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Cancer evolution involves cycles of genomic damage, epigenetic deregulation, and increased cellular proliferation that
eventually culminate in the carcinoma phenotype. Early neoplasias, which are often found concurrently with carcinomas
and are histologically distinguishable from normal breast tissue, are less advanced in phenotype than carcinomas and are
thought to represent precursor stages. To elucidate their role in cancer evolution we performed comparative whole-
genome sequencing of early neoplasias, matched normal tissue, and carcinomas from six patients, for a total of 31 samples.
By using somatic mutations as lineage markers we built trees that relate the tissue samples within each patient. On the basis
of these lineage trees we inferred the order, timing, and rates of genomic events. In four out of six cases, an early neoplasia
and the carcinoma share a mutated common ancestor with recurring aneuploidies, and in all six cases evolution accel-
erated in the carcinoma lineage. Transition spectra of somatic mutations are stable and consistent across cases, suggesting
that accumulation of somatic mutations is a result of increased ancestral cell division rather than specific mutational
mechanisms. In contrast to highly advanced tumors that are the focus of much of the current cancer genome sequencing,
neither the early neoplasia genomes nor the carcinomas are enriched with potentially functional somatic point mutations.
Aneuploidies that occur in common ancestors of neoplastic and tumor cells are the earliest events that affect a large
number of genes and may predispose breast tissue to eventual development of invasive carcinoma.

[Supplemental material is available for this article.]

The cells of a multicellular organism are related to one another by

a bifurcating lineage tree whose root is the zygote. DNA replica-

tion, chromosome segregation, and cell division during develop-

ment from the zygote to the adult introduces point mutations and

other DNA changes into the genome, which persist in the de-

scendants of the cells in which they occurred. Germ-line point

mutations occur at a rate of approximately one per diploid genome

per cell division (Kong et al. 2012), but the rate of somatic changes

is less well-understood, and is likely to vary by tissue type. Large-

scale genomic changes such as aneuploidies are generally thought

to be extremely rare in normal tissue.

Cancers, in contrast to normal tissue, accumulate much larger

numbers of genomic changes, as illustrated by genome sequencing

of late-stage tumors (Ley et al. 2008; Stratton et al. 2009; Bignell

et al. 2010; Pleasance et al. 2010a; Chapman et al. 2011; Stratton

2011; Banerji et al. 2012; Nik-Zainal et al. 2012a,b). Solid tumors

are highly mutated by several mechanisms, such as point muta-

tions, copy-number variations, and chromothripsis (Greenman

et al. 2007; Leary et al. 2008; Beroukhim et al. 2010; Liu et al. 2011;

Meyerson and Pellman 2011; Stephens et al. 2011; Crasta et al.

2012; Maher and Wilson 2012); relapses or metastases exhibit

further mutational evolution (Ding et al. 2010, 2012; Yachida et al.

2010; Navin et al. 2011; Mardis 2012; Turajlic et al. 2012; Walter

et al. 2012; Wu et al. 2012). The state of an individual advanced

cancer genome sheds little light on the order of genomic changes,

however, except in analyses of subclone evolution (Nik-Zainal at

al. 2012a; Shah et al. 2012). In an advanced tumor, the earliest

driver changes that had predisposed ancestral cells to eventual

carcinoma development are confounded with later changes. As

a consequence, our understanding of early tumor evolution is still

in its infancy.

The historically proven approach to understanding evolution

is comparative analysis of extant species, whose power was greatly

increased by whole-genome sequencing in recent years. Analogous

to species comparisons, which are based on evolutionary (bi-

furcating) lineage trees, comparisons of somatic genomes from

a single individual could, in principle, shed light on somatic evo-

lution, but in normal tissue the number of mutations is low.

However, given the large number of genomic changes during tu-

mor evolution, it may be possible to dissect the evolutionary his-

tory of a cancer by comparing its genome to clinically recognized

precursor lesions. In this context, breast cancers provide a proof-of-

principle opportunity, due to their frequent association with early

neoplastic lesions that are readily identified by morphology

(Simpson et al. 2005; Abdel-Fatah et al. 2007; Lopez-Garcia et al.

2010; Bombonati and Sgroi 2011), and whose genomes may pro-

vide windows into the earliest stages of tumor evolution.

Using whole-genome sequencing of histologically character-

ized archival (formalin-fixed, paraffin-embedded) samples, we

determine lineage relationships of early neoplasias with carci-

nomas, quantify mutational load and mutation spectra during
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progression from normal tissue to neoplasia to carcinoma, and find

the earliest detectable mutations and aneuploidies in cell lineages

ancestral to the lesions. A subset of these early events may have

provided the initial oncogenic potential and helped trigger the first

clonal expansion. Our analyses reveal variation among the six

cases in the specific evolution of neoplasia and tumor, as would be

expected for an evolutionary process dominated by stochasticity.

The mechanistic commonalities among the cases, however, bear

significant implications for our conceptualization of tumor origins

and progression.

Results

Whole-genome sequencing of early neoplasias and related
carcinomas from archival material

Our workflow (Supplemental Fig. S1) began with the screening of

histopathological sections of archival estrogen receptor-positive

invasive ductal carcinoma (IDC) resection specimens for the

presence of concurrent early neoplasias, which are microscopic in

size (typically 1–3 mm). We selected cases in which early neoplasia

with or without atypia (‘‘EN’’ or ‘‘ENA’’; a spectrum of usual ductal

hyperplasia, columnar cell lesions, and flat epithelial atypia), and

in some cases ductal carcinoma in situ (DCIS) were present in ad-

dition to the IDC. Areas of high neoplasia or carcinoma content

were cored and histologically re-evaluated for lesion purity. Six

cases were chosen, in which each sample met criteria for purity and

had enough DNA for whole-genome sequencing. Each case had at

least one early neoplasia sample from the same side in which the

carcinoma was found, and five also had a contralateral early neo-

plasia (Supplemental Fig. S2). Each had at least one control sample

(lymph, normal breast tissue, or both), and three cases also had

a DCIS in addition to the IDC, yielding a total of 31 samples that

belong to seven classes of normal and neoplastic tissue (Fig. 1A).

We optimized DNA isolation from archival samples to obtain

sufficient quantities of preparative material, and honed the gen-

eration of robust libraries. For each sample, a single library was

built and sequenced with paired-end reads (2 3 101 bp) on the

Illumina HiSeq platform. Library complexity was sufficient to

support deep whole-genome sequencing, with the vast majority of

sequence data coming from independent DNA fragments as op-

posed to PCR duplicates. The samples from the first patient were

sequenced to higher coverage (average of 84.63) to calibrate the

tradeoff between cost and sensitivity in variation calling. Coverage

of each sample by confidently mapped reads ranged from 46.73 to

105.73, with a median of 53.43 (Supplemental Fig. S3).

Somatic SNVs fall into a limited and highly structured
set of classes

Detection of somatic single nucleotide variants (SNVs), such as

those occurring during cancer evolution, requires a methodology

with high specificity, because inherited (germline) variants are

orders of magnitude more numerous, and even a low rate of mis-

calling inherited variants as somatic results in low accuracy. Our

high sequence coverage and purity of samples allowed us to pursue

highly sensitive and specific somatic SNV identification. Because

we sequenced several samples from each patient, we identified the

total set of SNVs in each patient with a multi-sample strategy using

GATK (McKenna et al. 2010; DePristo et al. 2011). For each patient

we called variants using reads from all samples simultaneously, and

then assigned genotypes to each sample. The vast majority of SNVs

were present in all samples, as expected from germline variants.

Standard quality control metrics confirmed the high quality of our

variant calls. The total number of high-confidence germline vari-

ants ranged from 2,650,714 (Patient 5) to 2,973,005 (Patient 1).

Between 97.91% and 98.06% of these were present in dbSNP. On

average, 59,697 SNVs per patient were present in all samples,

but not in dbSNP, and therefore represent novel SNPs of low

population-allele frequency (Table 1).

Between 1465 (Patient 1) and 3416 (Patient 6) SNVs were

candidate somatic variants, as they were not detected in at least

one sample of that patient (Table 1). If the samples are related by

a tree, then only some sharing classes are possible and the total

number of observed classes is much lower than the number of

possible classes. For example, in Patient 1, from whom we se-

quenced six samples, there are 26� 1 = 63 possible classes to which

an SNV can belong. In this patient, 1766 SNVs were absent from at

least one sample, and excluding those present in lymph we retain

1465 candidate somatic SNVs (Supplemental Table 1; Supple-

mental Material). Only six of the classes, containing 1279 out of

the initial 1465 candidate SNVs (87%), survived filtering. Those

SNVs removed during filtering were either germline SNVs where

one allele was poorly covered, or somatic SNVs whose class

membership we could not confidently establish. PCR-based tar-

geted validation of 388 SNVs in Patients 2 and 6 revealed a call

accuracy of 100% and 92%, respectively (Supplemental Fig. S4;

Supplemental Material).

Across the six cases, we retained 82%–96% (median = 91%) of

SNVs and 19%–43% (median = 27%) of classes, revealing sub-

stantial structure in the data. The final number of confident so-

matic SNVs ranges from 1279 in Patient 1 to 3211 in Patient 6, for

a total of 12,392 in all six patients. A total of 8950 (72%) of these

are private to only one sample in only one patient, and the number

of such private SNVs increases as a function of the severity of the

cancer phenotype: the IDCs harbor the most private mutations

(average of 601 per sample, n = 7, range 46–1809), the DCISs have

an average of 470 SNVs per sample (n = 3 range 70–978), early le-

sions 229 per sample (n = 14, range 123–387), and normal have the

fewest (n = 2, range 39–89). On average, the IDCs accumulated

2.6-fold more private mutations than the early neoplasias, and

almost 10-fold more than normal breast tissue. This may be due to

a larger number of cell divisions or an increased mutation rate in

the ancestral cell lineage of the IDC.

Allele frequencies of somatic SNVs support common ancestral
relationships

Somatic SNVs that are not private to individual samples define

phylogenetically informative classes. A total of 3442 SNVs define

such classes, ranging from 0 SNVs in Patient 4 to 1054 SNVs in

Patient 3, with a per-case average of 574 and a per-class (n = 7)

average of 492. To illustrate the logic of phylogenetic inference

using informative classes, we consider a hypothetical lineage tree

that relates non-breast somatic, normal breast, neoplastic, and

carcinoma cell lineages (Fig. 1B). Mutations that occurred in an-

cestral cells are present in specific subsets of samples, with the

lineage tree constraining the set of possible classes.

As demonstrated in recent studies of subclone evolution in

IDC (Nik-Zainal et al. 2012a,b; Shah et al. 2012), alternate allele

frequency (AAF) is a powerful metric for understanding tumor

evolution. The ‘‘alternate allele’’ is the allele that does not match

the reference base, and which in the vast majority of cases is the

somatic mutation. Its frequency is estimated from its sequence
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Figure 1. (Legend on next page)
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coverage divided by the coverage of the alternate base plus that of

the reference base. Depending on the ancestral lineage in which

a collection of mutations arose, their AAF distributions in each

sample vary. For example, if a variant arose in a common ancestor

of a subset of lesional cells in the sample, its AAF is lower than that

of an earlier mutation that is present in all lesional cells of the

sample (Fig. 1B).

For each SNV class of each patient, we obtained estimates of

AAF distributions with highly consistent class patterns (Fig. 1C–F).

For example, in Patient 1 the AAFs of the SNVs that are present in

ENA and IDC and absent everywhere else are higher than the AAFs

of the ENA-only or the IDC-only classes. The same patterns hold

for Patients 2 and 6. The patterns in Patient 5 are complicated by

the presence of two IDCs and by low numbers of SNVs in relevant

classes. Note that the mean AAFs are always <50% due to un-

avoidable contamination of the lesional tissue with normal cells

that derive from lineages that branched off before the lesional

ancestors accumulated their somatic mutations.

Mutated neoplasias are evolutionarily related to carcinomas

Each case represents an independent evolution; therefore, com-

mon patterns across the cases may be of general significance. We

first asked to what extent the early neoplasias and the carcinomas

share mutations that are not present in other samples, pointing to

shared ancestral cell lineages. In four cases (Patients 1, 2, 5, and 6)

(Fig. 1C–F; Supplemental Table 1), the phylogenetically infor-

mative SNV classes indicate that a neoplasia shares a common

ancestor with the carcinoma. In each of these cases, a neoplasia

and the carcinoma share a significant number of SNVs. For ex-

ample, in Patient 1, 775 SNVs are shared between ENA and IDC,

and in Patient 2, 681 SNVs are shared among the EN, DCIS, and

IDC, with additional SNVs shared between the EN and IDC. There

are no well-supported classes (in terms of

number of SNVs and their AAFs) that are

in conflict with each other, and none in

which normal tissue or contralateral EN

share SNVs with the carcinomas (Sup-

plemental Table 1). The aforementioned

PCR-based targeted validation showed

94% and 98% accuracy in assigning SNVs

to the correct phylogenetic class (Supple-

mental Fig. S4; Supplemental Material).

In three of these four cases (Patients

1, 2, and 6) the number of SNVs in com-

mon between a neoplasia and carcinoma

suggests the existence of a common ancestor that had already ac-

cumulated many somatic SNVs. Strikingly, in two cases (Patients 1

and 2) the number of mutations in the ancestor is greater than the

number of mutations that subsequently occurred in the ancestral

lineage private to the carcinoma.

In three cases (Patients 2, 3, and 6) DCIS was concurrent with

IDC, and in one case (Patient 5) two independent IDC lesions were

present. These four cases provided us the opportunity to ask

whether the carcinoma phenotype arose once or multiple times

independently. In Patient 3, the DCIS and IDC share a mutated

common ancestor, suggesting that the carcinoma phenotype arose

in the ancestral lineage, and that the IDC subsequently acquired

the invasive phenotype. In Patients 2 and 6, there is no well-sup-

ported class of SNVs that unites the two carcinomas to the exclu-

sion of a neoplasia. Instead, in both patients, the DCIS and the IDC

each share separate classes of SNVs with a neoplasia, suggesting

independent origins of the carcinoma phenotype from neoplastic

ancestors.

These results suggest that some early neoplasias harbor a pre-

disposition to spawning a carcinoma that later acquires an invasive

phenotype (Patients 1, 2, 6). The chance of acquiring a carcinoma

phenotype, given the predisposition provided by the neoplasia, is

sufficiently high to allow for concurrent and independent de-

velopment of carcinomas (DCIS and IDC in Patients 2 and 6).

Point-mutational mechanisms are evolutionarily stable
and reproducible among cases

SNVs result from mutations that occurred in ancestral cells, and if

a specific molecular mechanism were primarily responsible for the

mutations, the distribution of the SNVs among the various types of

change (the ‘‘mutation spectrum’’) would carry that mechanism’s

signature (Pleasance et al. 2010b). To investigate the cause of the

Figure 1. Lineage tree and alternate allele frequencies. (A) The samples in this study by type (rows) and patient (columns). (B) Model of neoplastic
progression on the basis of organismal tissue and cell lineage. For simplicity, only one possible scenario of the progression from normal to neoplasia to
carcinoma is shown. Mutations that arise in ancestors are propagated through subsequent divisions to all descendants. Depending on the ancestors in
which they arise, they will be found in one or more samples of the patient, with varying prevalence. For example, mutations that arise in the B branches will
be found in all cells of the neoplasia and of the carcinoma; in contrast, mutations that arise on the C branch will be present only in a subset of the neoplasia
cells and mark the neoplastic subpopulation from which the carcinoma arose. Mutations that arise on the F branch mark a clonal expansion within the
neoplasia, after the last common ancestor with the carcinoma. Note that if there are no mutations found that define branches B and C, it is not possible to
infer a specific relationship of the carcinoma with the neoplasia. (NS) Not sampled. In the expanded box are alternate allele frequency comparisons
relevant to neoplasias and carcinomas. The two starred comparisons require independent estimates of the proportion of normal cells in each sample, as
they compare AAFs across different samples. All other comparisons are either within samples, or the AAF is zero, thus requiring no independent estimate of
the proportion of normal cells in the sample. (C–F ) Alternate allele frequencies as a function of the class and sample for each patient with phylogenetically
informative SNV-sharing classes. The number of SNVs in each class and the branch in the lineage tree of A are listed below each plot. For Patient 1, the only
phylogenetically informative class was where the IDC shared SNVs with ENA. For the other patients, the AAFs of informative classes are grouped together
and the mutation pattern for each class is represented by a series of zeros and ones directly above the sample labels (a ‘‘1’’ indicates that the SNVs were
present in the corresponding sample and a ‘‘0’’ indicates that they were not). (EN) Early neoplasia; (EN_cl) early neoplasia contralateral; (ENA) early
neoplasia with atypia. Subscript in lineage-tree branch of patient 6 denotes whether the neoplasia in the lineage tree is this patient’s EN or ENA, and
whether the carcinoma is DCIS or IDC.

Table 1. Variant call statistics

P1 P2 P3 P4 P5 P6

Total 2,973,005 2,771,413 2,912,758 2,915,727 2,650,714 2,937,816
Homozygous 1,168,671 1,078,021 1,149,006 1,160,421 1,017,760 1,146,679
Ts/Tv ratio 2.13 2.09 2.09 2.09 2.15 2.10

In dbSNP 2,910,863 2,717,531 2,856,582 2,857,498 2,596,421 2,864,359
Percent 97.91 98.06 98.07 98.00 97.95 97.50

Novel 62,142 53,882 56,176 58,229 54,293 73,457
Homozygous 2,514 1,734 1,715 1,681 1,295 2,372

Candidate somatic 1,465 1,546 2,567 2,775 1,924 3,416
After filtering 1,279 1,479 2,104 2,582 1,728 3,211

Newburger et al.
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ancestral accumulation of mutations, we analyzed the mutational

spectrum as a function of the samples in which SNVs were found.

The mutational spectrum in our cases is remarkably consistent

from patient to patient (Fig. 2A) and is also stable across SNVs in

different types of samples and in different patterns (Fig. 2B).

Transitions outnumber transversions about 1.5-fold in a pattern

that is typical for replication errors and not indicative of any spe-

cific type of DNA damage or failed repair mechanism. C-to-T

changes (or G-to-A, which are the same due to base pairing) are

most numerous. Converted to substitution rates, this bias is even

more pronounced because there are only roughly two C’s for every

three T’s in the human genome. The consistency across patients

implies a common mechanism, and the consistency among the

three SNV groups (SNVs in early lesions only, in carcinoma only,

and shared between early lesions and carcinoma) implies that

the common mechanism acts throughout neoplastic and tumor

evolution.

To further shed light on the mutational mechanism we

turned to analysis of dinucleotide substitution patterns. Because

dinucleotide frequencies vary by an order of magnitude in the

human genome, with AA/TT being most common and CG least

common, we converted mutation counts to rates. Truly random

substitutions would have the same rates for each of the 60 possible

mutations (10 dinucleotides with six possible changes each, not

counting changes in both bases because they are exceedingly rare).

A dinucleotide-unaware process would recapitulate the mono-

nucleotide rates, with the average transition having an about

fourfold higher rate than the average transversion. In contrast, we

detect an approximately eightfold higher rate of C-to-T transitions

in the CpG context. This higher mutation rate is due to methyla-

tion of the C in a CpG dinucleotide, which upon deamination

becomes a TpG. If the repair machinery catches this event it is

reversed, but if the replication fork passes first it leads to a C-to-T

transition in one of the daughter strands. The relative rate of C-to-T

transitions in CpGs versus C-to-T transitions in the other di-

nucleotide contexts and versus all other changes provides an in-

ternal calibration as to whether DNA damage processes or defective

repair mechanisms have disproportionally affected the genome.

In our patients, the rate increase of C-to-T transitions in the

CpG context and in the dinucleotide mutation spectrum in gen-

eral is similar to germline evolution (Sved and Bird 1990; Hwang

and Green 2004), and is consistent across patients (Supplemental

Fig. S5) as well as among classes of SNVs (private to neoplasias,

private to IDCs, and shared among neoplasias and carcinomas)

(Fig. 2C–E). This implies that the sources of the somatic SNVs are

mutations that accumulated during many rounds of DNA repli-

cation (many ancestral cell divisions), and that cancer- or neo-

plasia-specific point mutational mechanisms, if present at all, did

not substantially affect the mutation spectrum. Taken together,

these lines of evidence support a model of mutation accumulation

that is gradual and largely a function of the number of cell di-

visions, as opposed to recurring DNA damage events or mutational

storms.

The somatic SNVs are randomly distributed in each patient

with no enrichment of exonic or nonsynonymous changes, re-

gardless of the phylogenetic class to which they belong. We also

detect very little clustering of mutations that might be indicative

of localized mutagenic events (Nik-Zainal et al. 2012b; Supple-

mental Figs. S6–S11). Across all cases, 159 out of the 12,392 high-

confidence somatic SNVs fall into coding regions, with 2/3 (106)

being nonsynonymous, which is what is expected by chance. This

holds true for any biological subdivision of the data (e.g., neo-

plasias vs. IDC). The affected genes exhibit no enrichment for

pathways by GO analysis (Ashburner et al. 2000; Huang et al.

Figure 2. Mutation spectra and rates of somatic SNVs. (A) Mononucleotide substitution frequencies by patient. (B) Mononucleotide substitution
frequencies by SNV class. (C ) Dinucleotide substitution rates of SNVs private to early neoplasias. (D) Dinucleotide substitution rates of SNVs private to
carcinomas. (E) Dinucleotide substitution rates of SNVs shared among neoplasias and carcinomas. For C–E, SNVs are pooled across patients. The mutated
dinucleotide is indicated in the inner circle, and the substitution occurring within it is color coded. Rate is defined as mutations per dinucleotide of that class.
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2009). One point mutation, H1047R in PIK3CA, which has been

previously implicated in cancer (Samuels et al. 2004; Ellis et al.

2012) and early neoplasias (Troxell et al. 2012), was recurrent in

our cases (Patients 1, 3, 4, and 5, in various samples) at varying

allele frequencies. Common cancer loci such as TP53 and BRCA1

were not mutated.

Aneuploidies are the dominant evolutionary feature
of progression

The paucity of candidate driver mutations and overall random

distribution of point mutations in our cases suggest that other

genomic events may be contributing to the initial neoplastic

phenotype and its progression to carcinoma. We therefore devised

a multistep strategy to identify chromosome arm-scale losses and

gains in each patient, utilizing those germline variants for which

the patients were heterozygous. Each patient was heterozygous for

between 1.56 and 1.74 million SNPs, ensuring substantial statis-

tical power to detect subchromosomal-sized aneuploidies and

copy-number variations.

We quantified, in each somatic sample separately, the fraction

of reads that support the allele with the fewer number of reads (the

lesser allele fraction, or LAF). We then ordered the SNVs according

to their position in the genome and identified transition points

where the LAF abruptly changes. In one case (Patient 5), the 20

large-scale copy-number variations which are confined to this

patient’s two IDC samples are suggestive of chromothripsis (Liu

et al. 2011; Meyerson and Pellman 2011; Stephens et al. 2011; Crasta

et al. 2012; Maher and Wilson 2012). In the other five patients, we

identified a total of 46 large-scale copy-number variations, 43 of

which involve whole chromosomes or whole chromosome arms.

None of the normal breast and contralateral neoplastic sam-

ples, some of the ipsilateral neoplasias, and all of the carcinomas

exhibit aneuploidy. Four of the seven IDCs exhibit evidence for the

presence of a subclone population in which additional chromo-

somes have undergone aneuploidy events (Supplemental Table 2).

In Patients 1, 2, and 6, aneuploidy events are shared among

early neoplasias and carcinomas. All aneuploidies that are present

in the neoplasias are also present in the carcinomas. Plotting the

LAFs of all samples from a patient powerfully illustrates both the

chromosome scale of these events as well as the sharing of the same

aneuploidies among certain samples. In Patient 6, for example, the

aneuploidies involving chromosomes 1q, 6q, 8p, 17 and 22 are

shared among both carcinomas and the EN (Fig. 3). The plot also

reveals the aneuploidies of many other chromosomes that are

present in a subclone population that makes up about 30% of the

IDC sample. Examination of the corresponding plots of all patients

reveals the extraordinary prevalence of aneuploidies in these cases

(Supplemental Figs. S12–S17).

Graphing the distribution of LAFs for each LAF-derived sec-

tion of the genome separately (usually a whole chromosome or

arm) further supports the robustness of LAF as a metric to identify

aneuploidies (Fig. 4A). However, a reduction of LAF can be a result

of ploidy gains as well as losses. Therefore, we calculated the actual

ploidy changes in a two-step process: first, we estimated the con-

tribution of normal cells to the sample using chromosome losses,

and then we calculated the additional number of chromosome

copies for those chromosomes that exhibited increased ploidy. We

Figure 3. Lesser allele fraction plot of Patient 6. SNVs are arranged by their order in the genome, and LAF is plotted for each sample in windows of 1000
SNVs with 500 SNV overlap. Aneuploidies are visible as precipitous drops in the LAF, which are often shared between samples. Chromosome boundaries
are indicated by short vertical lines. All samples are plotted and give highly consistent LAFs for chromosomes that are euploid.

Newburger et al.
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validated a subset of these calls using FISH (Fig. 4B) and found all

LAF-based calls that we tested to be correct.

The distribution of aneuploidies across chromosomes among

the six patients is highly nonrandom (Fig. 4C). Gain of chromo-

some 1q is by far the most common event, with a total of 13 extra

copies accumulated in these patients, not considering the IDC

subclones. All cases exhibit 1q gain, and it is the only event that is

shared by all three early neoplasias in which we could detect an-

Figure 4. Aneuploidy summary. (A) LAF distributions for each chromosome across all patients and samples. In each sample-by-patient panel, the LAF
distributions of all chromosomes are superimposed. In the absence of aneuploidy, the plot lines of all chromosomes are well-aligned, as is evident in the
control plots and some EN plots. Control panels often contain plots from two samples (indicated) and so there are sometimes 46 lines superimposed,
revealing the robustness of the LAF metric across samples and chromosomes. A chromosome’s plot line is gray when it does not deviate from the typical
distribution. The line is colored when the chromosome’s LAF is skewed. Distinct colors are assigned to represent aneuploid regions that recur in different
samples and patients. Colors are labeled in the panel in which they first appear. For Patient 6 please see Figure 3. (B) FISH of chromosome 1 in ENA of
Patient 6. (C ) Distribution of aneuploidies by patient, excluding those in IDC subclones. Each square denotes a unit gain (orange) or loss (blue). In Patients
2, 3, and 6, two phases of aneuploidies occurred, with those of the second phase not surrounded by a border. (Total) The total number of chromosomes
lost (�) or gained (+) across all patients; (1st) the number during the first detected phase. Only recurrent events are listed. In Patient 5 (which exhibits
hallmarks of chromothripsis), different pieces of chromosomes 1p and 19 underwent simultaneous losses or gains.
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euploidy. In three cases (Patients 2, 3, and 6), the IDC underwent

gains of 1q in addition to previous ones, increasing 1q ploidy to 6,

4, and 4, respectively. This suggests that the selective advantage

conferred by 1q gain increases with further gains of 1q during tu-

mor evolution.

Like the shared SNVs, the shared aneuploidies support spe-

cific lineage relationships among the samples of each patient. We

therefore built lineage trees using the somatic SNVs as phyloge-

netic markers, and then asked whether the shared aneuploidies

are consistent with these trees (Fig. 5). All aneuploidies are un-

ambiguously and parsimoniously assigned to specific branches in

the SNV-based lineage trees.

The order of aneuploidies during the evolution of each case is

also unambiguous and highly suggestive of a small number of

aneuploidies being first drivers of the neoplastic phenotype. In all

cases, gain of 1q was among the events that occurred first, in-

cluding in the three cases in which genomic crises occurred in a

common ancestor of neoplasias and carcinomas (Patients 1, 2,

and 6). Loss of 16q occurred four times, and loss of 17 three times,

as part of the first set of aneuploidies. Gain of 16p occurred three

times. The remaining aneuploidies occurred once or twice in all

trees, and none were recurrent in the earliest stages of evolution.

In order to time the occurrence of aneuploidies relative to

SNVs, we identified the branch in the lineage tree of each patient

where the first ploidy gains of chromosome 1q occurred and

considered SNVs that occurred on this branch. AAF spectra of SNVs

that occurred before the ploidy gains and located on the chromatid

that was duplicated should be enriched for higher AAF in the

progeny samples. In each of the six patients, statistical tests

rejected the null hypothesis that there are no such SNVs (Fisher’s

exact test, P-values ranging from 0.5 3 10�2 to 0.8 3 10�36; Sup-

plemental Table 3). This pattern is reproducible between different

samples of the same case, and the SNVs that exhibit high AAF largely

overlap. The same pattern holds for the ploidy gain in chromosome

16p, but due to fewer SNVs the statistical signal is less strong.

Overall, the AAF distributions of 1q SNVs are consistent, with some

mutations occurring before the ploidy gain, and some mutations

occurring after the ploidy gain (Supplemental Fig. S18). This sug-

gests gradual accumulation of point mutations as a function of the

number of cell divisions, as opposed to mutational bursts.

Because the aneuploidies and SNVs independently support

the lineage tree topologies, the genotypes and phenotypes of the

common ancestors can be confidently inferred in each case. The

aforementioned mutated common ancestors of neoplasias and

carcinomas in Patients 1, 2, and 6 bore extensive aneuploidy, as did

the mutated common ancestor of the DCIS and IDC in Patient 3. In

all four cases, therefore, genomic crises occurred in an ancestral cell

or in consecutive daughter cells of the ancestral cell lineage. The

phenotypes of these ancestors likely included nuclear atypia and

increased rate of cell division, but no invasive capabilities. Their

genomes were predisposed to further genomic change, and as

a result the subsequent lineages leading to IDC accumulated nu-

merous additional SNVs and aneuploidies.

Discussion
Evolutionary studies of cancer have so far focused on the inference

of clonal evolution within the cancer (e.g., Nik-Zainal et al. 2012a)

or analyses of the relationship of metastases with the primary tu-

mor (e.g., Navin et al. 2011). Here we addressed a different per-

Figure 5. Genome evolutions of all patients (P1–P6 ). Vertical black lines are ancestral lineages whose lengths are proportional to the number of SNVs
that occurred in each (except Patient 4, which is 50% shorter for fit). Cones represent tissue samples; cone width represents approximate amount of tissue;
cone height is constrained at the top by the position of the last common ancestral cell of the sample, which is determined by the ancestral branch lengths,
and on the bottom by the time of surgery, which is the same for all samples. The ratio of cone width to height is an approximation of the rate of cell division
in each sample since the last common ancestral cell. Chromosome ploidy changes are indicated with the chromosome number; stand-alone numbers in
italics indicate the number of chromosomes affected by subclone evolution (or putative chromothripsis in Patient 5). Thick branches are the earliest
branches for which we are able to infer genomic events. Circles at the end of thick branches are ancestors with the colors denoting their inferred neoplasia-
like, DCIS-like, or IDC-like phenotypes.
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spective, namely that of the early origins of the cancer phenotype.

These three approaches can be thought of as mimicking pro-

gression, at least as far as solid tumors are concerned: Studies of

metastatic evolution are about the terminal stages of the cancer;

studies of within-cancer subclone diversity are about the Darwin-

ian process of faster versus slower growing cell populations and the

evolution of the primary tumor mass; and studies of early neo-

plasias and their relationships to the diagnostic tumors are about

early origins of cancer.

Our understanding of these early origins will be greatly en-

hanced by molecular evolutionary analyses similar to those that

have advanced our understanding of organismal evolution. Cells

within concurrent lesions are analogous to extant organisms: they

are related to one another by bifurcating lineage trees and have

accumulated genomic changes over the course of evolution. In our

study of multiple lesions in six cases of ductal breast carcinoma, we

found that the genomes of ancestors of some early neoplasias

and carcinomas were already aneuploid and harbored a modest

number of point mutations. By comparing mutational spectra of

somatic SNVs across patients and samples we inferred that so-

matic SNVs accumulated gradually as a result of a large number of

ancestral cell divisions and not during saltatory mutational crises.

In two cases, the carcinoma phenotype originated twice inde-

pendently from an ancestral neoplastic phenotype, suggesting a

substantial predisposition of the ancestor to generate cancerous

progeny.

All of the neoplasias with aneuploidies shared common cel-

lular ancestors with the carcinomas; in all of these cases the neo-

plasia and carcinoma shared these aneuploidies as well as somatic

SNVs. In contrast, none of the neoplasias that were devoid of an-

euploidies (all contralateral ENs and five ipsilateral ENs) were

closely related to a carcinoma. Among the aneuploidies, gain of

chromosome 1q was most dramatically recurrent, which is con-

sistent with its prevalence among late-stage breast cancers (Curtis

et al. 2012, cf. Fig. 4). 1q harbors more than a thousand genes, and

while the increased dosage alone is not sufficient for a carcinoma

phenotype (some of our neoplastic samples carry the increased 1q

ploidy), it is likely to be predisposing to further genomic change.

Initially, such change may be catalyzed primarily by an increased

rate of cell division, as the mutation spectrum of the early neo-

plasias is indistinguishable from that of the IDCs in every patient

examined. Additional aneuploidies accumulate, however, and at

some point a combination of dosage imbalances and mutational

load, and perhaps epigenetic or stromal changes as well, results in

an invasive carcinoma phenotype.

We anticipate that the evolution of a diverse set of breast and

other cancers will soon be studied similarly and with comple-

mentary approaches (Shah et al. 2009; Navin et al. 2011; Gerlinger

et al. 2012; Nik-Zainal et al. 2012a; Shah et al. 2012). Current

practice in clinical diagnosis of cancer facilitates studies on archi-

val material because of the low cost and superior quality of histo-

pathological examination of formalin-fixed, paraffin-embedded

samples. We show that high-quality, large-scale genome sequence

can be obtained from archival material, and show by validation

that the data from such material can be highly robust. Evolu-

tionary inference based on many samples of such material opens

a new dimension for analysis of cancer origins and progression. In

the future, phylogenetic analysis of carcinomas and concurrent

lesions will suggest drugs that attack both carcinoma and early

lesions by targeting genomic changes common to all lesions, re-

moving not only the carcinoma, but also the reservoir of related

cells from which a carcinoma might recur.

Methods

Identification and processing of neoplasias
All patients except one had opted for mastectomies, and all of the
available breast tissue had been formalin-fixed, which allowed for
the discovery of multiple sites of neoplastic lesions in each case by
examination of large sets of tissue sections. Neoplastic lesions were
classified according to a standard set of criteria that included nu-
clear morphology, cell shape, and tissue organization. Once a le-
sion was identified and characterized, we estimated the extent of
the neoplastic tissue by taking cores and performing further sec-
tioning and histology. We then dissected the material to minimize
the proportion of normal breast tissue in the final sample. Our goal
was to achieve 50% or more neoplastic or tumor content, but we
could not rigorously quantify this number until after sequencing
had been performed.

Library construction and sequencing

DNA extraction from each dissected sample was performed using
procedures optimized for archival material. FFPE cores were cut
into 20-mm slices. Paraffin was dissolved in Xylene and removed
(four repeats of 5 min incubation with rotation in 1 mL of Xylene
and microcentrifugation for 3 min) and followed by washing with
ethanol (four repeats of 5 min incubation with rotation in 1 mL of
ethanol and microcentrifugation for 3 min). Tissue was then lysed
with Proteinase K and crosslinks reversed by overnight incubation
at 56°C. After brief digestion with RNase A (Qiagen), DNA was
purified with a column-based method (Qiagen QIAamp DNA Mini
Kit). For each sample, one Illumina library was built with an av-
erage insert size of between 300 and 400 bases, depending on the
quality of the DNA. Half to 1 mg of genomic DNA (depending on
the availability of the material) was sheared to 400 bp with Covaris
S2, end-repaired, ligated to Illumina adapter, size selected, and
amplified with eight cycles of PCR to generate the final library.
Standard Illumina 2 3 101 paired-end sequencing on the
HiSeq2000 platform was performed such that the final sequence
coverage of confidently aligned reads was nearly 1003 for each
sample in the first patient, and 503 for the samples of Patients 2–6.
Analysis of the mapped reads confirmed high library quality (very
low duplicate read-pair fraction, almost normally distributed
fragment size, and highly uniform genome coverage) that was
indistinguishable from that of comparable libraries constructed
from fresh DNA.

Read mapping and BAM file processing

Raw Illumina reads were uploaded to DNAnexus (https://
dnanexus.com/) and aligned to the human reference genome
(UCSC build hg19) using the DNAnexus read mapper, a hash-
based probabilistic aligner that incorporates paired read infor-
mation. We used standard quality-control metrics, such as per-
cent confidently mapped reads and insert size distribution, to
discard problematic Illumina lanes prior to subsequent analysis.
Successfully aligned reads from high-quality lanes were labeled
using read group tags and then merged into sample-level BAM
files. Lane-level read group tags improve the performance of
downstream BAM processing and variant calling with the Ge-
nome Analysis Toolkit (GATK) (McKenna et al. 2010; DePristo
et al. 2011).

We followed GATK’s best practices guidelines (v3) to perform
sample-level BAM processing using the Picard java utilities (http://
picard.sourceforge.net/) and GATK tools (McKenna et al. 2010).
This protocol has three steps that are executed in the following

Genome evolution of breast cancer

Genome Research 1105
www.genome.org

https://dnanexus.com/
https://dnanexus.com/
http://picard.sourceforge.net/
http://picard.sourceforge.net/


order: duplicate read marking, local realignment, and base quality
score recalibration. We used the Picard MarkDuplicates utility to
mark duplicate reads based upon the read position and orientation
of read pairs. Marked duplicates were ignored in subsequent pro-
cessing and variant calling steps. GATK local realignment was
performed with standard parameters and the recommended
known indel sets (Mills et al. 2006 and 1000 Genomes indels from
the GATK v1.2 bundle). GATK base quality score recalibration was
performed with the standard set of covariates. The realigned,
recalibrated BAM files produced by these processing steps were
used for multisample SNV calling and for all alignment-related
statistics such as allele counts.

Multisample SNV calling

Multisample SNV calling was performed on processed, sample-
level BAM files with the GATK Unified Genotyper (DePristo et al.
2011). Multisample runs were grouped by patient such that BAM
files from different patients were run separately. Notable parameters
for the Unified Genotyper include standard call confidence of 50.0
(-stand_call_conf 50.0) and minimum base quality score of 20 (-mbq
20). To reduce SNV false discovery rate, raw variant calls were fil-
tered using GATK variant quality score recalibration tools (VQSR)
with the recommended training sets. The following annotations
were used for training: FS (strand bias), MQ (mapping quality), DP
(depth), HaplotypeScore, MQRankSum, and ReadPosRankSum.
Replacing the recommended QD annotation (call quality divided
by depth) with DP greatly improves sensitivity for low-frequency
somatic variants.

We used pass-filter SNVs to create a set of high-confidence
germline calls and a set of high-confidence somatic calls for each
patient. For a given patient, we defined germline SNVs as calls
meeting the following multisample criteria: (1) depth 20 or greater
in every sample, where depth is defined as the sum of alternate and
reference base counts, and (2) non-reference GATK genotype (GT)
in every sample. These high-confidence germline calls were used
for aneuploidy analyses (below). Somatic SNVs were defined using
a similar set of criteria: (1) depth 20 or greater in every sample, (2)
fewer than two reads supporting the alternate allele in at least
one sample, and (3) absence in dbSNP 132. We excluded SNVs in
dbSNP 132 in order to reduce the number of false-negative germ-
line calls in our somatic SNV call set.

Three out of four Patient 2 genomic libraries were contami-
nated with mouse DNA, with ;15% of DCIS reads aligning to the
mouse genome. Approximately 1% of reads from Normal and
0.65% of reads from EN aligned to mouse; these fractions were
significantly above background levels for unaffected libraries. To
remove contamination-related mapping artifacts from our SNV
data, we added additional filtering steps to the SNV calling pro-
tocol for Patient 2. Prior to variant calling with the Unified Geno-
typer, we eliminated all reads lacking confidently mapped mates.
After variant calling and VQSR, we removed all novel pass-filter
SNVs positioned in areas of the genome with significant homology
with the mouse genome. Homology was assessed by mapping tiled
75-mer reference sequences, surrounding each position of interest,
to the mouse genome (mm9). This second step dramatically re-
duced spurious calls in DCIS while eliminating only 1% germline
dbSNP positions used as controls.

Determination of somatic SNV class patterns and of robust
sharing classes

Multisample somatic SNV calls were further analyzed to determine
patterns of SNV-sharing across samples within the same patient.
Although GATK provides sample genotype calls based on genotype

likelihood calculations, these calls lack sensitivity when applied to
cancer samples with substantial normal contamination or sub-
clonal tumor populations. To further enhance sensitivity of SNV
detection beyond GATK multisample calls, we applied a simple but
sensitive metric to determine each sample’s mutation status. At
each somatic SNV position predicted by GATK in at least one
sample, we considered any sample with two or more reads sup-
porting the alternate allele to harbor the mutation (i.e., mutation
present). Samples with fewer than two reads supporting the alter-
nate allele were labeled as reference (i.e., mutation absent). Our
rationale was that given that a specific SNV is detected in some
samples, reads supporting this SNV in other samples have a sig-
nificant prior to be true rather than sequencing errors. We call this
criterion ‘‘evidence of presence’’ of an SNV in a given sample.
These patterns of mutation presence and absence define mutation
classes for lineage construction and other somatic SNV analyses.
We note that a small but important number of SNVs were reallo-
cated by this method from candidate somatic SNVs with in-
consistent patterns of sharing among samples to germline events,
and that very few single-sample (‘‘private’’) SNVs were reallocated
to sharing classes, underscoring the high-sequence and alignment
quality of our datasets.

A case with n samples has 2n possible class patterns. For ex-
ample, for a case with five samples, the patterns are 00000 to
11111. No case has the 00000 class, because an SNV has to be
present in at least one sample, and the 11111 class is that of
germline variants. Classes that are private to one sample are 10000,
01000, 00100, 00010, and 00001. Candidate classes that are pos-
sibly phylogenetically informative are defined by SNVs that are
present in two or more, but not all, samples. To identify the subset
of robust phylogenetically informative classes, we applied the
following steps:

(1) Eliminate classes with the SNV present in the lymph sample
(applicable to Patients 1, 4, 5, and 6). These classes consisted of
lymph-only SNVs (presumably somatic mutations in the lymph
sample) and germline SNVs, where one or very few samples
were missing the alternate allele presumably due to sampling
variance.

(2) Retain the classes that, when ranked in decreasing order of the
number of SNVs present within them, together contain 95% of
all candidate somatic SNVs. This eliminated all spurious classes
that were not supported by an overall substantial number of
SNVs, most of which were missing from just one sample, pre-
sumably due to sampling variance.

(3) Eliminate classes with a large fraction of SNVs whose muta-
tion-absent samples exhibit one alternate-allele supporting
read, suggestive of systematic false-negative calls. This also
constituted a small number of classes with SNVs whose alternate
alleles were missing from just one sample presumably due to
sampling variance.

PCR-based validation of SNVs and accuracy assessment
of whole-genome calls

Please see the Supplemental Material for methodology used and
results.

Aneuploidy and tumor purity

To identify aneuploidies we selected a subset of the germline SNVs
identified by GATK. These ‘‘sgSNVs’’ were defined, separately for
each patient, as a patient’s multisample germline SNVs that had
dbSNP132 entries, were heterozygous, and had minor allele fre-
quencies in the control sample of at least 0.25. We define the
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‘‘lesser allele’’ as the one supported by fewer reads than the other
allele (which is the ‘‘prevalent allele’’). Three metrics were calcu-
lated for each SNV: the lesser allele coverage, the prevalent allele
coverage, and the lesser allele fraction (LAF). The LAF was used to
identify aneuploidies, whose ‘‘sign’’ (loss or gain) was then set by
the two coverage metrics.

In all patients except 5, the vast majority of chromosomal
copy-number transitions coincided with the centromere, or the
whole chromosome was involved (Supplemental Figs. S12–S17).
Fine mapping of the transition points was therefore not usually
necessary. In the handful of cases where a transition point did not
coincide with a centromere, we found the window of the plot
(Supplemental Figs. S12–S17) at which the event either started or
ended (window i). As discussed in Figure 3, each window spans
1000 SNVs, with an overlap of 500 SNVs between adjacent win-
dows. We then plotted the frequency of the heterozygous variants
in the three relevant windows (i-1,i,i+1, totaling 2000 variants) in
that sample. The variant at which the frequency shifted was easily
detected by eye, and it was not necessary to deploy segmentation
methods. The resolution of this analysis is low (determined by
what can be seen by eye on the plots) and we did not attempt to
identify events that involved regions smaller than about a third
of a chromosome arm. We also note that we did not attempt to
identify structural rearrangements that do not result in copy-
number changes, such as inversions.

The identified loss of heterozygosity (LOH) chromosomes
were then used to estimate the fraction of the sample that is due to
normal cells (lymphocytes, myocytes, etc.), as follows: All cancer
cells contribute zero copies of an allele that was lost due to LOH,
and the normal cells contribute one copy of the LOH allele times
the contamination fraction n. Note that in all of our patients, the
control samples were free of LOH chromosomes (Fig. 4A). The LOH
allele is almost always the one with fewer reads. Therefore, the LAF
l should, on average, be equal to the lost-chromosome fraction
that is contributed by the normal contamination. Some arithmetic
shows that n = l / (1 - l). Once n was estimated from l, the exact
ploidy p for those chromosomes that had gains was calculated
according to the formula P = (1-2nl)/(l(1-n)).

Sequence-based n’s roughly matched estimates of n by his-
tology. The histology-based estimates are necessarily an approxi-
mation because they are based on limited sampling, by sectioning
of the tissue core mass from which DNA is obtained.

SNV mutation spectra

Mutation spectra for patient samples were aggregated in two ways:
(1) combined across patients to form three ‘‘superclasses’’’ of SNVs
based on lesion class (private in early neoplasias, private in carci-
nomas, and shared between neoplasias and carcinomas); (2)
combined within each patient, ignoring lesion class, to form six
groups. Complementary mutations were pooled, reducing the
number of possible mononucleotide mutations from 12 to 6, and
the number of single-base substitution classes in dinucleotides
from 16 3 6 = 96 to 10 3 6 = 60.

Mononucleotide mutation spectra were simply estimated
from the frequency of the mutation type (Fig. 2, cf. A and B, where
the bars of each color add up to 1). For dinucleotides, we calculated
rates by dividing the number of events of each of the 60 changes by
the genome-wide count of the dinucleotide that was mutated.

Tree inference

Tree topology was defined by the phylogenetically informative
SNV classes (Supplemental Table 1). The data are unambiguous and
we therefore used parsimony to establish which samples shared

common ancestors in which configuration. Once the SNV-based
trees were built, aneuploidy events could be mapped onto them,
and again the data were unambiguous. Even successive gains of
ploidy of the same chromosome, most prominently among them
1q (e.g., Fig. 5F), could be ordered without conflicts.

Ordering SNVs vs. chromosome 1q ploidy gain in ancestral
branches

We devised a statistical test to ask whether some SNVs occurred
before copy gain in aneuploidy regions. For each patient, we
identified the branch in the lineage tree responsible for the first
copy-number changes in chromosome 1q, which consistently
represents the earliest aneuploidy event in our patients. We then
analyzed the AAF spectra of SNVs occurring in that branch. The
test below is based on the idea that SNVs that occur on a 1q
chromatid prior to gain of a copy of that chromatid should have
higher AAF than SNVs occurring on a 1q chromosome after copy
gain.

We used SNVs on all diploid chromosomes on the same
branch as our control set. Sequence coverage is scaled with respect
to the aneuploidy and controls for contamination of the sample by
normal cells (lymphocytes, etc.):

scaled coverage ¼ coverage 3
p 3 1� nð Þ

2
þ n

� �
;

where p is the estimated ploidy and n is the estimated normal
contamination. In order to find outliers indicative of events prior to
copy gain, we calculated a Z-score. SNVs with AAFs with Z-score > 3
were labeled as ‘‘high’’ and SNVs falling below threshold were la-
beled as ‘‘low.’’ For each patient, we used Fisher’s exact test to
compare the distribution of SNV labels in the control chromosomes
vs. 1q. In each of the patients, we reject the null hypothesis that the
1q distribution is equal to or less extreme than the control distri-
bution (Supplemental Table 3).

Data access
The sequence data from this study have been submitted to NCBI
(http://www.ncbi.nlm.nih.gov/bioproject) under BioProject iden-
tifier PRJNA193652.
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