water content in the soil. These bioclimatic variables were calculated from
observations retrieved from meteorological stations on the Loess Plateau. Two variables
representing soil conditions for optimal plant growth were selected, namely soil organic
matter (SOM) and soil pH at 0~30 cm depth.

2.3. Multivariate Statistical Analysis

Principal component analysis (PCA) and redundancy analysis (RDA) were used to
analyze trait covariation and to reveal the relationships between traits, considering traits
as response variables and climate/soil/family variables as predictors [36,37]. PCA and
RDA were performed with the vegan package in R language [38]. LA was square-root
transformed to create a linear relationship. Calculated using the method of variation
partitioning, a Venn diagram was used to show the contributions of the climate, soil and
family, and their independent and intersection effects were explicitly considered [39]. The
taxonomic rank at the family level was used in forward analysis looking at the shared
evolutionary history between species and the assumed similarities in their responses to
environmental changes. Thus, for the purpose of our study, it was more suitable to use the
family level rather than the genera or species in the statistical analysis. Ordinary linear
regression was employed to describe the variation in a single trait response to the climate
gradient, and the 95% confidence intervals are shown.

3. Results
3.1. Trait Covariation and Corresponding Adaptation Strategies

The PCA analysis that included all plants and sites confirmed our hypothesis that the
eight traits studied are not independent but show covariation patterns (Figure 2, Table 2). The
first three axes captured 84.32% of the total variation in the eight traits. The first axis captured
41.13% of variation, which was mainly controlled by LA, Narea, Vcmax25 and Jmax25. The second
axis accounted for 32.61% of variation and was dominated by LA, Vcmax25 and Jmax25. The
third axis accounted for 10.58% of variation and was dominated by Narea and LMA. Both
LA and χ changed independently and did not covary with the other traits (Figure 2). Vcmax25
and Jmax25 closely covaried in the first two PCA axes. Nmass, Narea, LMA and LMDC, four
important traits of LES, also presented clear covariation characteristics, especially on the second
axis (capturing 32.61% of the total variations), which show similar weights to the first axis.

Table 2. Trait loading, eigenvalues and percentage of trait variation explained by the first three
principal components (PCs). LA: leaf area; Nmass: leaf nitrogen content; Narea: leaf nitrogen per
area; LMA: leaf mass per area; LDMC: leaf dry mass content; Vcmax25: maximum carboxylation rate
standardized to 25 ◦C; Jmax25: maximum electron transport rate standardized to 25 ◦C; χ: ratio of
intercellular to ambient CO2 concentration.

Traits PC1 PC2 PC3

log
√

LA −1.97 a 1.98 0.42
log Nmass 0.31 0.00 0.14
log Narea 0.80 −0.10 1.05
log LMA 0.49 −0.10 0.90

log LDMC 0.14 −0.12 0.36
log Vcmax25 1.30 0.98 −0.00
log Jmax25 1.71 1.62 −0.35

logit χ −0.17 0.05 −0.29
Eigenvalue 0.90 0.71 0.23

Proportion explained
(%) 41.13 32.61 10.58

Cumulative
proportion (%) 41.13 73.73 84.32

a Values greater than 0.5 are in bold.
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The correlation matrix (Figure 3) confirmed our results obtained from the PCA analysis
that the eight studied traits are organized into four trait dimensions. The first dimension
was LA, which had a low correlation with other traits and represented plant behavior
during evaporation (energy balance). The second dimension was composed of LDMC,
LMA, Narea, and Nmass, which were closely related within this dimension and weakly
related to traits in other dimensions. This dimension is linked to a plant’s strategy for
resource acquisition. Vcmax25 and Jmax25 constituted the third dimension, with a correlation
coefficient reached at 0.77. In this dimension, Vcmax25 and Jmax25 varied tightly because
plants should not invest more in either photosynthesis or electronic transport to maintain a
lower energy cost. The fourth dimension was χ, which was found to be unrelated to the
other traits. This dimension is directly linked with water use efficiency. The clear color
differences of points in the histogram (Figure 3) and scatter plots (Figure 2a,b) indicate
that trait covariations were not random but presented significant variation along the
precipitation gradient.

3.2. Trait Variations along the Aridity Gradient (MI Decreased)

Except LDMC, all the studied traits showed significant variation trends along the
aridity gradient (decreasing MI) (Figure 4). LA increased along with an increase in MI,
which is consistent with the transition of vegetation types from forests (large leaf areas) to
grasslands and deserts (small leaf areas). LDMC was not sensitive to moisture changes.
Plants tended to have higher LMA values when facing arid conditions because of its
construction cost. Both Nmass and Narea increased significantly along the aridity gradient
and were related to leaf construction and photosynthetic capacity. Vcmax25 and Jmax25
were directly linked with photosynthetic capacity, exhibiting an increase along the aridity
gradient (decreasing MI), because the growth period was shorter in the arid area than in
the humid area, and they required more photosynthesis efficiency to recover construction
cost. χ decreased along the aridity gradient, which reflected an adjustment in plant stomata
in arid conditions to maintain high water use efficiency.
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Figure 4. Trait variations along the aridity gradient (decreasing moisture index, MI). (a) LA versus MI. (b) LDMC versus MI.
(c) LMA versus MI. (d) Nmass versus MI. (e) Narea versus MI. (f) Vcmax25 versus MI. (g) Jmax25 versus MI. (h) χ versus MI.
The bottom right numbers are the correlation coefficients and their significance, with “**” indicating p < 0.01. LA: leaf area;
Nmass: leaf nitrogen content per mass; Narea: leaf nitrogen per area; LMA: leaf mass per area; LDMC: leaf dry mass content;
Vcmax25: maximum carboxylation rate standardized to 25 ◦C; Jmax25: maximum electron transport rate standardized to
25 ◦C; χ: ratio of intercellular to ambient CO2 concentration.
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Trait variation patterns were not the same along the temperature gradient (increasing
mGDD0) and the aridity gradients (Figure 5), which were mainly affected by growth
temperature and latitude. LA had a pronounced decreasing trend because of the combined
effects of vegetation types and latitude, indicating that large areas have a strong ability
to regulate temperature. Likewise, LDMC had no significant trend toward temperature
changes. Nmass and Narea increased with an increase in temperature; thus, Narea had a
higher correlation coefficient than that of Nmass. Vcmax25 increased with an increase in
temperature, which is explained by the activity of Rubisco regulating by temperature.
Jmax25 reflects photosynthetic electron transport ability, which was higher under warm
conditions. χ decreased with an increase in temperature as a result of the tendency of
plants to close their stomata to avoid water loss in arid areas.
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Figure 5. Trait variations along the temperature gradient (growing-season monthly mean temperature above 0◦C, mGDD0).
(a) LA versus mGDD0. (b) LDMC versus mGDD0. (c) LMA versus mGDD0. (d) Nmass versus mGDD0. (e) Narea versus
mGDD0. (f) Vcmax25 versus mGDD0. (g) Jmax25 versus mGDD0. (h) χ versus mGDD0. The bottom right numbers are the
correlation coefficients and their significance, with “**” indicating p < 0.01. LA: leaf area; Nmass: leaf nitrogen content per
mass; Narea: leaf nitrogen per area; LMA: leaf mass per area; LDMC: leaf dry mass content; Vcmax25: maximum carboxylation
rate standardized to 25 ◦C; Jmax25: maximum electron transport rate standardized to 25 ◦C; χ: ratio of intercellular to
ambient CO2 concentration.

3.3. Trait Covariations and Adaptation Strategies Related to Climate and Soil Variables

The highlighted four dimensions composed from the eight studied traits remained
independent when filtered by climate and soil variables (Figure 6). In fact, covariations
in the eight traits could be explained by the effects of climate and soil variables reaching
27.6% (Table A1), presenting distinct environmental adaptation of plants. The most impor-
tant information was the covariations in LA along the MI and soil pH gradients, which
dominated the first RDA axis (Figure 6a). Three traits in LES (Narea, Nmass and LMA) also
changed with MI changes, but LDMC was not sensitive to the first two RDA axes. The
second RDA axis (RDA2) was mainly dominated by the covariations in Vcmax25 and Jmax25
along the temperature (mGDD0) and soil pH gradient, which accounted for 5.2%. The third
axis accounted for only 0.5% of trait covariations, which was related to χ variation along
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with MI, mGDD0 and mPAR0 (Figure 6b). Along with the climate and soil variables, the
traits also showed covariation trends within four trait dimensions. For example, three traits
in LES covaried along RDA1, and two photosynthetic traits (Vcmax25 and Jmax25) covaried
along RDA2.
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Figure 6. Redundancy analysis (RDA) for eight traits and climate/soil variables. (a) RDA1 versus RDA2. (b) RDA2 versus
RDA3. LA: leaf area; Nmass: leaf nitrogen content per mass; Narea: leaf nitrogen per area; LMA: leaf mass per area; LDMC:
leaf dry mass content; Vcmax25: maximum carboxylation rate standardized to 25 ◦C; Jmax25: maximum electron transport
rate standardized to 25 ◦C; χ: ratio of intercellular to ambient CO2 concentration. MI: moisture index; mGDD0; monthly
growth temperature above 0 ◦C; mPAR0: monthly photosynthetically active radiation above 0 ◦C; pH: soil pH; SOM: soil
organic matter content.

3.4. Controls of Trait Covariations along the Aridity Gradient

In total, 50.19% of the covariations in traits can be explained by the combination
of climate, soil and family (phylogeny/vegetation succession) (Figure 7). The largest
contribution comes from family, which accounted for 38.59% (Table 3). The contribution of
climate to the eight trait covariations reached 20.41%, and the contribution of soil accounted
for 18.23%. For LA, both climate and soil contributed considerably to its variation; however,
the independent control of climate was small, and notable information was found at the
intersections of climate, soil and family. For LDMC, the contribution of climate and soil
was small, and family was the main determining factor of its variation. LMA was also
controlled by family, and the contribution of climate and soil was small. Compared with
Nmass, Narea was largely controlled by climate and was less affected by family. Vcmax25 and
Jmax25 were mainly controlled by family, less than 40% originated from the three factors
combined. For χ, the contributions of climate, soil and family ranged from 13.8% to 18.0%.
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Table 3. Total contributions (%) of climate, soil and family to trait variations.

Traits Climate (%) Soil (%) Family (%)

All traits 20.41 18.23 38.57
log
√

LA 45.05 42.50 54.79
log LDMC 5.58 0.24 40.92
log LMA 10.53 8.99 28.10
log Nmass 3.92 3.73 53.63
log Narea 12.98 10.38 41.44

log Vcmax25 9.40 3.93 31.27
log Jmax25 3.90 3.69 22.30

logit χ 13.87 14.55 17.92

The eight studied traits had different responses to environmental changes. The in-
tersection of climate and soil contributed 10.39% to their covariations, while family had a
strong intersection with climate/soil variables (16.65%) (Figure 7a), indicating that species
evolved to adapt to their changing environments along the aridity gradient. Only LA, LMA,
Narea and χ were sensitive to aridity changes, while the contributions of other traits were
less than 10%, and the most notable feature was the joint effects of family that intersected
with climate/soil variables. After the effects of climate and soil were removed, variations in
LDMC, LMA, Nmass, Narea and Vcmax25 were largely controlled by family. For LDMC, LMA,
Vcmax25, Jmax25 and χ, more than 50% of the variation was unexplained by the combination
of climate, soil and family, which may suggest an effect of local microclimate conditions,
trait–trait relationships and intrinsic factors.
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4. Discussion
4.1. Importance and Significance of Studying Trait Covariations in Arid Areas

The present study illustrates the power of using large trait datasets from multiple
co-existing species, spanning a broad range of climates, to reveal general patterns of trait
covariations. It also shows the utility of multivariate analysis in summarizing these patterns
of covariations and the research interest in variance partitioning as a means of attributing
trait variability to different (and sometimes intersecting) causes of variation. However,
there is a need for further extensive trait data collection, including root-related traits and
isotopic measurements, thus covering an extended range of worldwide climate types.

By analyzing the covariations of eight traits along the aridity gradient, we confirmed
the existence of four main dimensions of variation, which is in accordance with previous
findings [40,41]. Within these dimensions, trait–trait relationships were close, but few corre-
lations were found between them, which could mean fewer traits representing adaptation
strategies, especially in the field of ecological modeling. RDA analysis presented similar
dimensionality, indicating that the trait dimensions remained consistent and stable along
the arid gradient. These findings have implications toward the understanding of diverse
plant strategies and species diversity. LA is the first dimension and represents a plant’s
strategy to maintain temperature. The second dimension is composed of LES-related
traits in LES, which is an efficient indicator of quick growth and resource use. The third
dimension is linked with photosynthesis, which balances construction investment and cost.
The fourth dimension is χ, which is an indicator of water use efficiency.

We observed that the family contribution to trait covariation, which was characterized
by phylogenetic replacement along the aridity gradient, was the most important determiner
of trait variation. The family contribution to the eight trait covariations reached more than
38%. For LDMC, climate and soil explain only a small fraction of the trait variation;
however, large variation was caused by the family factor. Therefore, predicting plant
distribution changes and vegetation sensitivity under climate conditions is crucial to
community and functional ecology. If the family dynamics and trait variations in each
family were quantified, the family’s role and the associated mechanisms could be accurately
captured [42]. This result implies that vegetation succession cannot be neglected in trait-
based ecological modeling.

Apart from the family contribution to trait covariations, the considerable role of
phenotypic plasticity, originating from both a genetic and environmental basis, cannot
be neglected. Phenotypic plasticity is the ability of an organism or a single genotype to
exhibit different phenotypes, including behavior, morphology and physiology, in different
environments [43]. For instance, in this present study, the most widely distributed plant,
Lespedeza davurica, had clear differences in leaf area along the aridity gradient, which
was explained by its capacity to maintain more water in its leaves and to adapt to low
temperatures. Phenotypic variability is defined as the tendency or the potential of an
organism to exhibit different phenotypes under a wide range of environmental conditions,
which offer an important adaptation capacity in response to environmental changes [44].
Additionally, during field sampling, efforts need to be oriented to the effects of plant
age and microclimate, which could also have a significant effect on the expression of
trait covariations.

4.2. Mechanism of Trait Covariations along the Aridity Gradient

Trait covariations occurred along the aridity gradient, and the underlying mechanisms
were behind the explanation of the different plant adaptation strategies. LA is linked with
the theory of energy balance [27], which means that warm and humid conditions favor
plants with large leaves; in contrast, plants with small leaves are limited by the lower
temperatures. Thus, variations in Nmass, Narea, LMA and LDMC confirm the universal
nature of LES, which reflects the optimal method of balancing the construction cost and
payback time of leaves [45,46]. As expected from the theory of coordination hypothesis,
close covariations were seen in Vcmax25 and Jmax25, which shows that photosynthesis
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depends on both carbonylation and electron transport, as leaves seek a balance when
investing in these two processes to avoid energy waste [15,47]. χ is an indicator of CO2
drawdown from air to leaf, and it is described in Farquhar’s model [48] and applied in most
ecological models. Hence, variation in χ is linked with the least-cost hypothesis, which
states that leaves minimize the sum of the cost of transpiration and carboxylation [49].

4.3. Challenges and Future Directions

In this study, we quantified covariations in eight important traits that captured the
most information on ecosystem functions and plant adaptations, and, thus, we explored
their controls. However, a more in-depth analysis is needed regarding three main aspects.
First, we sampled leaf functional traits, but some traits, such as root traits (specific root
length, fine root density etc.) [50] and Huber values (the ratio of the sapwood cross-section
and the supporting leaf area) [51] were equally important to studying plant adaptations.
Second, family was listed as the most important control, but the driving mechanism
and its intersection effects with climate and soil are not fully understood. Consequently,
understanding the relationships between trait covariations and family would be helpful for
regional ecological restoration and management programs. Third, vegetation-based models
explore the incorporation of trait variations [52,53]; however, the extent and magnitude of
trait variation and, thus, their covariation characteristics have not been fully quantified. In
this sense, we suggest strengthening the observation of trait covariations in the field and
building consistent theoretical equations for vegetation models.

We strongly suggest considering ‘functional diversity’ in ecological modeling. In
fact, trait-based models can represent the co-existence of multiple trait combinations,
considering the fact that this diversity provides increased community resilience when
facing environmental changes [54]. The challenge is to find a generally applicable method
to specify the range of proper trait combinations that is consistent with the observed
patterns of trait variation within sites. Ultimately, vegetation models should be able to
predict, for example, and experimentally determine the relationships between species
diversity and ecosystem function [55], but this potential has yet to be realized.

5. Conclusions

By analyzing the covariations of eight traits, we found that plants within arid regions
adopted at least four strategies related to energy balance, resource acquisition, resource
investment and water use efficiency, which reflect plant adaptations to environmental
changes. We also confirmed that climate, soil and family contributed to trait covariations,
but the control of family in trait covariations could not be neglected. Our findings linked
trait covariations with multiple adaptation strategies and provide a reference for regional
ecological management and species selection in arid areas.
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Aceraceae 

Artemisia gmelinii, Artemisia capillaries, Artemisia mongolica, Lespedeza da-
vurica, Artemisia giraldii, Heteropappus altaicus, Cirsium setosum, Echinops 
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Figure A1. Distribution histogram of the eight studied plant functional traits, including (a) LA: leaf area, (b) LDMC: leaf
dry mass content, (c) LMA: leaf mass per area, (d) Nmass: leaf nitrogen content, (e) Narea: leaf nitrogen per area, (f) Vcmax25:
maximum carboxylation rate standardized to 25 ◦C, (g) Jmax25: maximum electron transport rate standardized to 25 ◦C and
(h) χ: ratio of intercellular to ambient CO2 concentration.

Table A1. Trait loading, eigenvalues and percentage of trait variation explained by redundancy analysis (RDA) axes
constrained by climate and soil variables. Values greater than 0.4 are labeled in bold.

Trait RDA1 RDA2 RDA3 RDA4 RDA5 PC1

log
√

LA 2.04 0.26 0.05 0.00 0.00 −0.07
log Nmass −0.10 0.00 0.08 −0.17 0.05 −0.25
log Narea −0.51 0.02 0.06 −0.08 0.04 −0.50
log LMA −0.41 0.02 −0.03 0.08 −0.01 −0.25

log LDMC −0.04 −0.01 −0.10 −0.06 −0.18 −0.03
Log Vcmax25 −0.33 0.74 0.00 −0.17 −0.03 −1.42
Log Jmax25 −0.40 0.76 0.02 0.17 0.02 −2.19

logit χ 0.23 0.09 −0.30 −0.04 0.08 0.09
Eigenvalue 0.47 0.11 0.01 0.01 0.00 0.68

Proportion explained (%) 21.30 5.22 0.48 0.44 0.19 31.09
Cumulative proportion (%) 21.30 26.52 27.01 27.45 27.64 58.74
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Table A2. Description of families with a record number greater than 8.

Family Species

Aceraceae
Artemisia gmelinii, Artemisia capillaries, Artemisia mongolica, Lespedeza davurica, Artemisia giraldii, Heteropappus altaicus,
Cirsium setosum, Echinops sphaerocephalus, Artemisia desertorum, Artemisia frigida, Artemisia sieversiana, Scorzonera
austriaca, Artemisia argyi, Lespedeza cuneata, Carpesium cernuum, Aster tataricus

Gramineae Phragmites australis, Bothriochloa ischaemum, Stipa grandis, Stipa bungeana, Cleistogenes caespitosa, Setaria viridis,
Cleistogenes hancei, Cleistogenes chinensis, Leymus secalinus, Bromus inermis, Elymus dahuricus, Triarrhena sacchariflora

Rosaceae
Potentilla tanacetifolia, Fragaria vesca, Crataegus cuneata, Armeniaca vulgaris, Pyrus betulaefolia, Prunus salicina, Rosa
xanthina, Spiraea Salicifolia, Cotoneaster multiflorus, Amygdalus davidiana, Rubus parvifolius, Pyrus betulaefolia,
Amygdalus triloba

Leguminosae Sophora davidii, Astragalus melilotoides, Thermopsis lanceolata, Glycyrrhiza uralensis, Sophora davidii, Oxytropis racemosa,
Astragalus adsurgens, Caragana Korshinskii, Astragalus membranaceus, Lespedeza bicolor, Indigofera bungeana,

Caprifoliaceae Lonicera japonica, Viburnum schensianum, Lonicera maackii
Elaeagnaceae Hippophae rhamnoides, Elaeagnus umbellata, Elaeagnus pungens
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