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Abstract
The mammalian target of rapamycin, mTOR, plays key roles in cell growth and
proliferation, acting at the catalytic subunit of two protein kinase complexes:
mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by
several oncogenic signaling pathways and is accordingly hyperactive in the
majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great
attention as an anti-cancer therapy. However, progress in using inhibitors of
mTOR signaling as therapeutic agents in oncology has been limited by a
number of factors, including the fact that the classic mTOR inhibitor, rapamycin,
inhibits only some of the effects of mTOR; the existence of several feedback
loops; and the crucial importance of mTOR in normal physiology.
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A brief introduction to the mTOR pathway
mTOR (the mammalian or mechanistic target of rapamycin) is 
a protein kinase that forms two distinct types of multiprotein  
complex, termed mTOR complexes 1 and 2 (mTORC1 and 
mTORC2). Each plays key roles in cellular regulation1,2.

mTORC1 drives multiple anabolic pathways, including protein  
synthesis, ribosome production, lipogenesis, and nucleotide synthe-
sis, all of which are important for cell and tissue growth1. mTORC1 
also suppresses a key catabolic process, autophagy3, both by inhib-
iting its activation and by suppressing the production of lysosomes, 
the organelles in which autophagy occurs. mTORC1 phosphorylates 
proteins involved in all of these pathways, thereby altering their 
activities or subcellular localization3. mTORC1 signaling is acti-
vated by several oncogenic pathways, including the Ras/Raf/MEK/
ERK pathway and the phosphoinositide 3-kinase (PI3K)/AKT 
(PKB) pathway (Figure 1), and by the intracellular availability of 
energy (ATP) and essential amino acids4,5. A key negative upstream 
regulator of mTORC1 is a protein complex which includes TSC1 
and TSC2 (Figure 1)6. Loss of the gene for TSC1 or TSC2 leads 

to a condition termed tuberous sclerosis complex (TSC), which is 
characterized by benign tumors6.

In particular, mTORC1 signaling positively regulates a key com-
ponent of the cell’s protein synthesis machinery, eukaryotic initia-
tion factor eIF4E, which mediates the recruitment of ribosomes to 
mRNAs for their translation7. Enhanced expression of eIF4E can 
transform cells and is seen in various human cancers8. Adequate 
levels of eIF4E are required for tumorigenesis8. Its function is 
blocked by small phosphoproteins termed eIF4E-binding proteins 
(4E-BPs). They are phosphorylated by mTORC1 and this induces 
their release from eIF4E, thereby alleviating such inhibition7. There 
are other links from mTORC1 to the activation of protein synthesis 
and to the production of ribosomes9,10.

mTORC2 has distinct substrates from mTORC111, which include 
AKT (PKB)12, a protein kinase that is involved in anabolic  
signaling (for example, in the activation of mTORC113–15 and 
in cell survival16), and SGK1, whose function is rather less well  
understood. Owing to the lack of a specific inhibitor, much less is 

Figure 1. Schematic representation of signaling pathways involving the two mTOR complexes. Typically, hormones and growth factors 
activate mTOR complex 1 (mTORC1) through the SOS/Ras/Raf-MEK-ERK (MAPK) or the IRS1/PI3K-PDK1-PKB pathways or both. mTORC2 
also contributes to the activation of PKB through the direct phosphorylation of its turn motif as well as its hydrophobic motif. These pathways 
impinge on the tuberous sclerosis complex (TSC), which serves as a GTPase activator protein for the small G-protein Rheb. Upon inhibitory 
phosphorylation evoked by upstream kinases such as PKB, the activity of TSC is suppressed, promoting the accumulation of GTP-bound 
Rheb, which in turn activates mTORC1 on the surface of lysosomes. Amino acids also activate mTORC1 by bringing the latter onto lysosomes 
via the Rag GTPases. S6K-rpS6 and 4EBP1-eIF4E are the best-characterized mTORC1 downstream targets and are responsible for controlling 
a variety of anabolic effects driven by mTORC1. Dashed lines indicate feedback mechanisms. mTOR, mammalian target of rapamycin; PI3K, 
phosphoinositide 3-kinase.
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known about the control of mTORC2 than that of mTORC1. It may 
be linked to the PI3K pathway17, which is frequently dysregulated in 
cancer, for example, by loss of the tumor suppressor protein PTEN  
(phosphatase and tensin homolog).

Given the many oncogenic pathways—and oncogenes or tumor  
suppressors—linked to mTOR signaling, it is estimated that 
mTORC1 function is hyperactivated in up to 70% of all human 
tumors18. Equivalent information is not available for mTORC2, 
but its links to PI3K/PTEN suggest that it is also activated in 
tumor cells. This has stimulated a very high level of interest in  
targeting mTOR for cancer therapy; a search in PubMed for  
‘mTOR inhibitors cancer therapy + review’ returns more than 1,000 
hits.

These features have led to a very high level of interest—in aca-
demic labs and in the pharmaceutical industry—in targeting mTOR 
signaling as a potential therapeutic avenue for anti-cancer therapy.

Rapamycin and the first generations of mTOR 
inhibitors
The best-known inhibitor of mTOR is rapamycin, from which 
mTOR’s name derives. Rapamycin was originally applied as an 
immunosuppressant, blocking T-cell activation, and has been in  
use since around 2000 to prevent kidney graft rejection. However, 
rapamycin does not directly inhibit the catalytic (kinase) activity  

of mTOR; instead it binds, together with a small protein, an 
immunophilin termed FKBP12, specifically to mTORC1, but not 
mTORC2, to a domain adjacent to the kinase active site (Figure 2). 
As a consequence, it inhibits only some of the functions of mTORC1. 
The data suggest that its effect on mTORC1 activity affects mainly 
weaker mTORC1 substrates, such as the protein kinase termed 
ribosomal protein rpS6 kinase, whereas it has only a limited, if any, 
effect on other, better substrates such as the eIF4E-binding protein 
4E-BP119. The extent of its effect on this latter substrate appears 
to vary between cell types. In contrast to a previous report by Yip 
et al.20, which showed that rapamycin treatment results in desta-
bilization of the hollow lozenge-shaped mTORC1 dimer, a recent 
high-resolution cryo-electron microscopy study from Aylett et al.21 
showed that the binding of rapamycin-FKBP12 to mTOR does not 
destabilize the mTORC1 dimer but rather reduces the access to 
the active site cleft from a width of 20 to 10 Å, implying that the 
FKBP12-rapamycin binding (FRB) domain acts as a gatekeeper of 
the active substrate binding site (discussed in 22). This may well 
explain why rapamycin differentially affects the phosphorylation of 
‘stronger’ versus ‘weaker’ substrates.

4E-BP1 is the substrate through which mTORC1 controls cell  
proliferation23, so the resistance of its phosphorylation to rapamycin 
likely contributes to the poor efficiency of rapamycin as an anti-
hyperplastic agent. Another confounding factor is that, by impairing 
mTORC1, rapamycin can promote growth factor signaling via  

Figure 2. Domains of the mTOR protein and three generations of mTOR inhibitors. mTOR is composed of 2,549 amino acids which 
can be divided into several structural domains, including HEAT (for anti-parallel α-helices found in Huntingtin, elongation factor 3, PP2A 
and TOR1) repeats and FAT (for FRAP, ATM, TRAP), FRB, kinase, and FATC (for C-terminal FAT) domains. The HEAT repeats, located close 
to the N-terminus of mTOR, are required for mTOR multimerization. The FRB—FK506 binding protein 12 (FKBP12)–rapamycin binding—
domain, as its name implies, is the binding site of mTOR to FKBP12 and rapamycin. FAT, kinase, and FATC domains are conserved within 
the phosphatidylinositol 3-kinase-related kinases (PIKKs) and are essential for maintaining the activity of PIKKs. The first-generation mTOR 
inhibitors, including rapamycin itself, bind to FKBP12, which in turn interacts with the FRB domain of mTOR to inhibit mTOR activity. The 
second-generation mTOR inhibitors are ATP-competitive mTOR inhibitors which act as ATP analogues and compete with ATP for the binding 
to the kinase domain of mTOR. The newly developed third generation of mTOR inhibitors can potentially overcome the drug resistance of 
cancer cells bearing mTOR FRB/kinase domain mutation; that is, FRB domain mutations (mTORA2034V and mTORF2108L) confer resistance 
to rapalogs (first generation), and a kinase domain mutation (mTORM2327I) renders resistance to mTOR-KIs (second generation). mTOR, 
mammalian target of rapamycin.
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various feedback loops which, for example, promote activation of 
the oncogenic PI3K/Akt pathway24,25. In addition, rapamycin is gen-
erally not cytotoxic, acting instead as a cytostatic agent. It can cause 
the upregulation of the pro-oncogenic protein eIF4E and promote 
other tumorigenic events (reviewed in 26). Tumors expressing high 
levels of eIF4E are likely to be less sensitive to mTOR inhibitors 
since levels of eIF4E may exceed those of the mTORC1-regulated 
inhibitor protein 4E-BP1. Inhibition of mTORC1 will also acti-
vate its downstream effector, eukaryotic elongation factor 2 kinase 
(eEF2K), which can promote cell survival27.

As noted, it is very common that cellular signaling pathways involv-
ing the mTOR complexes are abnormally upregulated in cancer. 
Although rapamycin is a highly selective inhibitor against mTOR, 
it does not completely inhibit all of the activities of mTORC128 and 
will inhibit mTORC2 in only some types of cells upon prolonged 
treatment29. Although rapamycin does not interact with mTORC2, 
it can affect mTORC2 indirectly. By binding to mTOR as a com-
plex with FKBP12, it prevents mTOR from associating with the 
mTORC2-specific partner protein Rictor, therefore causing a gradual  
decline in mTORC2 levels29. The rate at which this occurs will 
depend on the rate of turnover of mTORC2 under given conditions 
but can occur within 1 or 2 days of treatment of cells with rapamycin 
and may account for some of the longer-term effects of rapamycin29. 
Also, S6K can phosphorylate Rictor and thereby impair mTORC2 
function, an effect that should be reversed by rapamycin30,31. These 
opposing effects are important considerations when interpreting—
or trying to predict—the consequences of rapamycin treatment.

The pharmacological properties of rapamycin itself are not ideal, 
leading to the development and application of rapamycin analogs 
(rapalogs) with superior characteristics. Several such compounds 
have been developed and evaluated for their efficacy in treating 
diseases, including cancers (Figure 2 and Figure 3 and Table 1).  
These are semi-synthetic rapamycin analogues which have been 
typically derivatized at the C-43 position on the cyclohexane outside 
the macrolide ring in order to improve aqueous solubility and suit  
oral administration. This also provides a more advantageous intel-
lectual property position than for rapamycin itself. For example, 
RAD001 (everolimus)32,33, developed by Novartis as an immuno-
suppressive and anti-cancer drug (Table 1), is a hydroxyethyl ether- 
derivative. CCI-779 (temsirolimus; Wyeth-Ayerst/Pfizer) and 
AP23573 (ridaforolimus or deforolimus; Merck/Ariad) also belong 
to this category.

Despite the strong evidence that mTORC1 and mTORC2 control 
events that are important for cell growth and survival, which 
are processes of key importance in cancer cells, progress in 
successfully applying rapamycin and rapalogs as anti-cancer agents 
has been limited. Temsirolimus was approved by the US Food 
and Drug Administration for advanced renal cell carcinoma in  
2007 and since then everolimus has been passed for use in certain 
other cancers, including neuroendocrine tumors and, as a combina-
tion therapy, HER2-positive breast cancer, as well as for certain 
TSC-related tumors (Table 1). However, this relatively modest 
list contrasts to the immense amount of research effort devoted to  
studying mTORC1 signaling in tumors or cancer cells.

Figure 3. Selected examples of three generations of mTOR inhibitors and dual PI3K/mTOR inhibitors. Chemical structures were drawn 
by using the website www.emolecules.com. mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase.
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Dual PI3K/mTOR inhibitors
The FAT, FATC, and kinase domain of mTOR are widely con-
served in a group of protein kinases which display prominent 
structural similarities to PIKK (PI3K-related kinases) (Figure 2 
and Table 1). As a result, it has been discovered that several PI3K 
inhibitors (including derivatives of the classic LY294002 and  
Wortmannin) developed during drug discovery projects can also 
effectively suppress the activation of both mTOR complexes.  
These are therefore classified as dual PI3K/mTOR inhibitors. As 
potential anti-cancer agents, they represent superior benefits in 
comparison with the first class of mTOR inhibitors because they 
simultaneously inhibit both PI3K and mTOR, two crucial signal-
ing hubs that promote cancer cell growth. The first inhibitors that  
came out from this group of compounds were PI103 and its deriva-
tives, named PI450 and PI620, which show further improvements 
to the pharmacokinetic properties of the parent molecule34. Yet  
arguably the most successful example in clinical trials from 
this class of inhibitors is the imidazoquinoline derivative  
NVP-BEZ23535 developed by Novartis. Not only does the dual 
mTOR/PI3K inhibitor NVP-BEZ235 exert potent anti-tumor  

activity in vivo but its effect can be further enhanced by the combi-
nation with inhibitors against other mitogenic pathways, such as the 
MEK/ERK inhibitors36,37. Other examples from this class of inhibi-
tors include GSK2126458 from GlaxoSmithKline38, XL765 from 
Sanofi-Aventis and Exelixis39, and SF1126 from Semafore40.

Second-generation mTOR inhibitors
Given the inability of rapamycin to affect all functions of mTORC1 
and its inefficacy in anti-cancer therapy, several academic and phar-
maceutical laboratories have developed compounds that inhibit 
the catalytic activity of mTOR itself. This means they can poten-
tially inhibit all phosphorylation events catalyzed by mTORC1 
but will also affect mTORC2. This finally gave rise to a second 
generation of mTOR inhibitors which are designed to act as ATP- 
competitive agents to mTOR. These inhibitors exhibit a much lower 
half-maximal inhibitory concentration (IC

50
) against mTOR activ-

ity than PI3K. The first such compound is the mTOR inhibitor 
PP24241. As a classic indication of complete mTORC1 inhibition, 
the phosphorylation of the rapamycin-resistant sites in 4E-BP1 
(Thr37/Thr46) is effectively blocked by PP24242. PP242 also  

Table 1. Examples of the three generations of rapalogs/dual mTOR/PI3K inhibitors and their effects on human diseases.

Generation Compound name Approved year or 
current phase Developer Examples of indications in 

completed clinical trials Reference

1st Rapamycin (sirolimus) 1999 Wyeth-Ayerst Acute renal allograft rejection/
restenosis 77–80

1st RAD001 (everolimus) 2003–2011 Novartis
Allograft rejection/advanced kidney 
cancer/ tuberous sclerosis/advanced 
RCC/pNET/neurofibromatosis

32,33

1st CCI-779 (temsirolimus) 2007–2008 Wyeth-Ayerst/Pfizer Advanced RCC/mantle cell 
lymphoma 81

DI NVP-BEZ235 (dactolisib) Phase I/II (22) Novartis MBC/pNET 35

DI GSK2126458 Phase I/II (3) GlaxoSmithKline Advanced solid tumors, lymphoma 38

DI XL765 Phase I/II (5) Sanofi-Aventis, Exelixis Glioblastoma multiforme/NSCLC/
MBC 39

2nd AZD8055 Phase I/II (5) AstraZeneca Advanced solid tumors/glioma/HCC 50

2nd INK128/MLN0128 Phase I/II (25) Intellikine
Advanced solid tumors/multiple 
myeloma/Waldenstrom 
macroglobulinemia

44

2nd OSI027 Phase I/II (1) OSI Pharmaceuticals Advanced solid tumors/lymphoma 82

3rd RapaLinks Developed in 2016 Rodrik-Outmezguine et al.
Tested in rapamycin- and AZD8055-
resistant cell lines and mouse 
xenografts

74

For “current phase”, the number within the parentheses indicates the number of clinical trials currently being carried out or already withdrawn, completed, or 
terminated according to ClinicalTrials.gov. DI, dual mammalian target of rapamycin/phosphoinositide 3-kinase inhibitor; HCC, hepatocellular carcinoma; MBC, 
metastatic breast cancer; mTOR, mammalian target of rapamycin; NSCLC, non-small cell lung cancer; PI3K, phosphoinositide 3-kinase; pNET, pancreatic 
neuroendocrine tumor; RCC, renal cell carcinoma.
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shows effectiveness against rapamycin-resistant PKB-driven  
tumorigenesis43. INK128 (later renamed MLN0128) is a PP242 
derivative developed by Intellikine44 and has been, or is being, tested 
in 25 clinical trials, according to ClinicalTrials.gov (Table 1).

Within the same category, Torin 145 and its sister compound  
Torin 246 were synthesized from quinolone 1 by Nathanael Gray’s 
lab and developed by AstraZeneca. These compounds exhibit 
an IC

50
 against mTOR of less than 10 nM (3 nM as for Torin 1)  

in vitro. Torin 2 not only exhibits approximately 100-fold selec-
tivity relative to PI3K (IC

50
 of approximately equal to 200 nM) 

and 100-fold selectivity over other kinases tested but also pos-
sesses enhanced bioavailability and stability. Ku-0063794 and  
Ku-006865047,48, developed by KuDOS Pharmaceuticals (now 
part of AstraZeneca), are also examples of early ATP-competitive 
mTOR inhibitors which exhibit great anti-proliferative potential  
against cancer cells in vitro. Wyeth-Ayerst (now part of Pfizer) 
developed a series of dual mTORC1/2 inhibitors via high- 
throughput screening based on the parent compound WAY-001 and 
subsequently named them WAY-600, WYE-687, and WYE-35449. 
These compounds also possess anti-proliferative effects on cancer 
cells and have similar IC

50
 values toward mTOR as the Torin and 

Ku compounds and have reasonable selectivity for mTOR as com-
pared to the PI3Ks (approximately 100-fold). Moreover, AZD8055  
and AZD201450,51 are two orally bioavailable compounds derived 
from the Ku compounds. They were developed by researchers from 
KuDOS Pharmaceuticals and later AstraZeneca. The effectiveness 
of these compounds in the inhibition of cancer cell growth has 
been tested in several cancer cell lines where they show an anti- 
proliferative IC

50
 dose range of 20 to 50 nM50. AZD2014 is currently 

being tested in combination with other inhibitors, including ibruti-
nib (which blocks B-cell receptor signaling), AZD6244 (a MEK 
inhibitor), paclitaxel (targets tubulin), and fulvestrant (estrogen 
receptor degrader), in phase I/II clinical trials against breast cancer, 
lung cancer, and lymphoma.

Side effects of previous mTOR inhibitors and the 
birth of a new generation
Despite the high efficiency in inhibiting the activity of both mTOR 
complexes, ATP-competitive mTOR inhibitors are still quite inef-
fective in our battle against cancer, potentially for several reasons. 
Firstly, the inhibition of mTORCs triggers a number of feedback 
loops toward upstream signaling pathways, activation of which  
may promote cancer cell survival and metastasis31. These pathways 
have been discussed in some detail by Li et al.26.

Secondly, mTOR signaling is essential for normal cell viability 
and its inhibition can be unavoidably detrimental to healthy tissues. 
For instance, sirolimus and tacrolimus were given as immunosup-
pressant drugs during pancreatic islet transplantations52, yet a fol-
low-up study 5 years later has demonstrated that only approximately 
10% of the recipients remained insulin independent53, likely owing 
to the fact that mTOR inhibitors would induce pancreatic β-cell 
death54,55 as a result of the inhibition of mTORC256. Important to 
note is that second-generation mTOR inhibitors, such as Torin 1, are 
actually more toxic to islet cells than rapamycin itself56, potentially 
because of its rapid and complete suppressive action against both 
mTOR complexes. Furthermore, mTORC1 is a well-characterized  

as inhibiting of autophagy3, and the induction of autophagy caused 
by mTOR inhibition may promote cancer cell survival. Indeed, 
AZD8055 is shown to activate autophagic flux in a variety of cancer 
cells50,57,58 and the inhibition of autophagy was able to reverse the 
paradoxical cytoprotective effect of AZD8055 on colon carcinoma 
cells57. Also, mTOR is a master positive regulator of mRNA trans-
lation, which is carried out by versatile high energy-consuming 
molecular machineries within the cell, and because energy saving 
is crucial for cancer cell survival as a result of the Warburg effect59, 
mTOR inhibition may actually protect cancer cells from death by 
conserving essential energy to maintain cell viability.

One of the key targets for control by mTORC1, eIF4E, is often 
expressed at high levels in tumors8; if its levels exceed those of 
its mTORC1-regulated inhibitors, 4E-BPs, then inhibition of 
mTORC1 will not be effective in restricting eIF4E function60.  
Alternative ways of impairing eIF4E function may be effective 
in such settings; possibilities include the use of anti-sense RNAs 
against its mRNA61, and blocking its binding to its partner 
eIF4G62.

Given, on one hand, the likely importance of mTORC1 signaling in 
cancer and, on the other hand, the challenges of targeting mTORC1 
in a safe and effective way, an alternative strategy is to block the rel-
evant, key events downstream of mTORC1. Kinases that phospho-
rylate rpS6 are phosphorylated and activated by mTORC1. There 
are two genes in mammals, often termed S6K1 and S6K2, each of 
which gives rise to two protein isoforms63. These enzymes should 
not be confused with the RSKs, which are named after their ability 
to phosphorylate rpS6 but are regulated by the oncogenic Ras/Raf/
MEK/ERK pathway, not by mTORC164. Although the functional 
significance of the phosphorylation of rpS6 is unclear, S6K1 in par-
ticular regulates cell growth (size)65,66. This almost certainly reflects 
a role for S6K1 in controlling ribosome biogenesis67,68, a key  
process for cell growth control, although additional events may  
also be involved.

Another route that is being actively explored is to inhibit RNA 
polymerase I, which makes the main ribosomal RNAs and is 
switched on by mTORC1 signaling (reviewed in 69). Ribosome 
production is crucial in cell growth and proliferation and so inhibit-
ing this pathway holds the potential for inhibiting tumor growth. 
Bywater et al. have developed an inhibitor of Pol I, CX-546170, 
which, when used in combination with everolimus, extended the 
survival of mice with myc-driven lymphoma71.

A final issue compromising the efficacy of mTOR inhibitors is 
that a wide range72–76 of clinically relevant mutations in mTOR can 
increase the catalytic activity of mTOR and thus both mTORC1 and 
mTORC2, thereby reducing the effectiveness of such compounds 
toward the first two generations of mTOR inhibitors and dual 
PI3K/mTOR inhibitors in cancer cells72–76. This mainly reflects 
increases in mTOR kinase activity caused by such mutations 
rather than interference with drug binding as a result of active 
site mutations74; since catalytic activity is higher, a dose of 
inhibitor that is effective against wild-type mTOR will still leave 
appreciable catalytic activity of the mutant, hyperactive mTOR 
kinase.
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To try to tackle the last of these issues, Rodrik-Outmezguine 
et al.74 generated rapamycin-resistant breast cancer cell lines  
(MCF-7 and MDA-MB-468) carrying two mTOR FRB domain 
mutations (MTORA2034V and MTORF2108L) as well as an AZD8055-
resistant colony bearing a hyperactive kinase domain mutation 
(MTORM2327I). Careful analysis of the molecular model of mTOR 
revealed a juxtaposition of the rapamycin and AZD8055 bind-
ing sites, prompting the authors to create a powerful bivalent 
mTOR inhibitor, named RapaLink. This contains both rapamycin 
and an mTOR kinase inhibitor within the same molecule, con-
nected by a cunningly designed non-perturbing, strain-free cross-
linker with the optimum length, which allows the compound to  
interact with the FRB domain of mTOR through binding to 
FKBP12 and also to reach the kinase domain of mTOR so that it can  
also act as an ATP-competitive inhibitor at the same time74  
(Figure 2 and Figure  3). Indeed, 3 to 10 nM of either RapaL-
ink-1 or -2 is sufficient to inhibit both mTORC1 and 2 in these 
mutant cells, as demonstrated by the phosphorylation status of their  
respective downstream targets, whereas rapamycin and INK128 
were unable to effectively block the activities of mTORCs at con-
centrations of as high as 100 nM74. Mouse xenografts of MCF-7 
cells bearing these mutations are also more sensitive to RapaLink-1  

in comparison with rapamycin and AZD805574. This landmark 
study has given birth to a new generation of mTOR inhibitors.

Concluding comments
It is not surprising, given its importance in normal physiology and 
in various disease states, that so much attention has been devoted 
to understanding mTOR signaling pathways and to developing 
agents that interfere with signaling through mTOR. Despite this 
effort, the utility of such inhibitors in oncology still appears to be  
limited for reasons described above. One potential way forward is  
to develop ways of inhibiting those steps downstream of mTOR, 
especially mTORC1, that play critical roles in oncogenesis and 
tumor progression.
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