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Earthquakes and heavy rainfalls are the two leading causes of landslides around the world. Since they 
often occur across large areas, landslide detection requires rapid and reliable automatic detection 
approaches. Currently, deep learning (DL) approaches, especially different convolutional neural 
network and fully convolutional network (FCN) algorithms, are reliably achieving cutting-edge 
accuracies in automatic landslide detection. However, these successful applications of various DL 
approaches have thus far been based on very high resolution satellite images (e.g., GeoEye and 
WorldView), making it easier to achieve such high detection performances. In this study, we use freely 
available Sentinel-2 data and ALOS digital elevation model to investigate the application of two well-
known FCN algorithms, namely the U-Net and residual U-Net (or so-called ResU-Net), for landslide 
detection. To our knowledge, this is the first application of FCN for landslide detection only from freely 
available data. We adapt the algorithms to the specific aim of landslide detection, then train and test 
with data from three different case study areas located in Western Taitung County (Taiwan), Shuzheng 
Valley (China), and Eastern Iburi (Japan). We characterize three different window size sample patches 
to train the algorithms. Our results also contain a comprehensive transferability assessment achieved 
through different training and testing scenarios in the three case studies. The highest f1-score value of 
73.32% was obtained by ResU-Net, trained with a dataset from Japan, and tested on China’s holdout 
testing area using the sample patch size of 64 × 64 pixels.

Landslides have significant direct and indirect adverse effects on the natural environment and resources of 
large areas, lead to economic loss in the local communities by damaging property and infrastructure, cause 
fatalities, and affect areas worldwide1. In recent years, landslides have become even more frequent and harmful 
because of climate change, population growth, and unplanned urbanization in mountainous areas, which are 
very dynamic in terms of sedimentation and erosion2,3. A range of human-induced and/or natural triggers, such 
as road construction, earthquakes, volcanic eruptions, rapid snowmelt, and heavy rainfalls can initiate mass 
movements and natural hazard cascades by damming streams and causing catastrophic flash floods and debris 
flows4–6. Timely landslide detection and inventory mapping are vital to enable fast delivery of humanitarian aid 
and crisis response7. Moreover, accurate landslide detection to obtain spatial information on landslides, including 
their exact location and extent, is a prerequisite for any further analysis, such as susceptibility modelling, risk 
evaluation, and vulnerability assessments8,9.
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Remote Sensing (RS) images play an essential role in gaining a deeper and more complete understanding 
of the precise locations, boundaries, extents, and distributions of landslides10–12. Therefore, landslide inventory 
maps are usually prepared by extracting the landslide information from RS images, including optical satellite 
images and synthetic aperture radar (SAR) data, because of the relatively low cost associated with obtaining RS 
images and their wide coverage area13,14. There is a range of common landslide inventory mapping approaches 
using optical satellite images, such as the manual extraction of landslide areas based on an expert’s visual inter-
pretation, rule-based image classification approaches carried out by an experienced analyst1,15, analyzing of 
the multi-temporal SAR interferometry techniques16, applying optical or LiDAR data from unmanned aerial 
vehicles17,18 and the semi-automatic/ automatic image classification using Machine Learning (ML) models in 
both pixel- and object-based working environments19,20.

Generally, applications of knowledge-based or ML (e.g., K-means clustering) models in the pixel-based work-
ing environment are typically based on the spectral information of every single pixel in the RS image21. Therefore, 
pixel-based approaches fail to consider the geometric and contextual information of the features represented in 
the RS image and have a salt-and-pepper problem in the resulting maps, which requires a lot of post-processing 
in manual corrections22. For over two decades, Geographic Object-Based Image Analysis (GEOBIA)23 has been 
used for landslide monitoring24 and detection by grouping similar pixels into meaningful objects and merging 
objects with related spectral, textural, shape, context, and topological properties25. Bacha et al.26 evaluated the 
performance and transferability of the threshold values of some of these parameters. It concluded that they are 
not directly transferable to other study areas and datasets. Therefore, expert knowledge and analyst experience 
play a vital role in determining the properties and parameters associated with a particular case study to achieve 
the desired accuracy of the resulting landslide inventory map24,27.

During the past decade, Deep Learning (DL) approaches, and especially different algorithms of Convolu-
tional Neural Network (CNN) and Fully Convolutional Network (FCN), have been steadily optimized to achieve 
state-of-art results in RS image classification28–30. DL approaches involve extracting features from the input RS 
images using the convolutional layers and then detecting landslide areas by learning high and low-level features. 
In recent years, a few studies have used DL approaches for landslide detection. Chen et al.31 used a CNN algo-
rithm based on the Gaofen-1 High-Resolution (HR) RS image and slope information derived from a 5 m spatial 
resolution digital elevation model (DEM) for landslide extraction in three different cities in China. They used 
28 × 28 pixels sample patches and achieved a quality percentage of 61%. Ghorbanzadeh et al. 2019 evaluated 
two different CNN algorithms trained by different sample patches with a range of window sizes from 12 × 12 to 
48 × 48 pixels and compared the landslide detection results with those of state-of-art Machine Learning (ML) 
models. Using RapidEye 5 m spatial resolution imagery along with a 5 m resolution DEM resulted in the high-
est mean intersection-over-union (mIOU) of more than 78% in their study. The same CNN algorithms were 
then compared to the Residual Networks (ResNets) by32 for landslide detection in Malaysia. They achieved the 
highest f1-score of 90% and a mIOU of more than 90% using a ResNets algorithm, followed by a CNN, which 
resulted in a f1-score of 83% and a mIOU of 83.27%. All approaches were trained and tested based on a database 
including aerial photographs and a DEM with 1 m spatial resolution and 10 cm ground accuracy. Shi et al.20 
also applied a CNN algorithm for landslide recognition in Hong Kong based on aerial photographs with a 0.5 m 
spatial resolution. Using a post-processing method for mask operations and screening, they were able to achieve 
the highest accuracy of more than 80%.

This year, different FCN algorithms also received much attention from researchers for RS image classification, 
and a limited number of studies evaluated these algorithms for landslide detection. Soares et al.33 used a RapidEye 
image (5 m spatial resolution) and an ALOS DEM for training and testing a U-Net for landslide detection in the 
mountainous region of Rio de Janeiro, Brazil. Different sample patch window sizes were used in their study, and 
the best result was based on 128 × 128 pixels with an f1-score of 55%. Liu et al.34 also trained and tested a U-Net 
on two optical imageries with different spatial resolutions of 0.14 m and 0.47 m, respectively. They achieved 
very high accuracy of over 91% for their case study area in Northern Sichuan Province. Qi et al.35 compared the 
performance of the ResU-Net with that of the normal U-Net for detecting regional landslides in a semi-arid 
region in Gansu Province, China. Using the GeoEye-1 image with a nominal spatial resolution of 0.5 m, the F1 
metric of landslide detection was 80% for the U-Net and 89% for the ResU-Net. Su et al.36 also used the U-Net 
in different scenarios for landslide detection from bitemporal RGB aerial images and a DTM that was obtained 
from airborne LiDAR data. The spatial resolution of both the RGB aerial images and the DTM was 0.5 m.

The FCN algorithms and their variations also applied to Sentinel-2 imageries for some other purposes. 
Masoud et al.37, for instance, investigated the delineation of agricultural field boundaries from Sentinel-2 image-
ries, developing a novel FCN algorithm. The accuracy of their resulting delineation maps was slightly lower than 
those of from RapidEye images acquired at 5 m resolution.

Our literature review indicates that various CNN and FCN algorithms have been used for landslide detection. 
Moreover, although the developed/applied algorithms have achieved state-of-the-art baselines in landslide detec-
tion, there has not been one study that used a DL approach based on freely available satellite data. All the studies 
were done based on HR and /or Very High Resolution (VHR) satellite imageries (e.g., GeoEye and WorldView). 
The spatial resolution of the applied RS images in the mentioned studies ranges from 0.14 to 5 m, which is a con-
siderable factor in the spatial heterogeneity and achieving such high accuracies. However, acquiring such VHR 
satellite imageries is usually expensive, is not available everywhere, and has less temporal observation frequency.

This study’s main objective is to showcase the potential of a well-known FCN algorithm of the U-Net for 
landslide detection from freely available Sentinel-2 data and ALOS DEM and compare it with the results of 
ResU-Net. We also evaluate the impact of applying different sample patch window sizes on the detection results. 
Moreover, we assess the transferability performance of the applied approaches using three case study areas in 
Western Taitung County (Taiwan), Shuzheng Valley (China), and Eastern Iburi (Japan). The results are then 
validated using common RS validation metrics, namely precision, recall, and f1-score.
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Materials and methods
Study areas and inventory maps.  Eastern Iburi (Japan).  On September 6, 2018, an earthquake with a 
magnitude (Mw) of 6.6 struck Eastern Iburi, Hokkaido, Japan. It resulted in widespread destruction, including 
power cuts, the destruction of power distribution networks, and damage to the Tomato-Atsuma Power Station, 
which provides electricity for Hokkaido Island38,39. Furthermore, the earthquake caused several deep-seated 
and shallow landslides. Of the 41 deaths related to this earthquake, 36 were due to landslides40. Following the 
earthquake, almost 5600 landslides occurred near Atusma town. The main reason for the significant number of 
landslides was typhoon Jebi, which brought torrential rainfalls to the region the day before the earthquake and 
soaked the region’s subsurface, making it more prone to landslides40,41. Since the depth of the surface soil layer 
varies from 4 to 5 m, most of the landslides were shallow and primarily affected the hilly regions between the 
elevations of 200 and 400 m38. In addition to shallow landslides, the area was also affected by planar and spoon-
type deep-seated landslides41. The landslide inventory map in this region is generated by the Geographical Sur-
vey Institute (GSI) of Japan using aerial ortho-photographs42. Zhang et al.43 updated the landslide inventory map 
by performing spatial analyses on VHR aerial images and a 10-m resolution DEM. Therefore, 5625 features were 
reported as landslides over an area of 46.3 km2. In this study, we used their landslide geodatabase for Eastern 
Iburi in ESRI shape format, and then extracted all landslides (Almost 4940 features with a total area of 43.17 
km2) within our pre-defined study area (Fig. 1C) in Eastern Iburi. The maximum, minimum, and mean of the 
landslide features are 569,904.02 m2, 89.6 m2, and 8688.8 m2 respectively.

Western Taitung county (Taiwan).  Natural hazards such as earthquakes, floods, and landslides are common 
phenomena in Taiwan44. In August 2009, Morakot, the deadliest typhoon in Taiwan’s recorded history struck 
the country. It led to 652 deaths, 47 missing people, and damage to property and infrastructure of over 3 bil-
lion USD44. In 5 days, typhoon Morakot brought over 2884 mm of precipitation to southern Taiwan, which 
caused severe floods and induced more than 22,705 landslides covering an area of 274 km2. The landslides were 
mainly characterized as shallow, but some deep-seated landslides also occurred across the mountainous regions 
of southern Taiwan45. For this study, we chose an area in the Western region of Taitung County in the south of 
the country as a case study area. Since this study’s objective was not to map all the landslides in southern Taiwan 
(Fig. 1a), we selected a region with an area of 467.91 km2 to train and test our model. Unlike the Eastern Iburi 
case study, there was no proper database on which to base a landslide inventory map for southern Taiwan. So, 
based on Google Earth’s archive images (2011–2013), we digitized every landslide within our selected area. In 
total, we digitized 895 landslides with a total area of 31.33 km2. The maximum, minimum, and mean of the 
landslide features are 1,455,022.72 m2, 1282.28 m2, and 34,359.85 m2 respectively.

Shuzheng Valley (China).  Shuzheng Valley is part of the Jiuzhaigou valley scenic and historic interest area 
located in Sichuan Province, China. The region is a popular tourist destination due to its diverse forest ecosys-
tems, lakes, and landscapes46. On August 8, 2017, an earthquake with a magnitude (Mw) 7 struck Shuzheng 
Valley and the Jiuzhaigou scenic area, which resulted in 25 deaths and 525 people suffering from injuries, as well 
as the destruction of tourist resorts and an economic loss of 21 million USD47. A series of geohazards followed 
the earthquake, including a dam break and landslides, particularly in the Shuzheng Valley. The earthquake trig-
gered 1780 mostly shallow landslides. However, due to the area’s rough topography, there were also rockfalls and 
rock avalanches with sizes ranging from a few cubic meters to thousands of cubic meters. For this case study, due 
to keeping the balance of the distribution of landslide features for training and testing in Shuzheng Valley, we 
selected a small region with an area of 64.4 km2 adjacent to this valley as our study area. The valley has a rough 
topography and steep slopes with elevations ranging between 1978 and 3711 m above MSL. Using Google Earth’s 
archive images (2018–2019), we digitized 212 landslide features with a total area of 2.74 km2 within the study 
area. The maximum, minimum, and mean of the landslide features are 130,641.49 m2, 1147.51 m2, and 11,571.6 
m2, respectively (Fig. 1b).

Sentinel‑2 multispectral imagery.  Google Earth Engine (GEE) environment is a cloud system devel-
oped by Google for processing satellite images. We used GEE to acquire cloud-free Sentinel-2images. Currently, 
GEE provides two Sentinel-2 products called Level-1C and Level-2A, whereby the former has global coverage 
but no atmospheric correction and the latter includes atmospheric correction but does not have global coverage. 
Therefore, we called and masked the Sentinel-2 Level-1C product for each study site and then imported it to Sen-
2Cor 50 plugin in SNAP software developed by the European Space Agency (ESA) to apply atmospheric correc-
tions. We used the Sentinel-2A product rather than Sentinel-2B because it had less cloud cover for all three sites. 
The Copernicus Sentinel-2 mission is a constellation of two polar-orbiting satellites for earth observation. It uses 
Multispectral Instrument (MSI) sensors to acquire optical imagery. These images are acquire at various spatial 
resolutions ranging from 10 to 60 m, and 13 bands of visible, near-infrared and short-wave infrared electromag-
net spectrum48. This constellation has two satellites, Sentinel-2A and 2B, at antipodal points in the same orbit, 
which provides a high revisit time of 5 days. The main themes of the Sentinel-2 mission are climate change, land 
monitoring, and emergency management, which includes mapping and monitoring landuse/landcover changes, 
forests, farmlands, water resources, and natural hazards. More information on the Sentinel-2 constellation is 
available in the User Handbook49. In this study, we only used the high-resolution image bands blue (2), green 
(3), red (4), and near-infrared (8) of Sentinel-2A with a 10-m spatial resolution to acquire imagery for the three 
study areas. Table 1 provides information on the acquired images for each site.

Fully convolutional network (FCN).  One of the common ways in which DL approaches learn to deal 
with features with various shapes and sizes is by increasing the depth of the algorithm and using more con-
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Figure 1.   Overview of the study areas: (a) Shuzheng Valley (China); (b) Western Taitung County (Taiwan); and 
(c) Eastern Iburi (Japan). The training and testing areas are presented on Sentinel-2 images, band combination 
1–2–3 (https://​scihub.​coper​nicus.​eu/). The upper figure was drawing based on Google Earth and (a), (b), and (c) 
were generated with the ArcMap v.10.8 software (https://​deskt​op.​arcgis.​com/​es/​arcmap/).

https://scihub.copernicus.eu/
https://desktop.arcgis.com/es/arcmap/
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volutional layers. However, adding more layers usually causes a training degradation problem35. Long et al.50 
introduced FCN, which does not have any fully connected (FC) layer, but instead replaces convolutional and 
upsampling layers to increase the training capability. The FCN is designed to represent image-to-image map-
ping, which is suitable for calculating per-pixel probability labels51. Therefore, the sample image patches with 
arbitrary sizes are introduced as the input for the algorithm52. Since there is no FC layer in an FCN, the algorithm 
can learn to recognize various representations of the local spatial input53. Moreover, FCNs also have skip con-
nections between the down and up samplings for refining image segmentation35,54. Of the various types of FCN 
algorithms, the U-Net has received much interest. It is a simple and effective algorithm for feature extraction that 
can be trained by a limited number of sample patches34,55.

U‑Net.  U-Net was initially been introduced in the context of bio-medical image segmentation51 and further 
adopted in a variety of semantic segmentation tasks, generally achieving good performances56. The U-Net archi-
tecture consists of a contracting path (an encoder) to capture low-level representations, along with an expanding 
path (a decoder) to capture the high-level ones34. While the expanding path is an asymmetrical structure for 
retaking the vanished information of the feature localization57, the contracting path is similar to the standard 
CNN architectures, made up of consecutive convolution blocks. Each block contains two convolutional layers 
with a filter size of 3 × 3, leveraging a rectified linear unit (ReLU) activation function, and a max-pooling layer 
with a filter size of 2 × 2 and a stride of 2. After each convolution block, the number of feature maps is doubled, 
and a total of 512 feature maps are generated after the last block. The expanding path is an inverted form of the 
contracting one, whereby the input to a certain decoder block is represented by the concatenation of the previ-
ously outputted feature map and the corresponding output of the encoder block at the same level. The number of 
feature maps over the expanding path is halved after each block51. Overall, the U-Net algorithm implemented in 
our case comprise a total of 23 convolutional layers, including 19 convolutional and 4 convolutional-transpose 
ones. The U-Net structure is summarized in Table 2.

Residual U‑Net.  The ResU-Net design is a variant of the U-Net algorithm, leveraging residual learning blocks. 
This modification is shown to often improve learning performance58, and can even avoid the vanishing gradi-
ent problems59. The architecture of a residual neural block is described as a stacked sequence of residual units, 
whereby a single residual unit is defined as:

whereby xi and xi+1 refer to the input and output of the i th residual unit; f (yi) and F(·) are the activation and 
the residual functions, respectively; and h(·) is the identity mapping h(xi) = xi . The convolutional layer reduces 
the spatial resolution of the applied sample patch image in the feature maps so that the dimension of the input 
( xi) might be higher than that of the output ( F(xi)) . Therefore, a linear projection Wi is applied to maintain the 
dimension of the input and output of the convolutional layers (see Fig. 2).

In the ResU-Net, the 2 × 2 max-pooling layer is absent, and the downsampling process is instead obtained with 
a convolution stride of 2. Moreover, a batch normalization (BN) procedure is inserted before each convolutional 
layer. Finally, the identity mapping h(xi) adds the input of a block to its output. The expanding path comprises 
three residual learning blocks, each of which is preceded by a corresponding upsampling layer (Conv2DTrans-
pose). To generate the statistical probabilities of the semantic categorization, a final convolutional layer with 
a 1 × 1 filter size and a sigmoid activation function are added on top of the ResU-Net architecture to associate 
each pixel to a corresponding output probability value comprised between 0 and 1. Thereby, the probability of a 
pixel belonging to each of the pre-defined segmentation categories is reported, which is relevant for solving our 
defined classification problem. The overall network structure of our applied ResU-Net consists of 15 convolu-
tional layers, as listed in Table 3. To better depict a visual overview of the network architecture, Fig. 3 shows a 
schematic representation of the U-Net and ResU-Net structures.

Evaluation metrics.  The resulting binary maps of areas detected as landslides were compared with the 
ground truth inventories in the holdout testing areas to calculate the precision, recall, and f1-score accuracy 
assessment metrics. The metrics were calculated based on true positives (TPs), which are the correctly detected 
landslide areas, false positives (FPs), which are the non-landslide areas that have been incorrectly detected as 
landslides, and false negatives (FNs), which are the landslide areas that have not been detected by the algorithm. 
The precision metric denotes the proportion of areas that were correctly identified as landslide areas. The recall, 
also known as the sensitivity metric, is the proportion of areas in the results that were identified as landslide 

(1)yi = h(xi)+ F(xi ,Wi)

(2)xi+1 = f (yi)

Table 1.   Details of images acquired for each site.

Site Acquisition date Scene cloud cover (%) Coverage area (ha) Product Pixel size (m) Acquired bands

Japan 06.08.2019 2 345.64 Level-1C 10 2, 3, 4, 8

Taiwan 20.07.2016 4 467.91 Level-1C 10 2, 3, 4, 8

China 14.07.2018 4 64.4 Level-1C 10 2, 3, 4, 8
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areas. The f1-score is a quantitative metric that is useful to assess the balance between precision and recall (see 
Eqs. 3–5).

(3)Precision =
TP

TP + FP

Table 2.   Network structure of the U-Net architecture.

Module Layer name Kernel size Stride Kernel number Output size

Input

128 × 128 × 4

Conv 1 3 × 3 1 16 128 × 128 × 16

Conv 2 3 × 3 1 16 128 × 128 × 16

Max-pooling 2 × 2 2 16 64 × 64 × 16

Conv 3 3 × 3 1 32 64 × 64 × 32

Conv 4 3 × 3 1 32 64 × 64 × 32

Max-pooling 2 × 2 2 32 32 × 32 × 32

Conv 5 3 × 3 1 64 32 × 32 × 64

Conv 6 3 × 3 1 64 32 × 32 × 64

Encoding

Max-pooling 2 × 2 2 64 16 × 16 × 64

Conv 7 3 × 3 1 128 16 × 16 × 128

Conv 8 3 × 3 1 128 16 × 16 × 128

Max-pooling 2 × 2 2 128 8 × 8 × 128

Conv 9 3 × 3 1 256 8 × 8 × 256

Conv 10 3 × 3 1 256 8 × 8 × 256

Conv-transpose 3 × 3 2 128 16 × 16 × 128

Conv 11 3 × 3 1 128 16 × 16 × 128

Decoding

Conv 12 3 × 3 1 128 16 × 16 × 128

Conv-transpose 3 × 3 2 64 32 × 32 × 64

Conv 13 3 × 3 1 64 32 × 32 × 64

Conv 14 3 × 3 1 64 32 × 32 × 64

Conv-transpose 3 × 3 2 32 64 × 64 × 32

Conv 15 3 × 3 1 32 64 × 64 × 32

Conv 16 3 × 3 1 32 64 × 64 × 32

Conv-transpose 3 × 3 2 16 128 × 128 × 16

Conv 17 3 × 3 1 16 128 × 128 × 16

Conv 18 3 × 3 1 16 128 × 128 × 16

Output Conv 19 1 × 1 1 1 128 × 128 × 1

Figure 2.   Illustration of the architecture of a typical convolutional network block in a U-Net (a) and a residual 
block with an identity mapping of h(xi) (b).
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Implementation details.  Each of the three images under examination (representing three different study 
areas) was divided into a training area and a testing area in a 3:2 ratio. This study is the first attempt to use only 
10-m resolution satellite imagery for landslide detection using FCNs and so far there is no optimal modified 
sample patch size for this purpose. Therefore, three different window sizes (32 × 32, 64 × 64, and 128 × 128 pixels) 
were used to generate the input sample patches by applying a regular grid approach without any overlap or data 
augmentation. In total, 7888, 1972, and 592 sample patches were generated based on the window sizes of 32 × 32, 
64 × 64, and 128 × 128 pixels, respectively (see Fig. 4).

To assess the transferability of the models and the impact of different areas on the network performance, the 
following scenarios were defined, and each of them was evaluated on the testing areas of Taiwan, China, and 
Japan:

•	 Scenario 1: training the models on the collection of the three training sets.
•	 Scenario 2: training the models on the Taiwan training section only.
•	 Scenario 3: training the models on the China training section only.
•	 Scenario 4: training the models on the Japan training section only.

Moreover, the four scenarios were tested for each of the three different window sizes; therefore, each testing 
area was described by a total of 16 different results (see Fig. 5).

We used the binary cross-entropy for both U-Net and ResU-Net. The cross-entropy was used as the loss func-
tion to find the difference between each Pl(x)(x) from the highest probability of 1 using Eq. (6).

where K is the number of classes and w is a weight map, which is introduced as the pixels that were more impor-
tant than the others in the training process51. The models were trained by backpropagation through mini-batch 
stochastic training and the Adam optimization algorithm60, setting a learning rate of 0.001 (with β1 = 0.9, and 
β2 = 0.999). The batch size was chosen to include four images per step; the optimal results were derived by fol-
lowing an early stopping approach based on the evaluation loss.

Results and accuracy assessment
We used the same input data to train and test both algorithms in different scenarios to compare their performance 
and transferability. The algorithms were evaluated on the defined testing areas using the precision, recall, and 
f1-score accuracy assessment metrics.

(4)Recall =
TP

TP + FN

(5)F1− score = 2×
Precision× Recall

Precision+ Recall

(6)E =

K∑

x=1

w(x)logPl(x)(x)

Table 3.   Network structure of the ResU-Net.

Module Layer Name Kernel Size Stride Kernel Number Output Size Output Size Output Size

Input

128 × 128 × 4 64 × 64 × 4 32 × 32 × 4

Conv 1 3 × 3 1 64 128 × 128 × 64 64 × 64 × 64 32 × 32 × 64

Conv 2 3 × 3 1 64 128 × 128 × 64 64 × 64 × 64 32 × 32 × 64

Encoding

Conv 3 3 × 3 2 128 64 × 64 × 128 32 × 32 × 128 16 × 16 × 128

Conv 4 3 × 3 1 128 64 × 64 × 128 32 × 32 × 128 16 × 16 × 128

Conv 5 3 × 3 2 256 32 × 32 × 256 16 × 16 × 256 8 × 8 × 256

Conv 6 3 × 3 1 256 32 × 32 × 256 16 × 16 × 256 8 × 8 × 256

Conv 7 3 × 3 2 512 16 × 16 × 512 8 × 8 × 512 4 × 4 × 512

Conv 8 3 × 3 1 512 16 × 16 × 512 8 × 8 × 512 4 × 4 × 512

Conv 9 3 × 3 1 256 32 × 32 × 256 16 × 16 × 256 8 × 8 × 256

Conv 10 3 × 3 1 256 32 × 32 × 256 16 × 16 × 256 8 × 8 × 256

Decoding

Conv 11 3 × 3 1 128 64 × 64 × 128 32 × 32 × 128 16 × 16 × 128

Conv 12 3 × 3 1 128 64 × 64 × 128 32 × 32 × 128 16 × 16 × 128

Conv 13 3 × 3 1 64 128 × 128 × 64 64 × 64 × 64 32 × 32 × 64

Conv 14 3 × 3 1 64 128 × 128 × 64 64 × 64 × 64 32 × 32 × 64

Output Conv 15 1 × 1 1 1 128 × 128 × 1 64 × 64 × 1 32 × 32 × 1
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Scenario 1 and accuracy.  In this scenario, both U-Net and the ResU-Net algorithms were trained with a 
dataset containing sample patches from all training areas of Taiwan, China, and Japan. The testing procedure was 
carried out based on the dataset with sample patches from holdout testing areas of each study area and with data 
from all our study areas. The algorithms were trained and tested separately based on sample patch window sizes 
of 32 × 32, 64 × 64, and 128 × 128 pixels. For simplicity, Fig. 6 only shows the results of the ResU-Net trained by 
all training datasets using a sample patch size of 64 × 64 pixels. The accuracy assessment metrics were calculated 
for each resulting landslide detection map (see Table 4). ResU-Net obtained the higher f1-score values of just 
under 73% and 71.29% tested on Taiwan’s testing area using a sample patch size of 64 × 64 pixels and 32 × 32 

Figure 3.   Architecture of the applied (a) U-Net and (b) ResU-Net in this study.
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pixels, respectively. Testing the ResU-Net on the Taiwan test area with the sample patch size of 128 × 128 pixels 
achieved the lowest f1-score. Similarly, testing the U-Net on the Taiwan test area with the same sample patch 
size of 128 × 128 also achieved the lowest f1-score value of 68.48%. The highest recall value was achieved in the 
Taiwan case study area with 88.38% for the rest-Net with a sample patch size of 128 × 128 pixels, while the highest 
recall value of 84.16% using the U-Net was achieved with a sample patch size of 64 × 64. Although the trained 
algorithms with all training datasets achieved the highest f1-score and recall values in the case study area of 
Taiwan, the highest precision value of 81.2% was achieved by testing the U-Net on the China testing area with a 

Figure 4.   Systematic sample patch generation of input images by regular grid approach without any overlap. 
The maps were created using the ArcMap v.10.8 software (https://​deskt​op.​arcgis.​com/​es/​arcmap/).

Figure 5.   The scheme summarizing the four different scenarios in this study.

https://desktop.arcgis.com/es/arcmap/
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sample patch size of 128 × 128 pixels. Higher recall values were generally obtained by testing the algorithms on 
the case study area of Taiwan, and higher precision values were achieved in that of China. This means that when 
algorithms were trained by all training datasets, they were able to detect most of the landslide areas in China and 
yield fewer incorrectly identified landslide areas than in Taiwan.

Scenario 2 and accuracy.  To evaluate the generalisation performance of the algorithms, they were also 
trained separately with data from each individual training area of each case study. Figure 7 shows the results in 

Figure 6.   Results of the ResU-Net trained by all training datasets using a sample patch size of 64 × 64 pixels. 
The maps were created using Python 3.6 (https://​www.​python.​org/) and the ArcMap v.10.8 software (https://​
deskt​op.​arcgis.​com/​es/​arcmap/).

https://www.python.org/
https://desktop.arcgis.com/es/arcmap/
https://desktop.arcgis.com/es/arcmap/
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only an enlarged area from the Taiwan testing area. According to this figure, both algorithms that trained and 
tested on Taiwan datasets represent most of the false positives within the runouts.

The accuracy of the algorithms that were trained only with the training dataset of the case study area of Taiwan 
was also evaluated based on Taiwan, China, Japan, and all test datasets separately and the resulting values are 
given in Table 5. ResU-Net again obtained the higher f1-score values of 72.68%, and 70.54% tested on Taiwan’s 
testing area using a sample patch size of 64 × 64 pixels and 32 × 32 pixels, respectively. This algorithm also resulted 
in the highest recall value of 80.72% in the same study area using a sample patch size of 32 × 32 pixels followed by 
79.65% achieved with a sample patch size of 128 × 128 pixels using the U-Net. Therefore, training the algorithms 
with the Taiwan dataset and testing the algorithm against its test area was helpful in these two sample patch 
sizes to significantly reduce incorrect identification of non-landslide areas as landslides. However, its ability to 
correctly detect landslide areas was significantly higher in Japan using the sample patch sizes of 128 × 128 pixels, 
which achieved a precision value of well over 82%.

Scenario 3 and accuracy.  In this scenario, both U-Net and the ResU-Net algorithms were trained with the 
China training dataset (see Fig. 8), where the ResU-Net algorithm was again able to achieve the highest f1-score 
value of 72.9% (see Table 6). The accuracy assessment metric values of this scenario fluctuated around 69% for 
the U-Net algorithm with three different sample patch sizes, and the highest one was over 70% for a window 
size of 32 × 32 pixels. The U-Net algorithm also achieved the highest recall value of approximately 91% but in 
Taiwan’s holdout testing area. The ResU-Net also showed a substantially good recall value of 89.92% in Taiwan. 
The highest recall value of the U-Net algorithm was achieved with a 64 × 64 pixel sample patch size, whereas the 
highest recall value of the ResU-Net algorithm was achieved with a 128 × 128 pixel sample patch size. Like in the 
previous scenario, high precision values were achieved with both algorithms in Japan’s case study area. However, 
the highest precision value of 81.25 was achieved with U-Net with a window size of 128 × 128 pixels. However, 
the resulting recall values were lower compared to those of the other study areas, which means that although the 
algorithms could detect many of the landslide areas in Japan, at the same time, they mistakenly detected several 
non-landslide areas that displayed similar spectral and slope information as the landslides, but whose character-
istics were not represented in the Chinese training dataset.

Scenario 4 and accuracy.  Although the last scenario, namely training the algorithms using the Japan data-
set, showed a fairly good accuracy of the results for Japan itself (see Fig. 9 and Table 7), the highest accuracies 
achieved overall were those tested on the China dataset. The highest precision (71.82%) and f1-score (73.32%) 
values were obtained by ResU-Net using a sample patch size of 64 × 64 pixels. The highest recall values were 
achieved with U-Net in China’s case study area and were between 81.18 and 78.84% based on widow sizes 
of 32 × 32 and 64 × 64 pixels, respectively. The f1-score values obtained based on China’s holdout testing area 
fluctuated around 70%, whereas those of Japan were around 60%. Moreover, this scenario was not successful in 
testing Taiwan’s case study area as this dataset achieved the lowest f1-score, precision, and recall values of 31.2%, 
27.07%, and 24.7%, respectively.

Discussion
Transferability assessment.  We comprehensively assessed the performance and transferability of the 
algorithms by comparing the landslide detection of all the different possible combinations of training and test-
ing areas. Therefore, while the first scenario is based on the collective training based on all the case study areas, 
the other scenarios singularly focus the training process on a certain specific area while still evaluating it on all 

Table 4.   The resulting precision, recall, and f1-score values for Scenario 1 (training the algorithms with all 
training datasets and testing them on the Taiwan, China, Japan, and all test datasets separately). The highest 
values of precision, recall, and f1-score are indicated in bold.

U-Net ResU-Net

Size 32 64 128 32 64 128

Precision 67.45 63.95 64.32 66.39 69.65 60.11

Recall 58.97 67.13 61.39 6543 63.85 74.29

F1-score 62.93 65.5 62.82 65.91 66.63 66.45

Precision 65.47 60.48 59.73 64.99 68.11 57.21

Recall 77.52 84.16 80.24 78.94 78.51 88.38

F1-score 70.99 70.38 68.48 71.29 72.94 69.46

Precision 79.76 70.27 81.2 75.02 74.74 65.57

Recall 55.52 61.85 55.48 59.04 60.33 64.3

F1-score 65.47 65.79 65.92 66.07 66.76 64.93

Precision 69.26 68.35 70.8 67.33 71.12 63.41

Recall 44.05 53.62 46.33 54.92 52.14 63.43

F1-score 53.85 60.1 56.01 60.49 60.17 63.42

Algorithms trained by sample from All Taiwan China Japan
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Figure 7.   The enlarged areas of the results of the U-Net and ResU-Net trained and tested on Taiwan datasets 
using different sample patch sizes. Red ovals are showing examples of differences in the results. The maps were 
created using Python 3.6 (https://​www.​python.​org/) and the ArcMap v.10.8 software (https://​deskt​op.​arcgis.​
com/​es/​arcmap/).

https://www.python.org/
https://desktop.arcgis.com/es/arcmap/
https://desktop.arcgis.com/es/arcmap/
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three different study areas. Figure 10 shows the overall mean F1-score values for U-Net and ResU-Net in each 
of the four scenarios. The ResU-Net resulting scores were higher than the U-Net ones whenever the training 
and testing set belonged to the same study area. Specifically, ResU-Net achieves a mean f1-score value of 66.33 
while U-Net achieves a value of 63.75 when training and testing based on all the study areas, and 70.54 versus 
64.04 when training and testing in Taiwan, 71.02 versus 69.56 when training and testing in China, and 63.21 
versus 61.14 when training and testing in Japan. A few curious findings are worth mentioning. The first scenario 
(collective training) leads to the best evaluation results for the Taiwan area, compared to the other testing areas, 
which can be due to probable higher similarities among the training areas of Japan and China and the test area 
of Taiwan. Furthermore, when training the models on the Japan training area, we observed that the highest mean 
f1-score values were obtained for China’s testing area, and not Japan’s one (70.64 and 70.14 versus 61.14 and 
63.21, for U-Net and ResU-Net, respectively). Finally, regarding the second and third scenarios (training with 
the Taiwan and China datasets, respectively), the highest mean f1-score was obtained for the local testing areas 
(namely Taiwan and China, respectively).

Impact of sample input sizes on the network results.  We sampled the images using a regular grid 
approach to evaluate three different window sizes, namely 32 × 32, 64 × 64, and 128 × 128 pixels. The resulting 
mean f1-score values of the U-Net model yielded a better performance for the sample size of 128 × 128 pixels, 
except for the first scenario. On the other hand, the ResU-Net achieved the best results with a sample size of 
64 × 64 pixels, except for the third scenario. However, aside from a slightly superior performance when using 
128 × 128 pixels for U-Net, and 64 × 64 pixels for ResU-Net, we did not observe a definitive advantage to guide 
the choice of window sizes that would potentially provide substantial improvements (see Fig. 11).

Whereas there is no clear evidence of a consistent impact of different window sizes in the multitude of 
assessed scenarios, Fig. 12 provides a visual example of the testing results of the U-Net model trained on the 
Taiwan dataset. The figure shows that, in this case, an increased window size led to higher recall values due to 
an increase in the correct detection of landslides (true positives), but not all cases followed this trend because 
of smaller landslide features.

Challenges from imbalanced datasets.  Since a total of 7888, 1972, and 592 sample patches were gener-
ated based on the window sizes of 32 × 32, 64 × 64, and 128 × 128 pixels, respectively, the extent of the images of 
the three study areas was very different, with Taiwan being the largest one with 467.91 ha. This leads us to con-
clude that the first scenario, where the models were trained on the combination of all datasets, performed better 
in Taiwan because most of the training data were based in Taiwan. The fourth scenario is a curious case, where 
both U-Net and ResU-Net, trained on the Japan training set, demonstrated better results when tested in China 
than in the testing area of Japan. We think that the spectral and textural features of the Japan training area are 
more similar to those of the China testing area than to the ones of the Japan testing area. This qualitatively trig-
gers the hypothesis of a substantial heterogeneous profile of Japan’s landslide sample and a more homogeneous 
profile in China’s image, which is partially covered by a similar profile in a section of the Japan training area. It 
is indeed visible a high number of small landslide feature profiles in Japan that were not represented in the case 
study of China, While the bigger ones are present in both case study areas of China and Japan. Even if we selected 
study areas with the same area, the ratio between landslide areas and non-landslide areas might vary, as might 
the frequency and number of landslides in different geo-environmental case studies.

Table 5.   The resulting precision, recall, and f1-score values for Scenario 2 (training the algorithms with the 
training dataset of Taiwan and testing it on the Taiwan, China, Japan, and all test datasets separately). The 
highest values of precision, recall, and f1-score are indicated in bold.

U-Net ResU-Net

Size 32 64 128 32 64 128

Precision 63.12 60.22 62.7 62.64 70.21 68.06

Recall 42.46 45.04 48.9 40.73 45.06 35.64

F1-score 50.77 51.53 54.95 49.36 54.89 46.78

Precision 67.45 54.47 57.81 61.7 68.75 61.29

Recall 62.92 70.48 79.65 80.72 77.08 77.3

F1-score 63.68 61.45 67 70.54 72.68 68.37

Precision 78.41 69.62 75.8 66.31 69.55 79.19

Recall 53.61 50.92 48.65 43.53 44.33 44.87

F1-score 63.68 58.82 59.26 52.56 54.15 57.29

Precision 78.49 78.41 79.21 73.55 75.78 82.31

Recall 24.63 23.6 23.66 21.19 18.82 14.65

F1-score 37.5 36.28 36.43 32.9 30.16 24.87

Algorithms trained by sample from All Taiwan China Japan
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Figure 8.   The enlarged areas of the results of the U-Net and ResU-Net trained and tested on China datasets 
using different sample patch sizes. Red ovals are showing examples of differences in the results. The maps were 
created using Python 3.6 (https://​www.​python.​org/) and the ArcMap v.10.8 software (https://​deskt​op.​arcgis.​
com/​es/​arcmap/).

https://www.python.org/
https://desktop.arcgis.com/es/arcmap/
https://desktop.arcgis.com/es/arcmap/
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Compared with recent works.  The main objective of this study was to evaluate the performance of the 
U-Net and ResU-Net algorithms for landslide detection using freely available Sentinel-2 data and an ALOS 
DEM. Although, to our knowledge, our study is the first application of the U-Net and ResU-Net algorithms for 
landslide detection from freely available data, we compared our accuracy assessment results to those of the few 
recently published articles that applied these algorithms for landslide detection using VHR data. For instance, 
in the studies that were carried out by Liu et al.34, Qi et al.35, and Yi and Zhang61, the U-Net and ResU-Net algo-
rithms were compared to each other in terms of their applicability for landslide detection from VHR imageries. 
Our results obtained more accurate landslide detection results using the ResU-Net than with the U-Net algo-
rithm. In another instance, Soares et al.33 used only U-Net to evaluate different sample patch generation methods 
and window sizes for landslide detection from VHR satellite imagery. The same sample patch window sizes of 
32 × 32, 64 × 64, and 128 × 128 pixels were used in their study, and the U-Net that was trained with 128 × 128 
pixels achieved the highest f1-scores of 0.55 and 0.58 in two different testing areas. Our results confirmed theirs, 
as our U-Net yielded the highest mean f1-score values when trained with 128 × 128 pixels sample patches.

Limitations.  The application of U-Net and ResU-Net for landslide detection is associated with some issues. 
For instance, using these algorithms and image resolution could easily detect the big landslides from dense veg-
etation, but cases of neighboring bare land increased the false positives substantially. Nevertheless, the inclusion 
of topographic slope data helped to discriminate landslides from bare land in many cases. However, a precise 
and detailed extraction of landslides from bare land requires proper auxiliary data like displacement informa-
tion from SAR data or prior expert knowledge, which was not used in this study. Further factors that need to be 
carefully considered in the future are the imbalanced nature of the dataset and a detailed analysis of the impact 
of the dataset size, which will help tackle the remaining unsolved issues.

Moreover, our initial expectation was that the global generalised performance would be improved by col-
lectively merging training data from multiple geo-environmental case study areas. However, our hypothesis 
was not confirmed, and local training data based only on each target study area often outperformed a collective 
training dataset. Furthermore, it is not yet clear why a specific sample patch size yields better performance than 
another one in some specific local contexts and scenarios, and not in others, with fluctuations not directly fol-
lowing a consistent trend. This illustrates issues of low transparency related to the use of the proposed models.

Conclusions and outlook
This work evaluated the generalization and transferability of two well-known FCN algorithms (U-Net and 
ResU-Net) for landslide detection in different scenarios. We demonstrated the effectiveness of these algorithms 
on landslide detection using freely available Sentinel-2 data and an ALOS DEM. We selected three different geo-
environmental study areas in Taiwan, China, and Japan to train and test the algorithms. The applied semantic 
segmentation models were trained based on each individual area and on a combined dataset of all areas to 
detect landslides based on Sentinel-2 data and an ALOS DEM. To the best of our knowledge, no study has yet 
explored the possibility of using freely available satellite imagery for landslide annotation using FCN deep learn-
ing algorithms. Three different sample patch sizes were generated from pre-defined window sizes for training 
and testing the algorithms. Therefore, multiple experiments have been designed to evaluate the transferability 
of the algorithms and the impact of window sizes on different operational scenarios. Based on our results, we 
explored relationships among the applied models, the window sizes of sample patches, and the training datasets 
for landslide detection. Our results show that although the ResU-Net led to higher performances, the U-Net has 

Table 6.   The resulting precision, recall, and f1-score values for Scenario 3 (training the algorithms with the 
training dataset of China and testing on the Taiwan, China, Japan, and all test datasets separately). The highest 
values of precision, recall, and f1-score are indicated in bold.

U-Net ResU-Net

Size 32 64 128 32 64 128

Precision 58.61 46.68 51.98 47.19 43.33 42.42

Recall 56.57 60.75 59.69 61.75 53.35 59.37

F1-score 57.57 52.8 55.57 53.5 47.85 49.48

Precision 50.31 37.95 43.17 35.95 29.36 34.09

Recall 81.25 90.9 87.62 75.31 57.31 89.92

F1-score 62.14 53.55 57.84 48.67 38.83 49.44

Precision 78.59 75.52 81.25 72.25 75.91 71.74

Recall 63.55 64.66 59.58 71.09 69.92 65.4

F1-score 70.28 69.67 68.75 71.7 72.9 68.48

Precision 79.98 80.32 81.03 71.6 7312 81.17

Recall 35.66 35.64 36.76 50.05 48.46 33.84

F1-score 49.33 49.37 50.58 58.92 58.29 47.76

Algorithms trained by sample from All Taiwan China Japan
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Figure 9.   The enlarged areas of the results of the U-Net and ResU-Net trained and tested on the Japan datasets 
using different sample patch sizes. Red ovals showing examples of differences in the results. The maps were 
created using Python 3.6 (https://​www.​python.​org/) and the ArcMap v.10.8 software (https://​deskt​op.​arcgis.​
com/​es/​arcmap/).

https://www.python.org/
https://desktop.arcgis.com/es/arcmap/
https://desktop.arcgis.com/es/arcmap/
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Table 7.   The resulting precision, recall, and f1-score values for Scenario 4 (training the algorithms with the 
training dataset of Japan and testing on the Taiwan, China, Japan, and all test datasets separately). The highest 
values of precision, recall, and f1-score are indicated in bold.

U-Net ResU-Net

Size 32 64 128 32 64 128

Precision 44.13 32.01 48.56 42.16 61.03 41.14

Recall 56.46 66.64 56.97 57.31 47.01 63.58

F1-score 49.54 43.25 52.43 48.58 53.11 49.95

Precision 28.75 21.72 35.17 27.07 42.34 29.58

Recall 51.46 80.87 59.38 52.51 24.7 73.95

F1-score 36.89 34.24 44.17 35.73 31.2 42.26

Precision 63.52 63.46 67.96 67.47 71.82 62.95

Recall 80.18 78.3 74.18 73.55 74.88 73.55

F1-score 70.89 70.1 70.93 70.38 73.32 67.84

Precision 67.58 66.44 70.89 66.53 69.85 68.91

Recall 58.51 53.89 53.85 59.36 62.79 54.35

F1-score 62.72 59.51 61.21 62.74 66.13 60.77

Algorithms trained by sample from All Taiwan China Japan

Figure 10.   Overall mean F1-score values for U-Net and ResU-Net in relation to each of the four original 
scenarios.
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more transferability capabilities. ResU-Net demonstrated the highest score in those cases where it was trained 
on only the local training datasets.

In future work, we aim to integrate the FCN algorithms with some frameworks that enable us to incorporate 
prior knowledge to different sections of FCNs, e.g., optimally selecting sample patch window size and location 
and enhancing the detection result by considering possible post-processing classification approaches.

Figure 11.   Comparison of the f1-score mean values for different sample patch window sizes (32 × 32, 64 × 64, 
and 128 × 128 pixels) in every scenario.

Figure 12.   Comparison of how different window sizes affected the U-Net results in Taiwan. The maps were 
created using Python 3.6 (https://​www.​python.​org/) and the ArcMap v.10.8 software (https://​deskt​op.​arcgis.​
com/​es/​arcmap/).

https://www.python.org/
https://desktop.arcgis.com/es/arcmap/
https://desktop.arcgis.com/es/arcmap/
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