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PURPOSE. To employ quantitative fundus autofluorescence (qAF) imaging in rhesus
macaques to noninvasively assess retinal pigment epithelial (RPE) lipofuscin in nonhu-
man primates (NHPs) as a model of aging and age-related macular degeneration (AMD).

METHODS. The qAF imaging was performed on eyes of 26 rhesus macaques (mean age
18.8 ± 8.2 years, range 4–27 years) with normal-appearing fundus or with age-related
soft drusen using a confocal scanning laser ophthalmoscope with 488 nm excitation
and an internal fluorescence reference. Eyes with soft drusen also underwent spectral-
domain optical coherence tomography imaging to measure drusen volume and height
of individual drusen lesions. The qAF levels were measured from the perifoveal annular
ring (quantitative autofluorescence 8 [qAF8]) using the Delori grid, as well as focally over
individual drusen lesions in this region. The association between qAF levels and age,
sex, and drusen presence and volume were determined using multivariable regression
analysis.

RESULTS. Mean qAF levels increased with age (P < 0.001) and were higher in females
(P = 0.047). Eyes with soft drusen exhibited reduced mean qAF compared with age-
matched normal eyes (P = 0.003), with greater drusen volume showing a trend toward
decreased qAF levels. However, qAF levels are focally increased over most individual
drusen (P < 0.001), with larger drusen appearing more hyperautofluorescent (R2 = 0.391,
P < 0.001).

CONCLUSIONS. In rhesus macaques, qAF levels are increased with age and female sex, but
decreased in eyes with soft drusen, similar to human AMD. However, drusen lesions
appear hyperautofluorescent unlike those in humans, suggesting similarities and differ-
ences in RPE lipofuscin between humans and NHPs that may provide insight into drusen
biogenesis and AMD pathogenesis.

Keywords: autofluorescence, fundus autofluorescence, lipofuscin, primate, macaque,
rhesus macaque, maculopathy, age-related macular degeneration, AMD

Diseases of the macula, such as age-related macular
degeneration (AMD) and diabetic macular edema, are

leading causes of visual impairment in developed countries.1

Animal models of macular conditions can further detail the
mechanisms of their pathogenesis and reveal new insights
into developing novel interventions. Nonhuman primates
(NHPs) are a compelling animal model for studying macu-
lar diseases as they are the only mammals beside humans
to possess a true macula. NHPs, such as rhesus macaques,
exhibit some forms of inherited retinal degenerations,2–4

and spontaneously develop age-related soft drusen simi-
lar to those in human AMD.5–8 Soft drusen are subretinal
deposits that form between the retinal pigment epithelium
(RPE) and basal lamina, appearing clinically as yellow-white
elevations with indistinct borders ranging from 30 to 1000

μm.9 Preclinical testing in NHPs can accelerate the transla-
tion of novel interventions to human trials, including phar-
macologic agents or gene therapies.10–13 However, devel-
oping therapies for non-neovascular AMD and other age-
related maculopathies for which no treatments currently
exists require disease biomarkers or endpoints to demon-
strate efficacy, preferably through means that are noninva-
sive and nonterminal, such as live ocular imaging technolo-
gies.

Quantitative fundus autofluorescence (qAF) is an imag-
ing modality that has the potential to monitor changes in the
RPE.14–16 Lipofuscin accumulates in the RPE,17 and its well-
characterized fluorophore, A2E, exhibits a unique autoflu-
orescence (AF) signal with the commonly used 488-nm
blue laser excitation stimulus. By comparing to an internal
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reference fluorescence standard in the device, qAF imag-
ing allow repeatable, quantitative measurements of fundus
AF for an eye, which can be followed over time to assess
changes from interventions or disease progression.15 In
humans, normative values for qAF intensities have been
established for healthy eyes,18–20 and increases with age
until 75 to 80 years, then appears to decrease.21 Changes
in qAF have also been shown in disease states, including
early to late AMD;22,23 macular dystrophies, such as Stargardt
disease,24 Best disease,25 bull’s eye maculopathies,26 and
pseudoxanthoma elasticum;27 as well as retinitis pigmen-
tosa.28,29 Because qAF may serve as a measure of macular
disease status or response to therapies, we sought to study
qAF signals over the lifespan of adult rhesus macaques and
in eyes with age-related soft drusen.

METHODS

Study Animals

Rhesus macaques (Macaca mulatta) of different ages under-
went complete ophthalmic examinations as part of a
study to identify animals with ophthalmic abnormalities at
the California National Primate Research Center (CNPRC).
Animals with healthy eyes and aged animals with drusenoid
lesions were included in this study, whereas those with
any other ophthalmic abnormalities or underwent any
systemic or surgical interventions were excluded. Study
protocols at CNPRC followed guidelines of the Association
for Research in Vision and Ophthalmology (ARVO) State-
ment for the Use of Animals in Ophthalmic and Vision
Research, complied with National Institutes of Health (NIH)
guide for the Care and Use of Laboratory Animals, and were
approved by the University of California, Davis Institutional
Animal Care and Use Committee. Macaques were sedated
with intramuscular injection of ketamine, midazolam, and
dexmedetomidine. Mydriasis was achieved with tropicamide
(Bausch and Lomb, Tampa, FL, USA) and phenylephrine
(Paragon Biosciences, Northbrook, IL, USA), and cyclople-
gia was achieved with cyclopentolate (Akorn, Lake Forest,
IL, USA). All macaques underwent a comprehensive eye
examination including portable slit lamp examination, indi-
rect ophthalmoscopy, rebound tonometry (TonoVet; Icare,
Vantaa, Finland), A-scan biometry (Sonomed 300A+ PacScan
Plus A-Scan; Carleton Optical, Buckinghamshire, UK), and
external anterior segment photography (Rebel T3; Canon,
Tokyo, Japan). Fundus imaging included color fundus
photography (Figs. 1A, 1B) (CF-1; Canon, Tokyo Japan),
spectral-domain optical coherence tomography (SD-OCT)
(Figs. 1C, 1D), qualitative fundus AF, and qAF imaging
(Figs. 1E–1H) using the Spectralis HRA+OCT device (Heidel-
berg Engineering, Heidelberg, Germany) with a modified
chin-rest to accommodate the facial contour of macaques.
An artificial tear solution (GenTeal; Alcon, Geneva, Switzer-
land) was used to maintain the ocular surface during entirety
of imaging. Ophthalmic and general health of the animals
were reviewed.

Ophthalmic Imaging

Animals underwent confocal scanning laser ophthal-
moscopy and SD-OCT in near-infrared reflectance mode
(820 nm) using the Spectralis HRA+OCT system (Heidel-
berg Engineering). SD-OCT images were captured as
20° x 20° volume scans consisting of 193 horizontal raster

B-scans and 1024 A-scans per B-scan, centered on the fovea,
in high-resolution mode with 25 scans averaged for each
B-scan using the Heidelberg eye tracking Automatic Real-
Time software. Then the device was turned to qAF mode
to capture 30° x 30° qAF images with excitation light of
488 nm and a long-pass barrier filter transmitting between
500 and 680 nm, calibrated with an internal master fluo-
rescent reference.19 Photobleaching was performed once
before qAF imaging by exposing the retina to 488-nm
blue excitation light for 30 seconds. The qAF images were
captured from the central macula, with intensity adjusted
using an internal fluorescence reference to enable quantifi-
cation of AF and normalizing AF units given minor vari-
ations in laser power and detector sensitivity in-between
imaging sessions, with sensitivity kept at 90% for each imag-
ing session. The variations in axial length and loss of light
through ocular medium were accounted for by adjusting the
age at the time the animal was imaged. The details of qAF
imaging methodology have been described previously.14,18

The qAF8 Measurements

In each eye, three series of 12 successive images were
acquired in rapid succession with the animal under seda-
tion. The mean image of each of the three sequences
was computed using Heidelberg’s proprietary qAF module.
These image sets were then graded independently by two
readers (KL and TT) who were masked to the identity of
each animal. Image quality was determined qualitatively by
both graders, with discrepancies reconciled by open arbi-
tration, and images deemed uninterpretable excluded from
analyses. The qAF values were acquired via fitting the Delori
grid pattern centered at the fovea with the largest extant
of the grid tangential to the optic disc margin as described
by Delori et al.14 to measure mean gray levels (GLs) of
the fundus as compared with the reference. The method
accounts for factors that may vary marginally from session-
to-session, including laser off-set, laser power, and detec-
tor sensitivity. Retina vessels were automatically segmented
from the areas selected and excluded from analysis. The
mean qAF8 value for each image was computed as the aver-
age of the eight perifoveal middle segments of the Delori
grid placed over qAF maps (Figs. 1G, 1H). Color-coded qAF
maps demonstrate the Delori grid overlay, with vessels auto-
matically segmented and excluded from analysis, and qAF
measurements normalized to the internal standard at the
top of Figures 1G and 1H. Black is an absence of qAF,
light blue/teal is approximately 250 to 350 qAF units for
the average in healthy humans,18 and white is the theoreti-
cal maximal at 1200 qAF units although pathological states
in humans reach approximately 800 to 900 qAF units.30 The
final mean qAF8 value was the arithmetic mean of up to
three mean images per eye and averaged between the two
independent graders.

Focal qAF Measurements

For measuring focal qAF levels over individual drusen, we
exported AF images into ImageJ version 1.52p (National
Institutes of Health, Bethesda, MD, USA) to measure the
gray values at the apex of lesions located within the peri-
foveal middle ring of the Delori grid corresponding to the
qAF8 area, then normalized to the reference similar to meth-
ods previously described.31 Briefly, individual drusen lesions
were identified and labeled manually from SD-OCT images
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FIGURE 1. Multimodal imaging with qAF in rhesus macaques. (A–B) Color fundus photographs, (C–D) SD-OCT, (E–F) blue-peak qAF, and
(G–H) qAF measurements of rhesus macaque eyes with normal fundus (A,C,E,G) or age-related soft drusen (B,D,F,H). Soft drusen appear
as dome-shaped deposits between the RPE and Bruch’s membrane (arrow) on SD-OCT. The dashed yellow lines in (E) and (F) represent the
location of the SD-OCT images depicted in panels (C) and (D), respectively. For qAF8 measurements, the selected eight middle segments of
the Delori grid pattern are labeled as: (1) temporal, (2) superotemporal, (3) superior, (4) superonasal, (5) nasal, (6) inferonasal, (7) inferior,
and (8) inferotemporal octants. Vessels are automatically segmented and excluded, and qAF measurements were normalized to the internal
standard shown at the top of panels (G) and (H). The color-coded scale is based on qAF units. Scale bars = 500 μm.

by another masked grader (YW), and gray values were
measured at each point above drusen lesions in the peri-
foveal ring, as well as the standard reference for that image
by a second grader (YS). Focal qAF levels were calculated

using the equation described by Delori et al.14 The zero
signal GL0, which is a measurement of base GL by the detec-
tor, was set to 12 to reflect mean GLs in standard darkroom
imaging conditions. The reference calibration factor was set
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to 231 for the Spectralis imaging device. The scaling factor
was adjusted based on average age-dependent axial lengths
and corneal curvatures.32 Finally, the transmission of ocular
media was adjusted based on age of the macaque using a
3:1 age ratio for rhesus macaques to humans.33

Drusen Volume and Height Measurements

Soft drusen in macaques were identified from funduscopy
and confirmed on SD-OCT as dome-shaped sub-RPE mounds
as previously reported (Fig. 1D).7 Drusen volumes were
measured from SD-OCT images across the central 5-mm
circular regions centered on the fovea, using the Duke
Optical Coherence Tomography Retinal Analysis Program
(DOCTRAP, version 62.0, Duke University, Durham, NC,
USA) employed in previous human and NHP studies.34–40

Briefly, segmentation boundaries along the RPE and Bruch’s
membrane were automatically determined from every hori-
zontal B-scan using DOCTRAP, followed by manual refine-
ment by a masked grader (YW). Individual drusen lesions
were identified and labeled as described earlier. Abnormal
thickening of the RPE-drusen complex more than two stan-
dard deviations greater than mean age-matched normative
data (16.5 + 2.7 μm) as reported7 were used to generate
drusen maps and measure drusen heights and volume.41

Immunohistochemistry

Immunohistochemistry was performed on rhesus macaque
eyes as described previously.13 Briefly, eyes were fixed
with 4% paraformaldehyde (PFA) on necropsy, and ante-
rior segments, lens, and vitreous were dissected out within
30 minutes of collection. The remaining posterior eye cups
were fixed with 4% PFA for 2 hours at room tempera-
ture and washed with phosphate buffered saline (PBS)
4 times for 15 minutes. Followed by cryoprotection with
30% sucrose overnight at 4°C, tissues were embedded
in optimal cutting temperature compound and cryosec-
tioned at 18-μm thickness. Consecutive sections enabled
comparison of native AF with fluorescence immunolabel-
ing using anti-C5b9 antibody (ab55811; Abcam, Cambridge,
MA, USA) to label druse contents, and anti-RPE65 anti-
body (mab5428; Millipore, Burlington, MA, USA) to label
RPE cells. For AF detection, the section was mounted
with mounting media after washing with PBS 3 times for
5 minutes. For immunohistochemistry, sections were
blocked with 10% normal donkey serum for 30 minutes,
then incubated in primary antibody for 1 to 2 hours at
room temperature, followed by detection with Alexa Fluor-
conjugated secondary antibodies (Thermo Fisher Scientific,
Waltham, MA, USA). Images were captured using a confocal
microscope (FV1000; Olympus America, San Jose, CA, USA).

Statistics

The mean qAF8 was transformed to logarithmic scale for
multivariable regression analysis. A two-level hierarchical
generalized linear model (primary unit of analysis was an
eye, secondary was the animal) was fitted with log of qAF8
serving as the dependent variable, and demographic (age,
sex) and ocular findings (no lesion, punctate lesions, soft
drusen) as independent factors. Interocular agreement coef-
ficient was calculated using the Bland-Altman method for
differences (log [qAF right eye] – log [qAF left eye]). Inters-
ession repeatability was calculated as (10CR – 1)*100% where

the coefficient of repeatability (CR) was calculated as + 1.96
* [log (qAF81) – log (qAF82)]. Three calculations were made
for the combination of three sessions per eye. Intraclass
correlation coefficients were used to determine the inter-
grader reliability.42,43 Data were downloaded and managed
in Microsoft Excel (Microsoft Corporation, Redmond, WA,
USA); statistical analyses were performed using Stata
16 (Stata Corp, College Station, TX, USA). Significance was
set as P value < 0.05.

RESULTS

Study Eyes

Forty-three (43) eyes of 26 animals had qAF images of
adequate quality for analysis after excluding eyes with
poor image quality or significant lens opacity based on
slit lamp examination. The mean age of the animals was
18.8 ± 8.2 years, with 65.4% females (Table). Mean axial
length was 19.85 ± 0.67 mm, which trended to long
lengths with age as expected (linear regression coefficient,
β1 = 0.027, P = 0.062), and was not significantly differ-
ent between males and females (19.85 ± 0.63 mm vs.
19.84 ± 0.70 mm; P = 0.99). Most control eyes showed no
visible lesions on SD-OCT (Figs. 1C, 1E), whereas some eyes
exhibited soft drusen as seen on funduscopy and appeared
as dome-shaped sub-RPE deposits on SD-OCT (Figs. 1B, 1D).

qAF8 in Aging and Eyes with Drusen

Overall, qAF8 values were variable between individual
animals, with mean qAF8 of 88.6 ± 31.6 across the study
population, and increased with age (P < 0.001; Table) by
a factor of 1.03 per year (Fig. 2A). We did not observe an
inflection point as seen in older human subjects,44 but female
animals showed greater qAF intensity than male counter-
parts similar to human studies (P = 0.047; Table; Fig. 2B).19

The qAF signal was slightly elevated in the nasal region, but
the difference was consistent across the octants (Fig. 2C).
Neither eye laterality nor axial length were associated with
qAF8 intensity (P = 0.229).

Among geriatric macaques, eyes with soft drusen had
decreased qAF8 values after adjusting for age and sex
(P = 0.045; Table; Fig. 2A), with an average reduction of
41% compared with age-matched control eyes without
drusen (P = 0.003; Fig. 2D). In eyes with soft drusen, greater
drusen volume also showed a trend toward lower qAF8
levels but did not reach statistical significance (R2 = 0.572,
P = 0.204).

Focal qAF of Soft Drusen Lesions

Although the mean qAF8 values were lower in eyes with
drusen, the individual drusen lesions themselves appeared
hyperautofluorescent based on focal qAF measurements
over drusen lesions compared with the surrounding peri-
foveal region background (Fig. 3A). The most hyperaut-
ofluorescent lesions corresponded in location to the largest
drusen measured from SD-OCT (Fig. 3B). Focal qAF levels
measured over perifoveal drusen lesions identified from SD-
OCT drusen maps (Figs. 3C, 3D) appeared greater than the
isoeccentric region of the macula (P < 0.001; Fig. 3E), and
were associated with drusen height (R2 = 0.391, P < 0.001;
Fig. 3F). On immunohistochemistry of soft drusen from
two animals that underwent necropsy, RPE exhibited AF at
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TABLE. Factors Associated with qAF in Adult Rhesus Macaques

Univariate Regression Multivariable Regression

Variable n (%) qAF8* Mean (SD) Β 95% CI P Value Adjusted Β 95% CI P Value

Age (per year) 1.02 1.01–1.03 0.003 1.03 1.02–1.04 <0.001
1–9 years 8 (18.6%) 63.6 (22.5)
10–18 years 10 (23.3%) 78.6 (21.1)
19–28 years 25 (58.1%) 100.6 (32.1)

Sex
Male 13 (30.2) 73.8 (28.3) Reference Reference
Female 30 (69.8) 95.0 (31.1) 1.30 1.03–1.64 0.029 1.25 1.01–1.57 0.047

Laterality
Left eye 24 (55.8) 84.0 (31.5) Reference
Right eye 19 (44.2) 94.4 (31.5) 1.15 0.92–1.47 0.229

Drusen
No drusen 37 (86.0%) 92.8 (31.6) Reference Reference
Soft drusen 6 (14.0%) 59.8 (16.9) 0.70 0.51–0.95 0.021 0.68 0.47–0.99 0.045

Axial length (per mm) 1.13 0.95–1.34 0.168

* The qAF values were transformed to log base 10 for normalization during multilevel regression and the coefficients are retransformed
in above models.

CI, confidence interval.

488-nm excitation, whereas druse contents did not, suggest-
ing that the AF source was from the RPE rather than drusen
deposits themselves (Supplementary Fig. S1).

Reliability of qAF Measurements

In animals in which both eyes underwent qAF measurements
(16 animals and 32 eyes), the interocular agreement coeffi-
cient was ± 23.8% of mean qAF8. The intergrader agree-
ment based on intraclass correlation coefficient was excel-
lent at 0.934 for mean qAF8. Intersession repeatability was
acceptable with a CR of ± 4.11% qAF units between the
first and second session, ± 4.82% between sessions two
and three, and ± 4.76 between sessions one and three.
Bland-Altman plots show minimal differences between qAF
imaging sessions with mean bias values approximating zero
(Fig. 4).

DISCUSSION

In this study, we provided normative values for qAF levels in
adult rhesus macaques, and found that qAF8 levels increased
with age, consistent with qAF studies in humans up to
age 75 years, and in macaque eyes measuring gray values
from conventional AF images.14,18,19,23,31,44 We also found
that female animals had higher qAF8 intensities than males,
similar to humans.18,19 Although females may have smaller
eyes than males, as in human emmetropes,45 in which the
excitation light may be delivered over a smaller area, the
qAF protocol used in our system accounts for axial length
differences. Also, axial lengths were similar between males
and females in our cohort of animals, and axial length
showed no association with qAF8 on regression analy-
sis. In macaque eyes with drusen, mean qAF8 levels were
reduced compared with age-matched normals, as seen in
early and intermediate AMD patients.22,23 Together these
results suggest that decreased RPE lipofuscin may be asso-
ciated with AMD or AMD-like features in both humans and
macaques.

Lipofuscin is deposited in the RPE as a metabolic by-
product of the visual cycle and accumulates with normal

aging. However, the role of lipofuscin as a contributing
factor to AMD development and progression has been a
subject of controversy.46,47 The qAF appears to increase with
age, female sex, and smoking, which are all risk factors
associated with AMD.18,19 Accumulation of A2E, a major
component of lipofuscin, leads to RPE toxicity.48,49 However,
although increased AF has been observed in eyes with
exudative AMD and borders of geographic atrophy,50,51 qAF
levels are decreased in early and intermediate AMD, partic-
ularly in eyes with reticular pseudodrusen—a major risk
factor for advanced atrophic AMD.22,23

Interestingly, although focal measurements over individ-
ual drusen lesions show variable AF in both macaques7

and humans,52–54 we found that macaque drusen generally
appear hyperautofluorescent compared with surrounding
areas, with higher focal qAF levels associated with larger
drusen. By contrast, human drusen are usually hypoaut-
ofluorescent with a surrounding ring of hyperautofluores-
cence, at least when observed using conventional fundus
cameras different from the scanning laser ophthalmoscopy–
based AF imaging employed in this study.53 This distinction
may be attributed to differences seen on histology showing
hypertrophic RPE overlying macaque drusen as compared
with RPE atrophy overlying drusen in humans55–57 because
we did not detect significant AF signal within drusen
contents using similar wavelengths on ex vivo histological
sections taken from these animals. Our findings are also
consistent with studies using SD-OCT imaging, in which
soft drusen in macaques demonstrate homogenous inter-
nal reflectivity, whereas those in humans exhibit greater
heterogeneity in reflectivity with variable internal substruc-
tures.8,58,59 Thus our data suggests both localized and global
impact on lipofuscin distribution in eyes with drusen and
AMD in primate species. As the pathogenesis of AMD is
complex and multifactorial, including oxidative stress,60 lipid
accumulation,61,62 immune dysregulation,63,64 and vascular
changes,65,66 the role of lipofuscin accumulation among
these factors remains unclear. Future biochemical measure-
ments and more robust histological correlations may help
further explore the relationship between qAF signal, lipo-
fuscin accumulation, and soft drusen biogenesis in rhesus
macaques.
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FIGURE 2. The qAF in macaques with aging and age-related soft drusen. (A) Scatterplot showing the relationship of qAF8 levels with age,
including eyes with soft drusen. The dotted line and shaded region represent the regression line and 95% confidence interval. (B) Box-and-
whisker plot comparing qAF8 levels in male and female macaques, with the central line showing the median value, the top and bottom box
edges showing the 75th and 25th percentiles, and whiskers marking the 95th and 5th percentiles. (C) Bar graphs comparing mean qAF values
of the eight segments of the Delori grid based on location. The error bars represent the 95% confidence interval of the respective means.
(D) Box-and-whisker plot comparing age-matched normal eyes and eyes with soft drusen. (E) Scatterplot showing possible association of
qAF8 levels with drusen volume. The dotted line and shaded region represent the Deming regression line and 95% prediction interval.

We previously described a distinct phenotype of fine,
punctate retinal lesions that are attributed to accumulation
of lipid droplets within individual RPE cells in a process
known as lipoidal degeneration.7 In longitudinal studies,
these punctate lesions did not appear to be precursors to
soft drusen or increase the risk for drusen development. In
our study, we found a subset of eyes with these punctate
lesions, which exhibited similar qAF8 levels to age-matched

eyes without fundus findings, and supports our hypothesis
that lipoidal degeneration is not related to soft drusen or
AMD.8

NHPs are potentially important animal models of AMD
because they possess a true macula similar to humans
and spontaneously develop soft drusen that has similar
components and ultrastructure67 and share similar genetic
susceptibility loci.68–70 However, despite reported drusen
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FIGURE 3. Relationship of qAF with soft drusen size in macaques. Representative (A,C) qAF images and (B,D) topographic maps of soft
drusen in macaque eyes (n = 6) measured from semiautomatically segmented SD-OCT images, without (A–B) and with (C–D) an overlay
of drusen lesion locations (yellow asterisks) to enable comparison of qAF signals with drusen height. (E) Box-and-whisker plot comparing
qAF8 levels with qAF levels over drusen, with the central line showing the median value, the top and bottom box edges showing the
75th and 25th percentiles, and whiskers marking the 95th and 5th percentiles. (F) Scatterplot showing the relationship between qAF over
drusen with drusen height. The dotted line and shaded area represent the Deming regression line and 95% prediction interval. Scale bars
= 500 μm.

prevalence of up to 47% in some colonies,5–7,71 macaques
do not develop advanced, atrophic AMD, or risk features
for atrophy, such as reticular pseudodrusen.7 Factors that
may account for this reduced susceptibility in macaques
include differences in genetics, diet, environmental expo-
sures, pigmentation, and aging.34 Rhesus monkeys age at an
approximate rate of 3:1 compared with humans.72 However,
aged macaques in our cohort did not exhibit the decline

in qAF intensity seen in human eyes after age 75 to 80
years,9,12,13,17,30 even though we sampled animals near the
end of their lifespan. This difference in age-related qAF
changes may explain in part the less severe phenotype
of age-related maculopathy in macaques compared with
human AMD.

It is important to note that although lipofuscin may
be the primary fluorophore contributing to the AF signal,
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FIGURE 4. Intersession repeatability of qAF measurements in
macaques. Bland-Altman plots of qAF8 measurements; x-axes show
the average of qAF8 between the two sessions, and y-axes show the
difference in qAF8 between the two sessions. The dashed-dot hori-
zontal line represents mean bias, and dash horizontal lines repre-
sent lower limit of agreement (LOA) and upper LOA; the gray lines
represent the 95% confidence intervals (CI). (A) Session 1 compared
with session 2: mean bias −0.066 (95% CI −0.98, 0.85), lower LOA:
−5.88 (95% CI, −7.46, −4.30), upper LOA: 5.75 (4.17, 7.33); (B)
session 1 compared with session 3: mean bias −0.27 (95% CI −1.46,
0.92), lower LOA: −7.76 (95% CI, −9.82, −5.70), upper LOA: 7.21
(5.15, 9.27); and (C) session 2 compared with session 3: mean bias
−0.18 (95% CI −1.43, 1.06), lower LOA: −8.02 (95% CI, −10.18,
−5.86), upper LOA: 7.66 (5.50, 9.81).

qAF intensity is not a direct measure of lipofuscin concen-
tration. Differences in AF signal may arise from stack-
ing of RPE cells,73 or by differential distribution of lipo-
fuscin within individual RPE cells.74 In pathologic condi-
tions, RPE may exhibit different fluorophore compositions,
including melanolipofuscin or other phagosomes.75 The qAF
signal may also be increased by photooxidation of lipofuscin
bisretinoids.11 Aged rhesus monkeys lacking lutein and zeax-
anthin in their diet exhibit greater AF, presumably due to
increased oxidative stress from reduced blue-light filter and
antioxidant properties of these macular xanthophylls.31 The
qAF levels may also be attenuated by subretinal deposits,
macular xanthophylls, or RPE melanin pigment.17,76 Our
study showed that mean qAF8 in macaques was 88.6 ± 31.6,
which are significantly lower than human qAF levels that
range from 400 in whites, to 290 in blacks, and 260 in Asians
as described by Greenberg et al.18 Although these values
suggest that the difference in qAF levels between macaques
and humans may be related to differences in pigmenta-
tion, the association may not be causative. For example,
although melanin content in RPE-choroid tissues are 10-fold
higher in macaques than humans,77 much of this difference
is likely due to differences within choroidal melanocytes,34

and reflected fluorescence from choroidal layers is gener-
ally minimal at shorter wavelengths. RPE melanosomes are
located apical to lipofuscin granules and may attenuate
the AF signal, but does not vary significantly with race or
between macaques and humans. Further studies are neces-
sary to better understand the qAF differences between race
and primate species.

CONCLUSIONS

The current study is limited by a small sample size of animals
and limited image quality of some eyes that were excluded
from the study. However, our data had a low within-eye CR
at ± 5.09% to 5.78% for mean qAF8, which demonstrates
greater reliability than human studies that typically range
from 9% to 24%.18,19 We also did not account for AF signal
attenuation due to nuclear sclerosis or other media opac-
ities,78 although eyes with visible ocular pathology were
excluded. Finally, we focused on the perifoveal region for
quantifying average qAF8, even though only a portion of
the drusen lesions may be in the same region. Future longi-
tudinal studies to spatially correlate qAF signals with drusen
evolution over time may provide additional insight into soft
drusen pathogenesis in this NHP model of AMD.
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