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Measuring arterial stiffness has recently gained a lot of interest because it is a strong
predictor for cardiovascular events and all-cause mortality. However, assessing blood
vessel stiffness is not easy and the in vivo measurements currently used provide only
limited information. Ex vivo experiments allow for a more thorough investigation of
(altered) arterial biomechanical properties. Such experiments can be performed either
statically or dynamically, where the latter better corresponds to physiological conditions.
In a dynamic setup, arterial segments oscillate between two predefined forces,
mimicking the diastolic and systolic pressures from an in vivo setting. Consequently,
these oscillations result in a pulsatile load (i.e., the pulse pressure). The importance
of pulse pressure on the ex vivo measurement of arterial stiffness is not completely
understood. Here, we demonstrate that pulsatile load modulates the overall stiffness
of the aortic tissue in an ex vivo setup. More specifically, increasing pulsatile load
softens the aortic tissue. Moreover, vascular smooth muscle cell (VSMC) function was
affected by pulse pressure. VSMC contraction and basal tonus showed a dependence
on the amplitude of the applied pulse pressure. In addition, two distinct regions of the
aorta, namely the thoracic descending aorta (TDA) and the abdominal infrarenal aorta
(AIA), responded differently to changes in pulse pressure. Our data indicate that pulse
pressure alters ex vivo measurements of arterial stiffness and should be considered
as an important variable in future experiments. More research should be conducted
in order to determine which biomechanical properties are affected due to changes in
pulse pressure. The elucidation of the underlying pulse pressure-sensitive properties
would improve our understanding of blood vessel biomechanics and could potentially
yield new therapeutic insights.

Keywords: pulse pressure, arterial stiffness, biomechanics, infrarenal aorta, thoracic descending aorta, VSMC

INTRODUCTION

Large artery stiffness is a strong predictor of cardiovascular events and all-cause mortality
and directly impacts blood pressure. Evidently, measurement of arterial stiffness in vivo
and ex vivo has gained a lot of interest (Vlachopoulos et al., 2010; Leloup et al., 2016;
Avolio et al., 2018). Determining pulse wave velocity (PWV) is the cornerstone for the
in vivo measurement of arterial stiffness (Butlin et al., 2020). However, PWV does not
make a distinction between the contribution of different components of the vessel wall to
the overall stiffness. Ex vivo measurements of arterial stiffness may provide more insight
into the mechanisms that cause blood vessel stiffening. Such ex vivo measurements can
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reveal important (altered) biomechanical properties of blood
vessels, which can advance the research field of “vascular
mechanomedicine” (Naruse, 2018).

Measuring blood vessel stiffness ex vivo can either be done
in a static or a dynamic manner. However, the biomechanical
behavior of blood vessels differs between stationary and
oscillatory experiments (Cox, 1974; Glaser et al., 1995; Lénárd
et al., 2000). Therefore, assessing arterial stiffness under
pulsatile conditions is favorable, as it is more representative
of physiological conditions. Pulsatile ex vivo setups such as
the bi-axial stretching setup of van der Bruggen M. M. et al.
(2021) or the dynamic intraluminal pressure testing system by
Santelices et al. (2007) are able to produce quasi-physiological
pressure waveforms. In these setups, pulsatile load/stretch can be
mimicked in ex vivo conditions, allowing a dynamic assessment
of blood vessel stiffness.

Our research group previously developed a wire myography-
based organ bath setup, called ROTSAC, that enables imposing
different pulsatile stretching conditions (Leloup et al., 2016).
Using this setup, the role of vascular smooth muscle cells
(VSMCs) and endothelial cells (ECs) in arterial viscoelasticity
was extensively studied (Leloup et al., 2017, 2019, 2020; De
Munck et al., 2020; Bosman et al., 2021). In these experiments,
the pulsatile load was kept at a pulse pressure of 40 mmHg
to mimic the physiological condition. However, the amplitude
of the pulsatile stretch is known to modulate mechanosensitive
properties of the blood vessel, such as contractile properties,
stress fiber alignment, cell morphology and gene expression
in both ECs and VSMCs (Birukov, 2009; Haghighipour et al.,
2010; Hsu et al., 2010). Moreover, the viscoelastic properties
of the arterial wall, which modulate the stiffness of the vessel,
can be affected by altered dynamic loading conditions (Tan
et al., 2016; Xiao et al., 2017; Butlin et al., 2020). Therefore,
instead of assessing the “pressure”–“strain” relationship at a
single fixed pulse pressure, altering the stretch amplitude/pulse
pressure could reveal other biomechanical responses which
would otherwise be neglected.

In the present study, we investigated how altering the
amplitude of the pulsatile stretch (i.e., the pulsatile load) ex vivo
affects the measurement of arterial stiffness. We aimed to
illustrate how VSMC function and arterial viscoelastic properties
are affected with altered loading conditions. Specifically, VSMC
contraction and relaxation were studied under different pulse
pressures to assess whether their functionality is dependent on
the pulsatile load. Finally, we compared the descending aorta with
the infrarenal aorta in this model to assess differential effects of
pulsatile stretch on an elastic and muscular artery, respectively.

MATERIALS AND METHODS

Mice and Tissue Preparation
Seven male C57BL/6J mice (6 months old; Charles River
Laboratories, France) were used in the present study. All animals
were housed in the animal facility of the University of Antwerp
in standard cages with 12 h-12 h light-dark cycles and had
free access to regular chow and tap water. The animals were
euthanized by perforating the diaphragm while under anesthesia

[sodium pentobarbital (Sanofi, Belgium), 75 mg/kg i.p.]. The
descending and infrarenal aorta were carefully removed and
stripped of adherent tissue. The tissue was cut into segments of
2 mm. In all experiments, segments from the same anatomical
location were used in order to minimize variability due to the
heterogeneity in blood vessel composition along the aortic tree.
The segments were immersed in Krebs Ringer (KR) solution
(37◦C, 95% O2/5% CO2, pH 7.4) containing (in mM): NaCl
118, KCl 4.7, CaCl2 2.5, KH2PO4 1.2, MgSO4 1.2, NaHCO3 25,
CaEDTA 0.025 and glucose 11.1. The study was waived by the
local ethics committee, according to article 3 of the EU legislation
(L 276/38, 2010).

Rodent Oscillatory Tension Set-Up to
Study Arterial Compliance (ROTSAC)
The ex vivo stiffness of the aortic vessels was determined via
ROTSAC measurements as previously described (Leloup et al.,
2016). In brief, aortic segments were mounted between two
parallel wire hooks in 10 mL organ baths. Force and displacement
of the upper hook were controlled and measured with a force-
length transducer. The segments were continuously stretched
between alternating preloads, corresponding to a “diastolic”
and “systolic” transmural pressure at a frequency of 10 Hz.
The Laplace relationship was used to calculate the transmural
pressure. At any given pressure, calibration of the upper hook
allowed the calculation of the vessel diameter (both systolic and
diastolic diameter) and the Peterson pressure-strain modulus of
elasticity (Ep). The Ep was calculated as follows:

Ep = D0.
4P
4D

With D0 the diastolic diameter. To dissect how pulse pressure
affects the stiffness of the blood vessel, the amplitude of the
oscillations was changed to generate higher or lower pulsatile
stretches. However, mean pressure is an important regulator
of ex vivo stiffness (Leloup et al., 2016). Therefore, altering
pulse pressure should be done in such a manner that the mean
pressures between pulse pressures are equal (Figure 1). In our
setup, the duration of the diastolic and systolic phase are equal
(50 ms for each phase). Therefore, mean transmural pressure is
calculated as:

Mean Pressure =
(Diastolic Pressure+ Systolic pressure)

2

To increase pulse pressure, diastolic pressures were decreased
and systolic pressures were increased in equal increments,
leading to different pulse pressures, but equal mean pressures.
Hence, the effect of a larger or smaller pulse can be assessed
in isobaric conditions. The mean pressures were incrementally
increased for all pulse pressures to assess the relationship
between the non-linear increase in pressure-mediated stiffness
and pulse pressure. All the measurements were conducted on
the same aortic segment in order to make paired comparisons.
A KCl solution (50 mM in Krebs) as well as the NO donor
diethylamine NONOate (DEANO, 2 µM) were used to elicit
VSMC contraction and relaxation, respectively. The resulting
stiffness was measured at steady state conditions (i.e., 20 min
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FIGURE 1 | Altering pulsatile load ex vivo. To increase the pulse pressure at equal mean pressure, the diastolic and systolic pressures are decreased and increased,
respectively, with equal increments. A segment that oscillates between 80 mmHg diastolic pressure and 120 mmHg systolic pressure, is exposed to a mean
pressure of 100 mmHg and a pulse pressure of 40 mmHg. Alternatively, a segment that oscillates between 50 mmHg diastolic pressure and 150 mmHg systolic
pressure, is exposed to an equal mean pressure of 100 mmHg but an increased pulse pressure of 100 mmHg. F-L Transducer = Force-Length Transducer.

after contraction or relaxation). The segments were washed three
times after VSMC contraction in order to remove KCl before
administering DEANO.

Experimental Pulse Pressure Protocol
Five different pulse pressures were chosen to be implemented in
the experimental protocol. The pulse pressure of 40 mmHg was
considered as “physiological” pulse pressure and was therefore
used as a reference for the other pulse pressures. One sub-
physiological and three supra-physiological pulse pressures were
included in the protocol (20 mmHg and 60, 80, and 100 mmHg,
respectively). In this protocol, the mean pressure was increased
from 80 to 200 mmHg in steps of 20 mmHg (see Supplementary
Figure 1). The same pulse pressure protocol was applied to
each vessel segment in three different conditions (Krebs, KCl,
and DEANO). There was a waiting period of 30 min between
conditions. Unless otherwise mentioned, segments from the
thoracic descending aorta (TDA) were used in this study.

Statistics
All results are expressed as mean ± SEM with n representing the
number of mice. Statistical analyses were performed in GraphPad
Prism 7.0. Statistical tests are mentioned in the figure and/or table
legends. Significance was accepted at P < 0.05.

RESULTS

Pulse Pressure Modulates the Non-linear
Pressure-Stiffness Relationship
Increasing pulse pressure augmented the maximum distension
of the thoracic aortic segment (Figure 2A). The maximum
distension (%) for pulse pressures of 20, 40, 60, 80, and
100 mmHg at a mean pressure of 100 mmHg were 6 ± 0.3,
13 ± 0.6, 20 ± 1, 28 ± 2, and 36 ± 2, respectively.
Changing pulse pressure, alters both the D0 and the compliance

(Figures 2B,C). Increasing mean pressure increases the Ep
(Figure 2D). The pulse pressure significantly changed the
pressure-stiffness relationship (Figures 2D,E and Table 1).
Ep for each pulse pressure was different at every mean
pressure (p < 0.0001), meaning that pulse pressure alters
the stiffness of the same blood vessel (Figure 2D). Statistical
comparisons in Table 1 were made to 40 mmHg pulse
pressure, which was considered as the basal, physiological
pulse pressure. Additionally, the interaction between pulse
pressure and pressure was significant (p < 0.0001). A sub
analysis was conducted for different pulse pressures at a
mean pressure of 100 mmHg and demonstrated that pulse
pressure significantly affects both D0 (p < 0.0001) and 1P/1D
(p = 0.001) (Supplementary Figure 2). This indicates that
changes in Ep reflect both changes in diastolic diameter and
altered compliance.

Pulse Pressure Modulates Vascular
Smooth Muscle Cell Reactivity
The Pulse pressure-pressure-stiffness relationships were also
investigated following constriction of aortic segments by
depolarization with high extracellular K + or following removal
of basal tonus with exogenous NO (DEANO) (Figure 3).
The results for contraction and relaxation are shown in
Tables 2, 3, respectively. We previously reported that VSMC
contraction increases stiffness at low, physiological pressures,
but decreases stiffness at higher, non-physiological pressures
(Leloup et al., 2019). The comparisons between 50 mM KCl
(50K) contraction induced stiffness at different pulse pressures
and their uncontracted state are listed in Table 2. At pulse
pressures of 20 and 40 mmHg, 50K increased the stiffness
significantly at “low” mean pressures (80–140 mmHg) and
decreased stiffness significantly at “high” mean pressures
(180–200 mmHg) (Figure 3A). For the pulse pressures 60, 80,
and 100 mmHg, 50K only decreased the stiffness significantly
(p < 0.0001) at “high” mean pressures (160–200 mmHg).
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FIGURE 2 | Pulsatile load modulates the pressure-stiffness relationship. (A) Mean distension of a single cycle (100 ms) of thoracic aorta segments at different pulse
pressures. Tracings were downsampled to 5 ms intervals. (B) Diastolic diameter is altered by the applied pulse pressure, as expected due to the nature of the setup.
(C) The relationship between compliance, pulse pressure and mean pressure. (D) The pressure-stiffness relationship is modulated by the pulse pressure. At low
pulse pressures, the pressure-mediated increase in Ep is significantly augmented, while the inverse is true for increasing pulse pressures. (E) Surface plot
representing the mean interpolated data. n = 7. Ep, Peterson’s modulus of elasticity; PP, pulse pressure.

After 50K elicited contraction, all measurements (Ep) were
significantly (p < 0.0001) different from each other. The 1Ep
was significantly different between 20 and 40 mmHg pulse
pressure, at the “low” mean pressures, indicating a stronger
response to 50K in the former (Figure 3B).

Adding DEANO to the aortic segments removed the basal
tonus of the VSMCs (Leloup et al., 2018). The comparisons before
and after DEANO administration at different pulse pressures
are listed in Table 3. Overall, at most pressures, there was no
clear effect of removal of basal tonus by DEANO. However, at
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TABLE 1 | Effect of differential pulse pressure on blood vessel stiffness.

Mean pressure (mmHg) Peterson’s modulus (Ep, mmHg)

20 PP 40 PP 60 PP 80 PP 100 PP

80 (280 ± 9)** (259 ± 8) (248 ± 7)** (241 ± 7)** (234 ± 7)**

100 (328 ± 11)*** (298 ± 10) (288 ± 12)** (277 ± 11)*** (270 ± 10)***

120 (437 ± 23)*** (388 ± 22) (371 ± 22)** (353 ± 20)*** (338 ± 18)***

140 (625 ± 45)*** (545 ± 42) (516 ± 41)*** (484 ± 36)*** (454 ± 31)***

160 (894 ± 79)** (798 ± 71) (748 ± 65)*** (695 ± 60)*** (645 ± 50)**

180 (1250 ± 112)** (1158 ± 111) (1089 ± 105)** (958 ± 96)** (890 ± 84)**

200 (1705 ± 158)* (1502 ± 140) (1424 ± 136)* (1339 ± 130)** (1277 ± 141)**

Data is expressed as (Mean ± SEM), n = 7. Repeated measures two-way ANOVA with Sidak post hoc test for multiple comparisons (comparisons are made with 40 PP
as reference). *p < 0.05; **p < 0.01; ***p < 0.001. PP, pulse pressure (mmHg).

FIGURE 3 | Pulse Pressure alters VSMC reactivity. (A) Surface plot of the mean interpolated raw data. The transparent surface plot is the uncontracted, basal state
of the aortic segment, while the colored surface plot shows the same segment in 50 mM KCl-induced contracted state. At low mean pressures (80–140 mmHg),
contraction of VSMCs makes the segment stiffer, while at high mean pressures (140–200 mmHg), the vessel is less stiff when contracted. This effect is consistent for
all pulse pressures. (B) Surface plot of the mean interpolated data of the difference in stiffness between contracted and uncontracted state (contracted–basal).
(C) Surface plot of the mean interpolated raw data. The transparent surface plot is the uncontracted, basal state of the aortic segment while the colored surface plot
shows the same segment treated with 2 µM DEANO. (D) Surface plot of the mean interpolated data of the difference in stiffness (Ep) between relaxed and basal
state (relaxed–basal). n = 7. Ep, Peterson’s modulus of elasticity; 1EP, EPcontraction–EPuncontracted; PP, pulse pressure.

20 mmHg pulse pressure Ep was significantly decreased at mean
pressures of 140, 160, and 200 mmHg (p < 0.01) (Figure 3D).
A detailed overview of the effects of 50K and DEANO per
pulse pressure can be found in the Supplementary Material
(Supplementary Figure 3).

Comparison of Biomechanical
Properties of the Thoracic Descending
Aorta and the Abdominal Infrarenal Aorta
Overall, Ep for the infrarenal artery was higher than Ep for the
descending thoracic aorta, indicating a higher stiffness of the
infrarenal artery in all conditions. The individual results are listed
in Table 4. Whereas differences in Ep between the descending

and infrarenal aorta were significant (p < 0.05–p < 0.01) at mean
pressures of 80, 100, 120, and 140 mmHg for a pulse pressure of
20 mmHg, significant differences (p < 0.05) were only observed
at mean pressures of 100, 120, and 140 mmHg for a pulse pressure
of 40 mmHg and at 120 mmHg mean pressure for a pulse pressure
of 60 mmHg (Figure 4). At higher pulse pressures, the difference
in stiffness between the descending and infrarenal aorta did not
reach significance.

DISCUSSION

In this study, we demonstrated that increasing ex vivo
pulsatile load alters the non-linear relationship between pressure
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TABLE 2 | Blood vessel stiffness before and after 50 mM KCl induced VSMC contraction at different pulse pressures.

Mean pressure
(mmHg)

Peterson’s modulus (Ep, mmHg)

20 PP 40 PP 60 PP 80 PP 100 PP

Basal 50K 1Ep Basal 50K 1Ep Basal 50K 1Ep Basal 50K 1Ep Basal 50K 1Ep

80 (280 ± 9) (436 ± 17)**** (156 ± 17) (259 ± 8) (362 ± 12)* (103 ± 13)# (248 ± 7) (319 ± 8) (71 ± 8) (241 ± 7) (291 ± 7) (50 ± 6) (234 ± 7) (272 ± 7) (38 ± 4)

100 (328 ± 11) (483 ± 17)**** (155 ± 18) (298 ± 10) (395 ± 12)* (96 ± 15)# (288 ± 12) (348 ± 9) (60 ± 10) (277 ± 11) (321 ± 9) (44 ± 8) (270 ± 10) (301 ± 9) (32 ± 6)

120 (437 ± 23) (560 ± 22)**** (123 ± 22) (388 ± 22) (464 ± 16) (76 ± 19) (371 ± 22) (408 ± 14) (37 ± 13) (353 ± 20) (375 ± 14) (22 ± 10) (338 ± 18) (353 ± 13) (15 ± 7)

140 (625 ± 45) (695 ± 29)* (71 ± 29) (545 ± 42) (575 ± 27) (30 ± 22) (516 ± 41) (506 ± 25) (−10 ± 18) (484 ± 36) (464 ± 23) (−20 ± 15) (454 ± 31) (434 ± 21) (−21 ± 11)

160 (894 ± 79) (863 ± 43) (−32 ± 41) (798 ± 71) (731 ± 43) (−67 ± 31) (748 ± 65) (654 ± 41)* (−94 ± 26) (695 ± 60) (602 ± 38)** (−93 ± 23) (645 ± 50) (562 ± 35)** (−83 ± 17)

180 (1250 ± 112) (1079 ± 67)**** (−171 ± 49) (1158 ± 111) (938 ± 62)**** (−221 ± 54) (1089 ± 105) (854 ± 63)**** (−235 ± 44) (958 ± 96) (762 ± 61)**** (−196 ± 38) (890 ± 84) (717 ± 57)**** (−174 ± 31)

200 (1705 ± 158) (1360 ± 98)**** (−345 ± 62) (1502 ± 140) (1206 ± 90)**** (−349 ± 63) (1424 ± 136) (1056 ± 85)**** (−368 ± 58) (1339 ± 130) (990 ± 84)**** (−350 ± 52) (1277 ± 141) (880 ± 73)**** (−312 ± 72)

Comparisons are made between the Ep at “50K” and “Basal” (conditions) at the same pulse pressure. Data is expressed as (Mean ± SEM), n = 7. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, #P < 0.05
(“#” = Compared to the 1Ep at 20PP), Repeated measures two-way ANOVA with Sidak post hoc test for multiple comparisons. PP, pulse pressure (mmHg), 1Ep, Ep 50K–Ep Basal .

TABLE 3 | Blood vessel stiffness before and after DEANO-induced VSMC relaxation at different pulse pressures.

Mean pressure
(mmHg)

Peterson’s modulus (Ep, mmHg)

20 PP 40 PP 60 PP 80 PP 100 PP

Basal DEANO 1Ep Basal DEANO 1Ep Basal DEANO 1Ep Basal DEANO 1Ep Basal DEANO 1Ep

80 (280 ± 9) (265 ± 6) (−15 ± 4) (259 ± 8) (254 ± 7) (−5 ± 2) (248 ± 7) (248 ± 8) (0 ± 3) (241 ± 7) (242 ± 8) (1 ± 2) (234 ± 7) (238 ± 8) (4 ± 1)

100 (328 ± 11) (310 ± 10) (−18 ± 4) (298 ± 10) (297 ± 11) (−1 ± 3) (288 ± 12) (289 ± 13) (1 ± 3) (277 ± 11) (281 ± 12) (4 ± 3) (270 ± 10) (274 ± 11) (4 ± 2)

120 (437 ± 23) (409 ± 23) (−28 ± 4) (388 ± 22) (387 ± 23) (−1 ± 5) (371 ± 22) (372 ± 23) (1 ± 4) (353 ± 20) (357 ± 21) (4 ± 3) (338 ± 18) (343 ± 18) (5 ± 2)

140 (625 ± 45) (579 ± 43)** (−46 ± 10) (545 ± 42) (543 ± 41) (−2 ± 7) (516 ± 41) (518 ± 41) (2 ± 6) (484 ± 36) (488 ± 37) (4 ± 6) (454 ± 31) (461 ± 32) (6 ± 4)

160 (894 ± 79) (844 ± 73)** (−51 ± 11) (798 ± 71) (796 ± 70) (−2 ± 9) (748 ± 65) (752 ± 67) (3 ± 10) (695 ± 60) (700 ± 60) (5 ± 8) (645 ± 50) (653 ± 53) (8 ± 7)

180 (1250 ± 112) (1216 ± 113) (−35 ± 15) (1158 ± 111) (1155 ± 110) (−3 ± 14) (1089 ± 105) (1089 ± 102) (−1 ± 14) (958 ± 96) (976 ± 103) (18 ± 9) (890 ± 84) (904 ± 90) (14 ± 7)

200 (1705 ± 158) (1659 ± 143)** (−46 ± 32) (1502 ± 140) (1602 ± 146)* (41 ± 26) (1424 ± 136) (1459 ± 151)* (36 ± 21) (1339 ± 130) (1289 ± 147) (18 ± 16) (1277 ± 142) (1211 ± 153) (19 ± 18)

Comparisons are made between the Ep at “DEANO” and “Basal” (conditions) at the same pulse pressure. Data is expressed as (Mean ± SEM), n = 7, *p < 0.05; **p < 0.01. Repeated measures two-way ANOVA with
Sidak post hoc test for multiple comparisons. PP, pulse pressure (mmHg), 1Ep = EpDEANO–Ep Basal .
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and blood vessel stiffness, making the aortic tissue softer.
Additionally, the magnitude of the applied pulsatile load altered
the response of VSMCs to a contractile stimulus. Finally, we
compared the stiffness of the TDA with that of the abdominal
infrarenal aorta (AIA). Interestingly, while it is known that
the AIA is a stiffer blood vessel compared to the TDA, the
difference between the AIA and the TDA becomes less apparent
when higher ex vivo pulse pressures are applied. These findings
suggest that pulsatile load ex vivo alters the properties of aortic
tissue and therefore impacts the measurement of arterial stiffness.
Importantly, it was not the aim of the present study to unravel the
altered molecular/biomechanical mechanisms when changing
pulse pressure, but rather how manipulating this neglected
parameter influences the ex vivo measurement of arterial stiffness.
Nonetheless, these findings indicate that pulse pressure can be
used as an additional variable parameter to better understand
arterial stiffening in subsequent studies.

In our setup, whether a segment oscillates at a pulse pressure
of 20 or 100 mmHg, both pulses happen at an equal frequency
of 10 Hz. Therefore, a segment oscillating at a pulse pressure
of 100 mmHg has a higher deformation rate than a segment
oscillating at a pulse pressure of 20 mmHg. Our results are in
agreement with previous work demonstrating that deformation
rate is inversely correlated with the stiffness of (porcine) aortic
segments (Delgadillo et al., 2010). Others have reported dissonant
results as well. For example, pulse frequency and heart rate have
been found to be positively correlated with the dynamic modulus
of arteries and PWV, respectively, Bergel (1961), Learoyd and
Taylor (1966), Tan et al. (2018), Spronck et al. (2021). However,
most of these studies assess the effect of altered pulse frequency
on arterial stiffness, which is different from this study since the
pulse frequency was kept constant while the 1P was altered to
simulate different pulse pressures. Hydrogels, microtissues and
whole tissues such as lung and liver are known to exhibit strain-
modulated alterations in viscoelasticity, attributed to, among
others, the disruption of crosslinks, protein unfolding and the
movement of fluid (Chaudhuri, 2017; Barenholz-Cohen et al.,
2020; Walker et al., 2020). Therefore, by applying a larger pulse
pressure ex vivo, both the larger deformation rate and the
higher strain of the aortic segments would lead to alterations in
viscoelasticity, expressed as a decreased stiffness. Which viscous
or elastic elements are altered in aortic tissue due to increased
deformation rate, is largely unclear. In physics, it is known
that increasing the strain rate decreases the viscosity of fluids.
Since aortic segments are filled with fluid both intracellularly
and in the extracellular matrix, follow-up research should
assess how altered internal fluid movement/viscosity (due to
a change in deformation rate and maximum strain) affects
the stiffness of blood vessels, which is similar to the “poro-
viscoelastic model” (Caccavo and Lamberti, 2017). Alternatively,
while changes in viscoelasticity due to altered pulse pressure
are a plausible explanation for the “softening” of the aortic
segments, the presence of the Mullins effect cannot be excluded.
The Mullins effect (i.e., softening after an initial deformation)
has been described by others within cyclic loading of aortic
tissue and differs from viscoelasticity (Sokolis, 2007; Horny
et al., 2010; Sarangi, 2010; Weisbecker et al., 2013). The Mullins
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FIGURE 4 | Comparison of the stiffness-profile of the thoracic descending and abdominal infrarenal aorta. (A) Surface plot representing the mean Ep of the
descending aorta (transparent/white) and the infrarenal aorta (colored) at different pulse & mean pressures. (B) Surface plot representing the mean difference in Ep
(1EP) between the infrarenal and thoracic aorta for every pulse & mean pressure. Ep, Peterson’s modulus of elasticity;1EP, EPinfrarenalaorta–EPdescendingaorta; PP,
pulse pressure.

effect goes with residual strain and has been attributed to the
interacting properties of elastin and collagen fibers (Sokolis,
2007; Horny et al., 2010; Sarangi, 2010; Weisbecker et al., 2013).
To summarize, we have shown that in our setup, increasing
pulse pressure softens aortic tissue, by increasing the strain rate.
Accordingly, changing the cyclic pulsatile load modulates the
(viscoelastic) properties of blood vessels.

Furthermore, our results suggest that contraction-induced
stiffness is dependent on the pulsatile load. At lower pulse
pressure, the aortic segment produces a larger response to
contractile stimuli (50 mM KCl) and therefore generates a higher
apparent stiffness. The opposite is true for higher pulse pressures,
where a smaller increase in stiffness is observed after introducing
a contractile stimulus. Interestingly, this difference is only
noticeable at (relatively) low pressures, where the magnitude of
the pulse pressure determines the contraction-induced stiffness.
However, at pressures above 160 mmHg, there is no difference
between a low or high pulse pressure, yet there is an overall
difference between the contracted and uncontracted state. This
indicates that at higher pressures, the effect of pulse pressure
becomes inferior to the effect of pressure itself. One explanation
for this phenomenon could be that the efficacy of contraction
is dependent on the applied (pulsatile) strain. At low pressures
(100 mmHg), the amplitude of the stretch is mainly determined
by the pulse pressure. However, at high pressures (200 mmHg),
the pressure itself mainly determines the maximum stretch of
the aortic segment while the pulse pressure is not able to change
the distension much more, causing smaller oscillations (data
not shown). This rationale is in line with previously published
findings, where the amplitude of the applied stretch controls
intracellular calcium levels as well as the reactivity of aortic
VSMCs to contractile stimuli (Monaghan et al., 2011; Hutcheson
et al., 2012; Leloup et al., 2017). Moreover, mechanical stretch
modulates the contractile apparatus of VSMCs, reorganizing the
cytoskeleton and promoting focal adhesion (FA) growth (Halka
et al., 2008; Chen et al., 2013; De, 2018; Chatterjee et al., 2019).

Therefore, rapid responses to altered stretch, such as both FA
kinase and ERK1/2 phosphorylation, could explain why adjusting
pulse pressure ex vivo modulates the excitability of VSMCs
toward contraction, but only at low, physiological pressures
(Chen et al., 2013; Hu et al., 2014).

Besides the pronounced effect on VSMC contraction-induced
stiffness, small, but significant, differences were observed upon
removal of basal VSMC tonus by DEANO. Whether these small
effects have any physiological relevance is unclear but should not
be ruled out. Future research should investigate whether basal
tonus is truly affected by pulsatile load.

In the first set of experiments, we focused on the TDA,
which is mainly a very elastic artery. The TDA has an important
physiological role in dampening the pressure wave generated
by the left ventricle. In contrast, the AIA is generally a stiffer
blood vessel, having a higher collagen to elastin ratio compared
to the TDA (Bia et al., 2005; Cuomo et al., 2017). In the present
study, we demonstrated ex vivo that the AIA is stiffer than the
TDA within the same animal at pressures ranging from 80 to
140 mmHg, but only when low pulse pressures were applied
(20–60 mmHg). At higher pulsatile loads, the effect was less
pronounced and did not reach statistical significance, in terms of
Ep. This means that increased pulsatile load differentially affects
the mechanical properties of the AIA and the TDA, and, in
essence, shows how ex vivo pulsatile load affects the comparison
in stiffness between different tissues.

To date, it has not been fully elucidated what biomechanical
mechanisms are modulated by ex vivo pulse pressure and how
they translate to our observed differences and cardiovascular
pathologies in general. It is generally accepted that arterial
stiffness contributes to an increased pulse pressure in vivo
(Mitchell et al., 2004, 2010; van der Bruggen M. et al., 2021). In
the current work, we have investigated whether there is a reverse
crosstalk between pulse pressure and artery stiffness, which is
difficult to unequivocally assess in vivo. One study (Said et al.,
2018) reported that pulse pressure is an independent predictor
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of CVD mortality. Similarly, a retrospective study based on
the data of the Framingham Heart Study has shown that the
forward wave amplitude of the blood pressure, but not the mean
arterial pressure, is associated with CVD events (Cooper et al.,
2015). While these studies suggest an important role of pulsatile
load in CVD, the observational design of these studies, make
it difficult to determine whether these are causal relationships.
On the other hand, observations in orthotopic heart transplant
patients provide complementary insights. Patients equipped with
a continuous-flow left ventricular assist device (LVAD) show
increased aortic stiffness in the first year after transplantation,
opposed to patients who received a pulsatile LVAD (Patel et al.,
2017). Additionally, acute aerobic exercise, a condition in which
pulse pressure is increased due to increased stroke volume, is
known to increase arterial compliance (Kingwell et al., 1997;
Tanaka et al., 2000; Maeda et al., 2008; Sharman and LaGerche,
2015). In general, these findings provide direct evidence that
pulsatile load affects aortic properties, which is in line with
our findings. Therefore, future research should investigate how
(dynamic) pulsatile load affects mechanical properties of the
aortic wall to enhance our understanding of blood vessel micro-
and macromechanics (Bia et al., 2005).

LIMITATIONS

While the standard for measuring stiffness of arterial tissue
ex vivo is evaluation of stress-strain relationships (Butlin et al.,
2020), the nature of our ROTSAC set-up does not allow to
assess vascular wall stress, since the wall thickness/cross-sectional
area cannot be measured. Alternatively, the Peterson’s modulus
(Ep) is another, widely used, metric to evaluate blood vessel
stiffness (Gosling and Budge, 2003; Santelices et al., 2007;
Spronck and Humphrey, 2019). The parameters necessary to
calculate Ep are easy to obtain, after translating force into
pressure using the Laplace relationship. Ep integrates changes
in D0 and 1D which were both manipulated by the applied
pressure protocol. Previous publications from our research group
have demonstrated that Ep is a valid metric yielding similar
results to other commonly used metrics for arterial stiffness
(Leloup et al., 2016; De Munck et al., 2020; Bosman et al.,
2021). Another limitation relates to the non-randomized order
in which the mean pressures and pulse pressures were changed
due to practical reasons. However, pilot experiments did not
reveal significant crossover effects. Lastly, all experiments were
performed at a frequency of 10 Hz, reflecting the physiological
heart rate of mice. From a theoretical perspective, investigating
different frequencies would be interesting but beyond the scope
of the current work.

CONCLUSION

We demonstrated that pulse pressure (i.e., pulsatile load) is
a valuable parameter when assessing ex vivo blood vessel
stiffness. Altering the amplitude of the cyclic oscillations not
only modulates the general stiffness of the tissue but also affects

the physiological function of VSMCs. While more research is
needed to investigate the mechanisms responsible for altered
stiffness due to changes in pulsatile load, pulse pressure provides
additional insight into the capacity of a blood vessel to resist
(cyclic) deformation.
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Supplementary Figure 1 | The pulse pressure protocol. The mean pressure was
increased from 80 to 200 mmHg in steps of 20 mmHg. This was done five times,
with each time a different pulse pressure. The order of pulse pressures (PP) was
the same between all experiments and started with a PP of 20 mmHg and ended
with a PP of 100 mmHg. The same pulse pressure protocol was applied to each
vessel segment in three different conditions (Krebs, KCl, and DEANO). There was
a waiting period of 30 min between conditions.

Supplementary Figure 2 | Pulse pressure alters diastolic diameter (D0) and
1P/1D Increasing pulse pressure decreases both (A) the diastolic diameter (D0)
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and (B) the inverse of the compliance (1P/1D) which both contribute to the
decrease in (C) Ep due to increasing pulse pressure. Data is expressed as
(Mean ± SEM), n = 7, ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001
Repeated measures One-Way ANOVA with Holm-Sidak post hoc test for multiple
comparisons [data is compared to; control (= 40 mmHg)]. 1P/1D, inverse of
compliance; D0, Diastolic diameter; Ep, Peterson’s modulus of elasticity.

Supplementary Figure 3 | The effect of VSMC contraction and basal
tonus on Ep per pulse pressure. The relationship between stiffness and
pressure (Ep–Mean pressure) under contracting and relaxing conditions at a pulse
pressure of (A) 20 mmHg, (B) 40 mmHg, (C) 60 mmHg, (D) 80 mmHg, and (E)
100 mmHg. Ep, Peterson’s modulus of elasticity; 50K, 50 mM KCl; PP, Pulse
pressure.
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