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Abstract

Cellular systems shift metabolic states by adjusting gene expression and enzyme activities

to adapt to physiological and environmental changes. Biochemical and genetic studies are

identifying how metabolic regulation affects the selection of metabolic phenotypes. How-

ever, how metabolism influences its regulatory architecture still remains unexplored. We

present a new method of extreme pathway analysis (the minimal set of conically indepen-

dent metabolic pathways) to deduce regulatory structures from pure pathway information.

Applying our method to metabolic networks of human red blood cells and Escherichia coli,

we shed light on how metabolic regulation are organized by showing which reactions within

metabolic networks are more prone to transcriptional or allosteric regulation. Applied to a

human genome-scale metabolic system, our method detects disease-associated reactions.

Thus, our study deepens the understanding of the organizing principle of cellular metabolic

regulation and may contribute to metabolic engineering, synthetic biology, and disease

treatment.

Introduction

Organisms are constantly faced with variable internal physiological states and environmental

conditions. The ability to rapidly shift between phenotypes to deal with these challenges is

essential for the competitive fitness and survival of an organism [1–3]. It is well known that cel-

lular response to internal and environmental perturbations is often reflected and/or mediated

through changes in metabolism [3]. Such metabolic changes are often accomplished through

both genetic and post-transcriptional controls, such as transcriptional regulation of gene

expression and allosteric regulation of enzymes [4, 5]. Understanding the interaction between

regulatory and metabolic processes is therefore a fundamental problem in biology.

The mechanisms controlling metabolic processes, including regulatory circuits and logics,

have been intensively studied [6], especially since the emergence of massive ‘omics’ datasets in

the post-genomic era [4]. Incorporating regulatory rules into constraint-based metabolic mod-

els allows researchers to more accurately predict the metabolic phenotype under different envi-

ronmental and genetic perturbations [7–16]. However, these methods seldom provide insight
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into the regulatory architecture, i.e. the key control reactions, of the metabolic networks.

Understanding how the regulatory architecture is designed, how it evolves, and what role the

structure of the metabolic network plays in regulatory processes is an ongoing research chal-

lenge [17–20].

Previously, some studies [4, 21–24] derived regulatory patterns of a metabolic pathway with

limited scale and complexity by optimizing an objective function that incorporates multiple

criteria of metabolic processes, such as benefit and cost, under given conditions. Some investe-

gated the contribution of metabolic network connectivity in metabolic control or regulation

[17, 19, 20, 25, 26]. Some integrated gene-expression data and topological information of the

genome-scale metabolic network to uncover transcriptional regulation under certain perturba-

tions [3]. The research above, although still in its infancy, has reported promising findings that

the organizing principles of metabolic control may be deduced from the connection structure

of a metabolic system.

Metabolic pathway analysis, such as elementary mode analysis and extreme pathway analy-

sis, has provided a new outlet to understand topological structures of metabolic networks and

pathway regulations [27, 28]. Elementary modes [29] consists of the minimum number of

reactions that exist as a functional unit [30]. By introducing the term ‘control-effective fluxes’,

elementary mode analysis succeeded in predicting the gene expression ratios of central carbon

metabolism in the growth of Escherichia coli and Saccharomyces cerevisiae on two alternative

substrates [31–33], estimating the significance of links between metabolic processes and levan

biosythesis in Halomonas smyrnensis [34], and describing the behavior of folate-related pro-

cesses in human placenta [35]. As another widely used and highly relative concept of network-

based pathways, extreme pathways form the unique set of systemically independent and non-

decomposable steady-state flux distributions based on the system’s stoichiometry and thermo-

dynamic constraints of a given metabolic network [36]. Extreme pathway analysis has already

been used to hunt for regulation of metabolic systems by the approaches such as grouping and

interpretation [37], Singular value decomposition (SVD) [38, 39], reaction participation analy-

sis [40], feasible extreme pathway analysis [41] and alpha-specturm calculation [42, 43]. The

approach of grouping and interpretation divides extreme pathways into groups based on some

pre-set criteria and iterprete the metabolic and regulatory function of pathways in each group

[37]. SVD produces eigenpathways by decomposing the extreme pathway matrix and shows

that the eigenpathways correspond to the key control points in the network [38, 39]. Reaction

participation analysis considers correlated reactions and the reactions that participate in a

large number of extreme pathways as good targets for regulation [40]. Feasible extreme path-

way analysis eliminates the extreme pathways that are inconsistent with regulatory constraints

or physico-chemical constraints and shows that regulation forces a particular set of phenotypic

behaviors to be expressed [41]. The alpha-spectrum defines the allowable range of extreme

pathway contributions to a given steady state [42, 43].

However, the previous works also have their own shortcomings. Approaches of control-effec-

tive fluxes, feasible extreme pathways and alpha-spectrum are condition dependent. Namely,

although they reveal important regulatory reactions in the given condition, they neglect regula-

tory reactions which function in other conditions. Grouping and interpretation is not available

when the number of extreme pathway is large. Reaction participation analysis prefers the reac-

tions with higher participation frequency, therefore it will miss out the reactions which partici-

pate less frequently in extreme pathways but still regulatory important. The approach of SVD is

not intuitive enough since eigen pathways may not necessarily be biochemically feasible.

Above all, the role of regulatory reactions can be interpreted as reducing the uncertainty of

the metabolic system from the perspective of information theory, because regulatory reactions

put further constraints on metabolic system, reduce the space of steady sates and lead the
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metabolic system to a objective state [41]. Therefore, in order to hunt for the potential regula-

tors, it is crucial to measure the role on average a reaction plays in eliminating the uncertainty of

the metabolic system. To the best of our knowledge, no approach of metabolic pathway analysis

had attempted such a measurement. Here, we developed a new method to address the issue.

Since any steady-state flux vector describing a metabolic phenotype of the cell can be

thought of as a non-negative combination of these extreme pathways [44], it is logical to

assume that a cell ‘switches’ on and off its extreme pathways by metabolic control to reach a

particular metabolic steady-state [36]. In other words, although the regulation of particular

reactions is ongoing within a cell, the cell’s ultimate aim may be to regulate the set of extreme

pathways [36]. When the states of the extreme pathways are set, the information, what the tar-

get metabolic state should be, is passed from regulatory control to metabolism. Under this

hypothesis, we evaluate the regulatory importance of a metabolic reaction by the role it plays

in determining the “on/off” states of extreme pathways. This term takes into account both effi-

ciency and flexibility, which are believed to be two major objectives of the evolutionary optimi-

zation process of metabolic regulation. Efficiency is the ability to fulfill the cellular demands

of metabolic regulation at a minimal cost. For simplicity, supposing that equal investment is

made to control each reaction in a given cell, then the cost of metabolic regulation can be esti-

mated by the number of regulated reactions. Flexibility refers to the ability to maintain a quick

and robust response against internal and enviromental perturbations. Generally, flexibility

increases when more reactions are utilized for regulation. These two criteria impose challenges

that are obviously contradictory; therefore, optimal regulatory architecture for metabolism

needs to balance a trade-off between efficiency and flexibility.

In this study, we introduce a new method of extreme pathway analysis to deduce regulatory

reactions of metabolic networks. Our method has the following advantages: 1) it is condition

independent since all the extreme pathways consistent with mass balance constraints and reac-

tion reversibility constraints are included in the analysis. 2) it can be applied on arbitrarily

large number of extreme pathways as long as they can be enumerated. 3) it has no obvious

preference for reaction participation. 4) rather than interpreting the regulatory effects by

eigenpathways, we treated every metabolic reaction as a candidate regulator, which makes our

method more intuitive. Our goal is to shed light on the universal organizing rules of regulated

reactions in metabolic networks from the perspective of information theory and evolution.

We applied our method to the metabolic networks of the human red blood cell (hRBC) and

Escherichia coli to study the architecture of allosterical and transcriptional regulation, respec-

tively. The reactions of high regulatory importance show good agreement with findings from

previous research. The results demonstrate a significant correlation between the topology of a

metabolic network and its regulatory architecture. With the assumption that regulated reac-

tions are likely associated with disease processes, we applied our method to a genome-scale

human metabolic network to predict disease-associated reactions. Our computational results

agree reasonably well with experimental results. Overall, extreme pathway analysis allows us to

systematically investigate the organizing principle of metabolic regulation. Our findings sug-

gest that the regulatory architecture of metabolism has evolved to put extreme pathways under

more efficient and flexible controls. Our method may also be helpful in metabolic engineering

and drug target discovering by recommending the reactions that are worthier of control.

Methods

Assigning exchange fluxes to a target subsystem

A target subsystem consists of a subset of internal reactions in the whole metabolic network.

The complement of a target subsystem constitutes another subsystem called the surrounding
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subsystem. The metabolite set of a subsystem contains all the metabolites that appear as sub-

strates or products of at least one reaction in it.

The process to assign exchange fluxes starts by identifying the shared metabolites between

the target and surrounding subsystems. For each shared metabolite M, a duplicate metabolite

M0
is introduced to substitute M in reactions of the surrounding subsystem. Meanwhile, a bidi-

rectional reaction M$M0
is added to the original metabolic network and an exchange flux

associated with M is introduced into the target subsystem. Obviously, the reaction M$M0

describes the exchange of metabolite M between the target and surrounding subsystems. Thus,

the flux of reaction M$M0
should be equal to the exchange flux associated with M in the tar-

get subsystem. Next, the maximum and minimal fluxes of M$M0
are determined through

flux variability analysis [45] by setting the flux of reaction M$M0
as the objective function.

These values indicate the possible production and/or consumption of M in the target subsys-

tem. Table 1 covers all 4 possible input and output combinations between the maximum and

minimal values. Based on this information, flux constraints can be specified for each exchange

reaction in the target subsystem. With all the exchange fluxes being properly added and con-

strained, the target subsystem is ready for extreme pathway computation.

Although adding a reaction M$M0
is equivalent to specifying a compartment for each

target subsystem, unlike the previous study [46], the procedure will not change the predicted

behaviors of the whole metabolic network. Because the added reaction has only one substrate

and one product, it is proven in Statement G in S1 Text that adding such a reaction does not

change the constraint of the fluxes of steady states.

The process described above is illustrated by Fig A in S1 Text. This protocol works effec-

tively for any metabolic network and any delimitation of the target subsystems.

Calculating extreme pathways

The extreme pathways of the hRBC metabolic network were derived straightforwardly from a

published open-source bioinformatic software program, EXPA [47]. As for the target subsys-

tems of E. coli and human metabolism, we applied the above protocol for the exchange flux

assignment and then computed the extreme pathways with EXPA [47]. The extreme pathways

of type I and II that comply with Kirchhoff’s second law [48] were passed to the following anal-

ysis. Each pair of elements corresponding to a reversible internal reaction in an extreme path-

way was merged together by subtracting the reverse flux from the forward one. The resulting

vector is termed compact extreme pathway. Elements in a compact extreme pathway have a

one-to-one correspondence to reactions in the metabolic network. It is proven in Statement D

in S1 Text that converting from an extreme pathway to its compact form does not change the

set of reactions it utilized.

Table 1. Logic table for determining the constraints of the exchange reaction that transports metabolite M in and

out of the target subsystem based on flux variability analysis of the reaction M$M0
. The forward direction of

M$M0
is defined as from M to M0

. And the forward direction of the exchange reaction is defined as taking M
away from the target subsystem. Min, minimum; Max, maximum.

Case Exchange flux of a subnetwork Available direction

(Flux constraint)Min. Max.

1 < 0 > 0 Out and in (unconstrained)

2 = 0 > 0 Out (positive)

3 < 0 = 0 In (negative)

4 = 0 = 0 None (zero)

https://doi.org/10.1371/journal.pone.0210539.t001
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Sorting internal EqSets by their regulatory importance

A greedy algorithm was built to sort internal EqSets of internal reactions by their regulatory

importance. Briefly, it begins with a pool P of all the EqSets and an empty queue of predicted

regulatory EqSets,Q. Then, it iteratively picks up the EqSet with the highest regulatory impor-

tance (defined in the following sections) from P and moves it to the end ofQ. The iteration

stops when P is empty or the regulatory importance of any EqSet remaining in P equals zero.

At last, the algorithm removes the EqSets of exchange reactions fromQ and outputsQ as the

resulting sequence. More details about the algorithm are provided in Algorithm A in S1 Text.

Shannon entropy and conditional entropy of reactions

Shannon entropy and conditional entropy are used to measure the role on average of a reac-

tion in eliminating the uncertainty of a metabolic system. Suppose a metabolic network of n
reactions, X ¼ R1;R2; � � � ;Rn, has l compact extreme pathways, [e1, e2, � � �, el]. Then, a reac-

tion Ri is employed by a compact extreme pathway ej if and only if eji 6¼ 0, where eji is the ith
element of ej, 1� i� n and 1� j� l. We define ej as an employer extreme pathway of Ri.

Further, we consider Ri to be ‘on’ if any of its employer extreme pathway is utilized by the

metabolic system to form the current steady-state, and ‘off’ otherwise. Assume that each

extreme pathway is utilized with equal opportunity. The probability of the on/off state of Ri

is defined as follows: PðRi is onÞ equals the fraction of extreme pathways in which Ri is

employed and PðRi is offÞ equals 1 � PðRi is onÞ. The joint probability distribution can be

similarly derived by counting the number of compact extreme pathways that consist of certain

reactions.

Based on the above probability distributions, the Shannon entropy HðRiÞ, combination

entropy HðX1Þ as well as conditional entropy HðX1jX2Þ can be defined according to the infor-

mation theory [49], where X1 and X2 are two subsets of X. In particular, if reactions Ri and Rj

satisfy that HðRijRjÞ ¼ HðRjjRiÞ ¼ 0, they form an equivalent reaction couple on Shannon
entropy.

Regulatory distance between reactions/EqSets

A weighted graph G was built for each metabolic system or subsystem in which individual

reactions are nodes and the weight of the arc connecting two nodes, Ri and Rj, equals the

local regulatory distance, dðRi;RjÞ, between the two reactions.

dðRi;RjÞ ¼

0 if i ¼ j;

1 if Mc ¼ ;;

min
M 2 Mc

ðCðMÞÞ otherwise;

8
>>>><

>>>>:

ð1Þ

whereMc is the intersect of the metabolites of Ri and Rj, and CðMÞ equals the number of

reactions that use M as a substrate. Note that any metabolite involved in a reversible reaction

is considered to be both a substrate and a product. Without considering the change of enzyme

activity, the flux variation of a reaction will change the fluxes of the adjacent reactions by alter

the concentration of shared metabolites. If the concentration of the shared metabolite can also

be altered by other reactions, then the flux change of the adjacent reaction will be diminished.

Therefore, the local regulatory distance between two reactions measures the direct impact on

the flux of one reaction caused by a flux change of the other.

Extreme pathway and metabolic regulation
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The global regulatory distance, DðRi;RjÞ, between Ri and Rj equals the length of the short-

est route between the corresponding nodes on the weighted graph, G. Intuitively, the global

regulatory distance measures the indirect impact of flux change between two reactions.

The regulatory distance of two EqSets DðX1;X2Þ is defined as the average of DðRi;RjÞ,

whereX1 and X2 are two EqSets, Ri 2 X1, and Rj 2 X2.

Equivalent reaction set on Shannon entropy

First, each exchange reaction forms an individual equivalent reaction set on Shannon entropy
(EqSet). Second, an EqSet of k (k� 1) internal reactions X ¼ fR1;R2; � � � ;Rkg has the prop-

erties that

1. 8i, j = 1, � � �, k, Ri and Rj forms an equivalent reaction couple on Shannon entropy, i.e.

HðRijRjÞ ¼ HðRjjRiÞ ¼ 0;

2. 8i = 1, � � �, k, min
j¼1;���;k;j6¼i

DðRi;RjÞ � re, where ρe is the effective radius within an EqSet that

represents the maximum regulatory distance of any reaction to its nearest counterpart in

the same EqSet.

Measuring the regulatory importance of an EqSet

Given a metabolic system with k EqSets, P ¼ fX1;X2; � � � ;Xkg, and a queue of EqSets

Q ¼ ½X1;X2; � � � ;Xi� (0 � i < k) that are predicted to be regulatory, the regulatory impor-

tance of an EqSets is determined by the nearby EqSets within the distance of ρs because of

the constraint that the regulatory influence of an EqSet Xj (i < j� k) exists locally, where ρs
is the effective radius between EqSets that designates the maximum regulatory distance that

an EqSet influences. We built two group of EqSets with the nearby EqSets of Xj: First, the

regulatory neighbor set Nj consists of at most τ nearby EqSets standing at last of the queue

Q, where τ is the size of a window sliding onQ. And second, the competitor set Cj consists

of the nearby EqSets that are not inQ.

The regulatory importance, valðXjÞ (i< j� k), of Xj is measured from two aspects: one is

the average information it provides to the metabolic system conditioned on the regulatory

neighbor set and the other is its non-substitutability among the competitor set. Formally, the

former equals HðXjj
bN jÞ, and the latter equals min

Xu2Cj
ðHðXjj

bN j [ XuÞÞ, where bN j is the set of reac-

tions participating in any regulatory neighbor EqSets ofXj, i.e., bN j ¼
S

X2Nj
X. Lastly the summa-

tion of the two aspects is adjusted by the weight 1þ mðjXjj � 1Þ, which gives more bonus to

larger EqSets. The amount of bonus for an extra reaction in Xj is modulated by bonus ratio, μ.

To sum up, valðXjÞ is represented as

valðXjÞ ¼ ½1þ mðjXjj � 1Þ�½HðXjj
bN jÞ þ min

Xu2Cj
HðXjj

bN j [ XuÞ�: ð2Þ

EqSet sequence evaluation and the corresponding p-value

The output EqSet sequenceQ (Q ¼ ½X1;X2; � � � ;Xs�) of the above algorithm is evaluated by

summing up the ranks of the EqSets that contain regulatory or disease-related (for the human

metabolic network) reactions, where s is the length ofQ. If this sequence covers only a part of
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the internal EqSets, a penalty is added to the rank summation, representing the missing EqSets

that contain regulatory or disease-related reactions. The final evaluation score σ is represented

as

s ¼
X

i¼1;���;s
Xi\Rbm 6¼;

rankðXiÞ þ dðsþ
l þ 1

2
Þ; ð3Þ

whereRbm is the set of biologically meaningful reactions, i.e., the regulatory or disease-related

reactions, rankðXiÞ is the rank of Xi inQ, l is the number of lost internal EqSets and d is the

number of the missing internal EqSets that contain biologically meaningful reactions. It is

proven in Statement H in S1 Text that the penalty part d sþ lþ1

2

� �
equals the expectation of the

rank summation of the lost EqSets that contain biologically meaningful reactions when all the

missing EqSets are placed at the tail of the output sequence in a random order.

For an output sequence of the sorting algorithm whose evaluation score is σ0, the corre-

sponding p-value is defined as the probability that a randomly arranged sequence of internal

EqSets has an evaluation score no higher than σ0. Although the p-value can be estimated by

stochastic simulation, we provide a dynamic algorithm in Algorithm B in S1 Text to meet the

demands for precise computation.

Heuristically searching for the optimal setting of the parameters

A heuristic search algorithm was built in order to quickly find the nearly optimal values for

the four parameters (i.e., μ, ρe, ρs and τ) used in the EqSet sorting algorithm. Assume that the

ranges of μ, ρe, ρs and τ are limited and discrete, the algorithm starts from a random point

ðm0; r0
e ; r

0
s ; t

0Þ, which are randomly selected from their respective ranges. While keeping three

of the parameters at fixed values, the search strategy sequentially updates one parameter at a

time to its optimum value, which results in a sorted EqSet sequence with the lowest p-value.

When all four parameters have been adjusted, the search algorithm moves on to the next itera-

tion by updating from the first one again. If a local optimal setting of the parameters is found,

the algorithm will start another try to search for the local optimal parameters from another

randomly picked starting point. The algorithm will stop and return the best parameter values

among all the tries when it reaches the maximum number of search steps. The search algo-

rithm described above is illustrated in Fig D in S1 Text.

Evaluating the capability of the sorting algorithm for disease-related EqSet

prediction

Since the EqSets of a certain metabolic network vary with the parameter ρe, we first divided the

range of ρe into several separate subsets so that values in a same subset will result in exactly the

same EqSets. In each subset, we randomly selected x% of the internal EqSets as a training set

and left the other (100 − x)% as a test set, where x 2 {10, 20, 30, 40, 50, 60, 70, 80, 90}. Given a

sequence of internal EqSets, we extracted the subsequence that consists of the EqSets in the

training set, on which the p-value for the training set is computed. We found the optimal set-

ting of the parameters and the corresponding p-value for the training set. We repeated this

process 100 times, which provided the mean of the p-values on the training sets. After that, we

selected the subset of ρe with the lowest average p-values and counted the average rate of the

disease-related EqSets being in the top 10% of the test set sequences. This rate shows the capa-

bility of the sorting algorithm for predicting disease-related EqSets.
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Results

Reactions that play equal roles in determining the states of extreme pathways are merged as an

equivalent reaction set of Shannon entropy (EqSet), in which each reaction pair satisfies the

assumption that the conditional entropy of one reaction, given the other, equals zero. An

EqSet is treated as a potential entity for metabolic regulation. The EqSet that contains at least

one regulated reaction is defined as a regulatory EqSet. A greedy algorithm is used to organize

the EqSets in a sequence according to their regulatory importance. The algorithm starts from

an empty sequence. Under the assumption that the EqSets in the current sequence are regula-

tory, the algorithm iteratively picks up the EqSet from the rest that is most important for regu-

lation and adds it to the end of the sequence. The EqSets ranked higher in the sequence are

expected to have greater likelihood of containing strictly regulated reactions. The resulting

EqSet sequence is evaluated by a p-value, which is the probability that the rank summation of

the regulatory EqSets on a random sequence is lower than that on the sequence given by our

algorithm. (See Methods and Statement I in S1 Text).

The regulatory importance of an EqSet is defined by regulatory efficiency and flexibility.

The regulatory efficiency of an EqSet is measured by the conditional entropies that depend

on the reactions’ participation ratios on the extreme pathways. It characterizes the EqSet’s

average effect on determining the “on/off” state of each extreme pathway, as well as the

degree to which its regulatory function cannot be replaced by other EqSets. The flexibility of

an EqSet is modeled in two aspects: First, the regulatory distances between reactions and

between EqSets are defined according to the topology of the metabolic network. And the

regulatory influence of a reaction is restricted to a local scope in order to speed up the shift

of a cell’s metabolic states. Therefore, an EqSet is restriced further to include only reactions

within certain regulatory distance given by a parameter, intra-EqSet effective radius (denoted

as ρe). And the regulatory influence of an EqSet is restricted to other EqSets within the regu-

latory distance given by a parameter, inter-EqSet effective radius (denoted as ρs). Second,

a sliding window of size τ is employed on the sequence to define the available regulatory

EqSets. The Eqset that leaves the window is considered to be out of control, which simulates

a disturbance in the regulatory system. Thus, the EqSet that best compensates for the distur-

bance will be considered to be of high flexibility in this case. Briefly, the values of ρe, ρs and τ
have an inverse relation with the degree of flexibility, and consequently reflect a trade-off

between efficiency and flexibility.

The regulatory importance of an EqSet calculated above is then adjusted according to

the size of the EqSet for the reasons listed below: Assuming that each metabolic reaction

has an equal probability of obtaining a regulatory function because of gene mutations, it is

more likely that a mutation that brings a regulatory function to a reaction occurred earlier

in a bigger EqSet than in a smaller one. If the reaction happened to be of regulatory impor-

tance, the mutation is more likely to increase in frequency within the population by means

of natural selection. Thus, an EqSet that contains more members will gain some advantages

in acquiring regulated reactions compared to smaller counterparts with reactions that

have similar degrees of regulatory importance. Therefore, we give a bonus for each extra

reactions in an EqSet. The amount of the bonus is controlled by a parameter, bonus ratio

(denoted as μ).

We use the metabolic reconstructions of the human red blood cell (hRBC) [37], E. coli
(iJR904) [50] and global human cells (H. sapiens Recon 1) [51] as examples to explore the util-

ity of our method. These models were obtained from http://systemsbiology.ucsd.edu. As net-

work properties and regulation demands differ between metabolic systems, the parameters

ρe, ρs, τ and μ have to be optimized case by case.
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Identifying allosterically regulated reactions in hRBC metabolism

The human erythrocyte is a complete cell with a simple metabolic system. It has been well

studied, which makes it an attractive case for our research. The hRBC metabolic model used

here consists of 39 metabolites and 51 reactions, of which 19 are exchange reactions (See

Tables A and B in S1 Text). It contains four classical pathways: glycolysis, the pentose pathway,

adenosine nucleotide metabolism, and the Rapoport-Luebering shunt [37]. The computation

of the extreme pathways of this model resulted in 36 type I, 3 type II, and 16 type III extreme

pathways. (See Figs F, G and H in S1 Text for type I and II extreme pathways.) Type III

extreme pathways are reported to be thermodynamically infeasible [48], so they are neglected

in the remaining analysis. Metabolism in the hRBC is mainly regulated by allosteric enzymes

that control the cell’s production of the cofactors necessary to maintain osmotic balance and

electroneutrality, and to fight oxidative stresses [37, 52, 53]. We obtained 10 regulated reac-

tions from the literature [54–63]. Lists of the reactions and regulatory mechanisms are detailed

in Table C in S1 Text.

The relatively simple structure of the hRBC metabolic network ensures that the influence of

any regulated reaction may quickly spread throughout the network. In addition, the human

body employs huge numbers of erythrocytes to fulfill the task of transporting and exchanging

oxygen and carbon dioxide; thus, cells with appropriately functioning regulatory processes

could likely compensate for regulatory deficiencies in other cells. Both factors, a simple net-

work structure and redundancy through a large quantity, may reduce the evolutionary

demands on flexibility for the hRBC regulatory architecture. Therefore, we set parameters

ρe, ρs, and τ to infinity so that the regulatory importance measurement focuses on the regula-

tory efficiency of each reaction.

For each pair of internal reactions, we calculated the conditional entropy of one partici-

pant’s distribution given the other’s and vice versa (Fig 1). The black blocks on the diagonal

show 22 internal EqSets, of which 5 have more than one member reaction. There are 8 regula-

tory EqSets in the hRBC metabolic network. The entropies of the regulatory EqSets are higher

than those of the non-regulatory EqSets (Wilcoxon rank sum test, p-value = 0.0121, Table D in

S1 Text).

By plotting p-values of resulting sequences against the values taken by the parameter μ, we

found that μ plays a minor role in the output sequence in general (Fig 2). However, the p-value

decreases when μ increases from 0 to 0.125, and then turns back when the bonuses are overes-

timated, i.e., when μ continuously increases to 1. The relatively low p-values indicate that our

estimation of the regulatory importance of the EqSets agrees well with estimations from previ-

ous research. The lowest p-value, i.e. the lowest rank summation σ, is achieved when μ is set

between 0.075 and 0.125 (σ = 44.5, p-value = 2.10 × 10−4, Fig 3). The corresponding sequence

contains 8 internal EqSets (Table 2), seven of which are regulatory EqSets. The reactions in the

other internal EqSets are considered to be less important for regulation. The only missing reg-

ulated reaction in the sequence is ‘HK’, catalyzed by hexokinase. It is known that the subtypes

of hexokinase in hRBCs are HK-I and HK-R [64, 65], which are inhibited by Glucose-6-phos-

phate dehydrogenase (G6PDH) and ADP [54]. However, the inhibition could be eliminated

by a minimal amount of inorganic phosphate [54]. Thus, the control response of ‘HK’ in

hRBC metabolism is not significant, which is consistent with our results.

As a comparison, we applied our method to elementary modes (Fig 4). The result shows

that our method performed worse on elementary modes than on extreme pathways, no matter

the value given to the parameter μ. The difference in performance may be caused by the fact

that extreme pathways are systemically independent (i.e., it is impossible to describe any

extreme pathway as the sum of the others) whereas elementary modes are not.

Extreme pathway and metabolic regulation
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We further compared extreme pathways and artificial metabolic pathways, which are gener-

ated by adding up randomly selected extreme pathways (Fig 5 and Fig J in S1 Text). There are

two parameters, p and t, that affect the number and complexity of the artificial pathways (see

Methods and Algorithm C in S1 Text). Briefly, the higher the values of p and t, the greater are

the number and complexity of the artificial pathways (Fig I in S1 Text). As p or t increase, the

artificial pathways are less similar to the extreme pathways, and the p-values of the resulting

EqSet sequences increase substantially.

In summary, the results imply that extreme pathways are likely to be the real targets of met-

abolic regulation.

Predicting transcriptionally regulated reactions in the E. coli metabolic

network

The model iJR904 of E. coli accounts for 904 genes, 761 metabolites and 1,075 reactions,

including 931 internal reactions and 143 exchange reactions [50]. Each reaction has a subsys-

tem label indicating its metabolic function. A regulatory model originally designed for iJR904,

namely iMC1010v1 [9], makes iJR904 a suitable object of our study.

Fig 1. Heat map showing conditional entropy of internal reaction pairs of the hRBC metabolic network. The heat

map colors represent the conditional entropy of each reaction at the beginning of each line, given the reaction listed at

the bottom of each column. The black blocks on the diagonal represent the internal EqSets.

https://doi.org/10.1371/journal.pone.0210539.g001
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Fig 2. P-value (the line with circles) and evaluation score σ (the line with squares) of the resulting EqSet sequence

of hRBC metabolic network as a function of the parameter μ. As μ ranges from 0 to 1 with an increasing step of

0.025, p-value varies between 2.10 × 10−4 and 5.1 × 10−3, and σ varies between 44.5 and 55.

https://doi.org/10.1371/journal.pone.0210539.g002

Fig 3. Evaluation score distribution of randomly organized EqSet sequences of hRBC metabolic network. The

arrow denotes the EqSet sequence shown in Table 2.

https://doi.org/10.1371/journal.pone.0210539.g003
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The metabolic network of E. coli is so complex that it is impossible to enumerate all the

extreme pathways in a reasonable time period. Therefore, we defined three subnetworks that

represent amino acid metabolism, hydrocarbon metabolism and lipid metabolism, respec-

tively. The internal reactions of a subnetwork are composed of the reactions functionally

related subsystems (Table 3). Some reactions participate in more than one subnetwork.

Exchange reactions were assigned to each subnetwork and then the extreme pathways were

computed (see Methods). Table 4 summarizes the number of internal, exchange reactions and

extreme pathways in each subnetwork, as well as the proportion of regulated reactions. The

regulated reactions are identified by combining the gene-protein-reaction association [50] and

the gene’s logical transcriptional regulatory rules of model iMC1010v1 [9], which resulted in

474 transcriptional regulated reactions (See S1 Table).

Table 2. The internal EqSet sequence of hRBC metabolic network in descending order of regulatory importance.

The regulated reactions are denoted in boldface type. Full names for the abbreviations are listed in Table B in S1 Text.

EqSet Rank

TKI, TKII, Xu5PE, TA 1

DPGM 2

PRPPsyn 3

PFK, ALD, TPI 4

G6PDH, PDGH, PGL 5

PK, PGM, EN 6

AMPase 7

AdPRT 8

https://doi.org/10.1371/journal.pone.0210539.t002

Fig 4. The resulting EqSet sequences calculated from extreme pathways (EPs; the lines with soft dots) versus those

calculated from elementary modes (EMs; the lines with hard dots) in p-value (the lines with circles) and

evaluation score σ (the lines with squares). As μ ranges from 0 to 1, p-value of the EqSet sequences calculated from

EMs varies between 0.0408 and 0.9173, and the corresponding σ varies between 66 and 112.5. These values are always

higher than those of the sequences calculated from EPs.

https://doi.org/10.1371/journal.pone.0210539.g004
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The regulatory architecture of the metabolic network of E. coli is more flexible than that of

hRBC. There are two reasons for this difference: first, the metabolic network of E. coli is much

more complex so that a regulated reaction may have a relatively limited scope of influence. Sec-

ond, in order to maintain survival, E. coli needs extra regulated reactions to compensate for

the potential deficiency in metabolic control. This requires that the parameters ρe, ρs and τ
take appropriate values that will properly characterize the evolutionary demands of flexibility.

According to the size of each subnetwork and the regulatory distance between pairs of reac-

tions in the subnetwork(Table 4 and Fig K in S1 Text), we expand the possible ranges for μ, ρe,
ρs and τ to a relatively wide ranges given in Table 5. Under the constraint that ρe is no higher

than ρs, we built a candidate set that consists of all 210,600 different values of the parameters

that were used to make the EqSet sequences. For each subnetwork, we found that regulatory

EqSets ranked significantly higher (p< 0.05) on most sequences (Table 6), which suggests that

the major factor affecting the architecture of metabolic regulation is the reaction participation

ratio on extreme pathways rather than any of the parameters. Moreover, the target subnet-

works show diverse preferences for the candidate parameter values. For example: 1) The p-

value < 0.05 candidate parameter values for human hydrocarbon drops substantially when

compared to the E.coli model performance. 2) Lower p-values are achieved at certain parame-

ter values for each target subnetwork. Differences in network properties and regulatory

demands may be one reason, and the other may be due to the different biases which are intro-

duced when dividing the genome-scale metabolic networks into target subsystems and sur-

rounding subsystems (see Discussion). The sequences of internal EqSets with the lowest p-

values are shown in S3, S4 and S5 Tables for the above three subnetworks, respectively. Most

EqSets in the top part of the sequences include at least one regulated reaction.

In order to take a closer look at the role of each parameter, we explored the distributions of

the lowest 5% of the p-values when one of the parameters was fixed and the others were not

(Figs 6, 7 and 8 for the subnetworks of amino acid metabolism, hydrocarbon metabolism and

lipid metabolism, respectively). In general, the distribution of the lowest 5% of the p-values

shows stable trends when the value of the fixed parameter ranges from the minimum to the

maximum in the scope. The parameter μ has a slight effect on the p-values compared to the

effects of parameters ρe, ρs and τ. For different subnetworks, the p-values drop to a low value at

different values of ρe, ρs and τ, which implies that the evolutionary demands of metabolic regu-

lation diverge slightly for different functional parts.

Predicting disease-associated reactions in the human metabolic network

Metabolic disorders have been linked with chronic disease processes, including heart disease,

cancer, diabetes, and obesity [66]. Since the reactions of high importance for metabolic regula-

tion play a key role in controlling a phenotype shift, their malfunction may induce a morbid

state of the organism. So it is reasonable to infer that the reactions with the most regulatory

importance are more likely to be associated with disease processes. We applied our methods

to the genome-scale human metabolic network (Recon 1) [51] to predict disease-associated

reactions.

The model H. sapiens Recon 1 of human metabolism accounts for 1,496 genes and 3,742

reactions, of which 431 are exchange reactions [51]. The disease-associated reactions were

obtained from the public data of Lee et al [67]. The number of disease-associated reactions is

779, details are listed in S2 Table. As with our analysis of the E. coli metabolic network, we

defined two subnetworks that respectively represent amino acid metabolism and hydrocarbon

metabolism. The subsystems contained in each subnetwork are listed in Table 7 and other

related information is summarized in Table 4.
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We made sequences of EqSets with the same candidate set of parameter values as that of the

E. coli model, and then calculated the corresponding p-values to see whether the disease-asso-

ciated reactions tend to rank higher than the reactions that are not associated with disease pro-

cesses. That tendency is significant for a large section of EqSet sequences (Table 6), especially

for the subnetwork of human amino acid metabolism, of which most sequences get p-values

less than 0.05. Similar to the situations we found for hRBCs and E. coli, the distributions of the

lowest 5% of the p-values also showed stable trends with changes in each fixed parameter (Figs

9 and 10). The results suggest that disease-associated reactions may be discovered by evaluat-

ing their regulatory importance.

Fig 5. P-value distribution of the EqSet sequences calculated from artificial metabolic pathways of hRBC metabolic network. A set of artificial

metabolic pathways are built as follows: (1) An artificial pathway is a summation of several randomly selected EPs. (2) The probability an EP being

selected is p. (3) Altogether, t artificial pathways are generated, and the unique ones form the set. One hundred different artificial pathway sets are built

for certain values of p and t. The distributions of the number of artificial pathways and the number of EPs contained in an artificial pathway in the sets

generated at different values of p and t are shown in Fig I in S1 Text.

https://doi.org/10.1371/journal.pone.0210539.g005
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The sequences with the lowest p-values are shown in S6 and S7 Tables for the above two

subnetworks, respectively, whose front parts are enriched with disease-associated reactions.

After a literature study of the internal EqSets which stand in the top 30 of the sequences but

are not disease-associated according to Lee’s data [67], we found it worth mentioning that

most of their member reactions were reported to be related to some diseases by other pub-

lished papers (Table 8). Therefore, our approach of sorting reactions according to their

Table 3. Subsystems contained in each metabolic sub network of E.coli.

Subnetwork Subsystems

Amino acid

metabolism

Alanine and aspartate metabolism; alternate carbon metabolism; arginine and proline

metabolism; cofactor and prosthetic group biosynthesis; cysteine metabolism; folate

metabolism; glutamate metabolism; glycine and serine metabolism; histidine metabolism;

methionine metabolism; threonine and lysine metabolism; tyrosine tryptophan and

phenylalanine metabolism; unassigned; valine leucine and isoleucine metabolism

Hydrocarbon

metabolism

Citric acid cycle; cofactor and prosthetic group biosynthesis; folate metabolism; glycolysis

gluconeogenesis; glyoxylate metabolism; methylglyoxal metabolism; oxidative

phosphorylation; pentose phosphate pathway; putative; unassigned

Lipid metabolism Anaplerotic reactions; cell envelope biosynthesis; citric acid cycle; cofactor and prosthetic

group biosynthesis; folate metabolism; membrane lipid metabolism; methylglyoxal

metabolism; nitrogen metabolism; oxidative phosphorylation; pyruvate metabolism

https://doi.org/10.1371/journal.pone.0210539.t003

Table 4. The number of internal reactions, exchange reactions, extreme pathways and regulatory or disease-associated reactions in each subnetwork. The values in

the parentheses are the proportion of regulatory or disease-associated reactions among the internal reactions. EP, extreme pathway; RXN, reaction; Reg-, regulatory; Dis,

disease-associated.

Subnetwork No. internal RXNs No. exchange RXNs No. EPs No. Reg- or Dis- RXNs (Rate)

Amino acid metabolism (E. coli) 255 141 385 167 (65.49%)

Hydrocarbon metabolism (E. coli) 114 87 396 54 (47.37%)

Lipid metabolism (E. coli) 127 83 239 65 (51.18%)

Hydrocarbon metabolism (human) 333 320 922 101 (30.33%)

Amino acid metabolism (human) 365 288 402 107 (29.32%)

https://doi.org/10.1371/journal.pone.0210539.t004

Table 5. The span of the four parameters required in EqSet sequence calculation.

Parameter Span

μ 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1

ρe 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52,1

ρs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, 40, 44, 48, 52,1

τ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40

https://doi.org/10.1371/journal.pone.0210539.t005

Table 6. Summary of the distribution of p-values corresponding to the EqSet sequences calculated on the candidate parameter values. The two right-most columns

show the proportion of candidate parameter values that result in an EqSet sequence with p-value less than 0.05 or 0.01, respectively. Min, minimum; Max, maximum.

Subnetwork Min. Max. Median Average Variance p < 0.05 p < 0.01

Amino acid metabolism (E. coli) 3.10 × 10−4 0.9778 0.0266 0.1076 0.1924 62.07% 7.27%

Hydrocarbon metabolism (E. coli) 4.78 × 10−6 0.9943 0.0232 0.1207 0.2389 78.94% 29.90%

Lipid metabolism (E. coli) 2.08 × 10−9 0.7448 7.19 × 10−6 0.0098 0.0456 96.13% 90.83%

Amino acid metabolism (human) 1.41 × 10−7 0.7621 5.37 × 10−4 0.0185 0.0047 91.93% 86.83%

Hydrocarbon metabolism (human) 7.33 × 10−6 0.7892 0.0665 0.0830 0.0049 35.42% 5.73%

https://doi.org/10.1371/journal.pone.0210539.t006
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regulatory importance is also capable of predicting the potential reactions which are related

with some diseases.

In order to test whether the regulatory importance is a informative feature in detecting the

disease-associated reactions, we divided the reactions of a subnetwork into a training set and a

test set. The parameter values that fit the training set best, i.e., minimized the average p-value

of the training set, were used to predict the disease-associated reactions in the test set. In the

top 10% of the resulting sequences consisting of test EqSets, the average ratio of internal EqSets

containing disease-associated reactions increased by 23% to 33% compared with that of ran-

dom guessing, depending on the proportion of the EqSets used as training data (Fig 11). The

accuracy of the prediction is significantly higher than random guessing, even if fewer disease-

associated reactions are known (i.e., the proportion of the training set is low). Thus, the regula-

tory importance determined from extreme pathways can be a valuable new feature that con-

tributes to the prediction of disease-associated reactions.

Quick search for suitable parameters

In the above examples, we tried over 200,000 different values of the parameters to find the

best fit, which was so time-consuming that it may restrict the practical use of our methods.

Therefore, an efficient approach to parameter optimization is extremely useful. Respecting

the smooth and nearly single-trough distributions of the lowest p-values for each parameter,

Fig 6. Box plots show the distribution of the lowest 5% of the p-values of the EqSet sequences of amino acid metabolism in E. coli when the

parameter specified by the label of each subgraph is fixed to the value under the box. The ordinate axis is plotted in log scale.

https://doi.org/10.1371/journal.pone.0210539.g006
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we improved the parameter search by use of a heuristic algorithm. The heuristic algorithm

achieved the best or nearly best parameter values in the candidate set after trying 5,000 to

20,000 candidates (Fig 12); thereby providing a more than 90% time saving improvement com-

pared with an exhaustive search.

Conclusion and discussion

Metabolism provides cells with energy and building blocks needed to produce biological

structures, maintain the cell as well as carry out various cellular functions [66]. An elaborate

regulatory structure enables the cell to adapt to a variety of internal and external perturba-

tions. The organizing principle of the regulation of cellular metabolism remains a fundamen-

tal problem in biology. Previous research has focused on the regulatory patterns of metabolic

reactions under certain perturbations of a cell’s internal and environmental states. In this

paper, we present a new approach for predicting the regulatory architecture of a cell’s metab-

olism. The prediction is done by sorting the reactions according to their regulatory impor-

tance, which is measured based on the ratios of regulatory extreme pathways. By applying

the method to the metabolic networks of the human erythrocyte and E. coli, we found that

the regulation of metabolism prefers reactions that are efficient and flexible in controlling

the extreme pathways.

Fig 7. Box plots show the distribution of the lowest 5% of the p-values of the EqSet sequences of hydrocarbon metabolism of E. coli when the

parameter specified by the label of each subgraph is fixed to the value under the box. The ordinate axis is plotted in log scale.

https://doi.org/10.1371/journal.pone.0210539.g007
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Fig 8. Box plots show the distribution of the lowest 5% of the p-values of the EqSet sequences of lipid metabolism of E. coli when the parameter

specified by the label of each subgraph is fixed to the value under the box. The ordinate axis is plotted in log scale.

https://doi.org/10.1371/journal.pone.0210539.g008

Table 7. Subsystems contained in each metabolic sub network of human.

Subnetwork Subsystems

Amino acid

metabolism

Alanine and aspartate metabolism; aminosugar metabolism; arginine and proline

metabolism; citric acid cycle; CoA biosynthesis; CoA catabolism; cysteine metabolism; D-

alanine metabolism; folate metabolism; glutamate metabolism; glutathione metabolism;

glycine, serine, and threonine metabolism; heme biosynthesis; heme degradation; histidine

metabolism; lysine metabolism; methionine metabolism; phenylalanine metabolism;

salvage pathway; taurine and hypotaurine metabolism; tetrahydrobiopterin; tryptophan

metabolism; Tyr, Phe, Trp biosynthesis; tyrosine metabolism; urea cycle/amino group

metabolism; valine, leucine, and isoleucine metabolism; vitamin b6 metabolism; beta-

alanine metabolism

Hydrocarbon

metabolism

Ascorbate and aldarate metabolism; biotin metabolism; CYP metabolism; citric acid cycle;

CoA biosynthesis; CoA catabolism; folate metabolism; miscellaneous; fructose and

mannose metabolism; NAD metabolism; glycolysis/gluconeogenesis; galactose metabolism;

glyoxylate and dicarboxylate metabolism; hyaluronan metabolism; IMP biosynthesis;

keratan sulfate degradation; N-glycan biosynthesis; unassigned; N-glycan degradation;

oxidative phosphorylation; pentose phosphate pathway; pyruvate metabolism; pentose and

glucuronate interconversions; putative; propanoate metabolism; riboflavin metabolism;

salvage pathway; starch and sucrose metabolism; thiamine metabolism; oxidative

phosphorylation; pentose phosphate pathway

https://doi.org/10.1371/journal.pone.0210539.t007
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Our study sheds light on the possible mechanism whereby the regulatory architecture of a

metabolic system is determined. It also supports the hypothesis that a cell transforms from one

metabolic steady-state to another by switching “on/off” certain extreme pathways [36]. This

implies that it is the extreme pathways, which are encoded in the stoichiometric relationship of

a metabolic network, that are the real targets of metabolic regulation. In the process of evolu-

tion, metabolic reactions have acquired the ability to exert control by various means, such as

the allosteric and transcriptional regulation of enzymes and genes, respectively. Reactions that

play a key role in regulation are reserved as regulated reactions and form the evolutionary con-

text in which the natural selection for the next regulated reaction occurs.

Our approach is context-free, meaning that it requires no information about the specific

perturbations in the internal physiological states or environmental conditions of the cell.

Rather, it concerns the whole space of valid metabolic steady-states and selects reactions that

are important for regulation on average under various circumstances. Since the metabolic net-

work and regulation strategies occurring in a cell are the result of an evolutionary process that

arose under complicated and changeable internal and environmental conditions, our approach

may provide general principles and closer approximations of the development of the regula-

tory structure of metabolism. The regulatory structure can be used as a blueprint, which pro-

vides the information about where metabolic regulation may occur, for context-dependent

Fig 9. Box plots show the distribution of the lowest 5% of the p-values of the EqSet sequences of human amino acid metabolism when the

parameter specified by the label of each subgraph is fixed to the value under the box. The ordinate axis is plotted in log scale.

https://doi.org/10.1371/journal.pone.0210539.g009
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methods that aim to discover the regulatory strategies for certain perturbations. The combina-

tion of both context-free and context-dependent approaches may not only decrease the com-

plexity of the problem, but also increase the quality of the answer.

Moreover, we demonstrated the ability of our approach to predict disease-associated

reactions in human metabolic networks. According to the regulatory importance, we suc-

cessfully detected the reactions whose mistuning or malfunction will lead to disease. In com-

parison with previous constraint-based reconstruction and analysis (COBRA) methods that

predict lethal reactions, such as gene deletion analysis [96], the pathogenesis concerned in

our study is not confined to the loss of enzymes, but also includes the loss of metabolic regu-

lation. Gene deletion analysis requires the definitions of a cell’s growing condition as well as

its metabolic objective as represented by an objective function. The metabolic objective in

many situations is unknown and moreover changes for different organisms, cell types, envi-

ronmental conditions, or internal physiological states. Therefore, it is difficult to define the

objective function, which prevents the practical use of gene deletion analysis. In contrast,

our approach avoids that obstacle by using extreme pathway analysis. The prediction of dis-

ease-associated reactions can be used with other data, such as gene function and sequence

variation, to screen out mutations closely related to diseases. In addition to its application

to study disease processes, our approach can also be used in metabolic engineering and

Fig 10. Box plots show the distribution of the lowest 5% of the p-values of the EqSet sequences of human hydrocarbon metabolism when the

parameter specified by the label of each subgraph is fixed to the value under the box. The ordinate axis is plotted in log scale.

https://doi.org/10.1371/journal.pone.0210539.g010
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Table 8. Non-disease-associated internal EqSets in top 30 of the sequences of the human amino acid or hydrocarbon metabolic networks with the lowest p-value.

The reaction abbreviation and reaction name look-up table is listed in Table F in S1 Text.

EqSet Rank Disease-related

reaction

Related diseases References

Human amino acid metabolism
3HAO, HKYNH, KYN3OX 13 3HAO pellagra, olivopontocerebellar atrophy [68, 69]

MTHFCm 24 MTHFCm myelomeningocele, spina bifida [70–72]

MTHFD2 26 MTHFD2 lung cancer, spina bifida, breast cancer [73–76]

FKYNH, TRPO2 29 TRPO2 pellagra, haemophilus influenzae [77]

GHMT2r 30 GHMT2r adult acute lymphocytic leukemia, pediatric osteosarcoma [78, 79]

Human hydrocarbon metabolism
NMNS 9 NMNS idiopathic recurrent pericarditis, gestational diabetes [80–86]

NNDPR, EX_Sub_quln[c] 11 NNDPR pellagra, follicular thyroid carcinoma [87]

DOLGLCP_Lter, DOL_GPP_Ler,

UDPDOLPT_L

12 - - -

DOLGLCP_Uter, DOL_GPP_Uer,

UDPDOLPT_U

14 - - -

GAPD 19 GAPD diffuse large B-cell lymphoma, obesity [88, 89]

RBK, EX_Sub_rib-D[c] 27 - - -

FPGS4 28 FPGS4 Rheumatoid arthritis, psoriasis, colorectal cancer, non-small-cell lung cancer,

non-Hodgkin lymphoma

[90–95]

https://doi.org/10.1371/journal.pone.0210539.t008

Fig 11. The average true positive rate versus the background proportion of a disease-associated EqSet. The average

true positive rate equals the proportion of disease-associated EqSets among those that participate in the top 10% of the

sequence composed of the test EqSets. The background proportion equals the ratio of disease-associated EqSets among

all the test EqSets. The horizontal axis represents the fraction of EqSets that used as training data.

https://doi.org/10.1371/journal.pone.0210539.g011

Extreme pathway and metabolic regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0210539 February 5, 2019 21 / 29

https://doi.org/10.1371/journal.pone.0210539.t008
https://doi.org/10.1371/journal.pone.0210539.g011
https://doi.org/10.1371/journal.pone.0210539


synthetic biology to inform the optimal control nodes (reactions of most regulatory impor-

tance) in metabolic networks.

It is worth to note that the consideration of only subsystems of genome-scale metabolic net-

works is a trade-off between computational costs and accuracy. Although dividing the global

metabolic network to a target subsystem and a surrounding subsystem does not change the

space of steady states of the global system, constraining the analysis to the target subsystem

does impact the extreme pathways detected [97, 98]. For example, some of the possible path-

ways of the global metabolic network will be missed [97] and interdependencies between pairs

of fluxes may be lost [98]. Therefore the frequency of reaction participation in extreme path-

ways may be changed and some EqSets may be disrupted. As a result the predicted regulatory

importance of reactions will be biased. In the previous study [97], Kaleta et al. suggested using

another valuable concept of elementary flux patterns, which explicitly takes into account possi-

ble steady-state fluxes through the global metabolic network, instead of elementary modes or

Fig 12. The heuristic parameter searching algorithm quickly identified the best or nearly best among all the

candidates after a few attempts. The horizontal axis represents the number of attempts in which an EqSet sequence is

calculated on certain values of the 4 parameters. The number of attempts ranges from 1,000 to 50,000, with a step of

1,000. The vertical axis represents the number of the candidate parameter values for which the resulting p-values are no

higher than those of the parameters suggested by the search algorithm. The algorithm was repeated 100 times at each

attempt. The average ranks are shown by the line marks and standard deviations are shown with the error bars. The

boxed off portion of the graph is zoomed in as a separate one to show more details.

https://doi.org/10.1371/journal.pone.0210539.g012
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extreme pathways. However elementary flux patterns can not solve our problem because the

factor that ‘each elementary flux pattern can be mapped to at leaset one elementary mode’ in

the global system [97] may introduce even more dramatical bias on the frequency of reaction

participation in metabolic pathways. In this study, we reduce the above bias by optimizing the

partition of the target subsystem. Our practice shows that it is feasible to divide the global met-

abolic network by reactions’ functions. On the contrary, a target subsystem consisting of ran-

domly selected reactions always resulted poor predictions of reactions’ regulatory importance.

However, an obvious disadvantage of function based partition is that the resulted subsystems

are usually biased by the partitioner’s knowledge of each reaction. An important part of the

future work is to develop an algorithm to produce a reasonable partition of a genome-scale

metabolic network. The aim of the algorithm is to introduce as few exchange reactions as pos-

sible while ensuring the complexity, i.e., the number of reactions, of the target subnetwork

since abstracting the surrounding subsystem into exchange reactions is the main cause of the

bias of extreme pathways detected in the target subsystem [97, 98].

Another challenge for the future work is to integrate omics data, such as transcriptomic

and proteomic data, to refine our evaluation of the regulatory cost of each reaction, which

will help improve the prediction quality of our approach. Valuable improvements will include

determining the most possible regulated reactions in an EqSet, and increasing the agreement

between the predicted EqSet sequence and the real sequence that occurs in nature. Further-

more, a quantitative estimation of the probability or confidence level that a reaction is regula-

tory or disease-associated is also in demand.
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43. Llaneras F, Picó J. An interval approach for dealing with flux distributions and elementary modes activity

patterns. J Theor Biol. 2007 May 21; 246(2):290–308. Epub 2007 Jan 5. https://doi.org/10.1016/j.jtbi.

2006.12.029 PMID: 17292923

44. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO. Comparison of network-based path-

way analysis methods. Trends Biotechnol. 2004; 22(8):400–5. https://doi.org/10.1016/j.tibtech.2004.

06.010 PMID: 15283984

45. Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-

scale metabolic models. Metabolic Engineering. 2003; 5(4):264–276. https://doi.org/10.1016/j.ymben.

2003.09.002 PMID: 14642354

46. Klitgord N, Segre D. The importance of compartmentalization in metabolic flux models: yeast as an eco-

system of organelles. Genome Inform. 2010. 22: p. 41–55. PMID: 20238418

47. Bell SL, Palsson BO. Expa: a program for calculating extreme pathways in biochemical reaction networks.

Bioinformatics. 2005; 21(8):1739–40. https://doi.org/10.1093/bioinformatics/bti228 PMID: 15613397

48. Price ND, Famili I, Beard DA, Palsson BO. Extreme pathways and Kirchhoff’s second law. Biophys J.

2002; 83(5):2879–2882. https://doi.org/10.1016/S0006-3495(02)75297-1 PMID: 12425318

49. Cover TM, Thomas JA. Elements of information theory. Wiley-interscience; 2012.

50. Reed JL, Vo TD, Schilling CH, Palsson BO. An expanded genome-scale model of Escherichia coli K-12

(iJR904 GSM/GPR). Genome Biology. 2003; 4(9):R54. https://doi.org/10.1186/gb-2003-4-9-r54 PMID:

12952533

51. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, et al. Global reconstruction of the human

metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA. 2007; 104:1777–

1782. https://doi.org/10.1073/pnas.0610772104 PMID: 17267599

52. Schuster SHC, Jh W, Da F. Reaction routes in biochemical reaction systems: Algebraic properties, vali-

dated calculation procedure and example from nucleotide metabolism. Journal of Mathematical Biology.

2002; 45(2):153–81. https://doi.org/10.1007/s002850200143 PMID: 12181603

Extreme pathway and metabolic regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0210539 February 5, 2019 26 / 29

https://doi.org/10.1038/nature01166
https://doi.org/10.1038/nature01166
http://www.ncbi.nlm.nih.gov/pubmed/12432396
https://doi.org/10.1002/bit.20020
https://doi.org/10.1002/bit.20020
http://www.ncbi.nlm.nih.gov/pubmed/15083505
https://doi.org/10.1186/1752-0509-1-18
https://doi.org/10.1186/1752-0509-1-18
http://www.ncbi.nlm.nih.gov/pubmed/17408508
https://doi.org/10.1002/btpr.1823
http://www.ncbi.nlm.nih.gov/pubmed/24123998
https://doi.org/10.7124/bc.00088E
https://doi.org/10.1006/jtbi.2000.1073
http://www.ncbi.nlm.nih.gov/pubmed/10716907
https://doi.org/10.1016/S0006-3495(02)75210-7
http://www.ncbi.nlm.nih.gov/pubmed/12124266
https://doi.org/10.1016/S0006-3495(03)74899-1
https://doi.org/10.1016/S0006-3495(03)74899-1
http://www.ncbi.nlm.nih.gov/pubmed/12547764
https://doi.org/10.1016/S0022-5193(03)00237-6
https://doi.org/10.1016/S0022-5193(03)00237-6
http://www.ncbi.nlm.nih.gov/pubmed/14575652
https://doi.org/10.1101/gr.327702
http://www.ncbi.nlm.nih.gov/pubmed/12466293
https://doi.org/10.1006/jtbi.2003.3071
https://doi.org/10.1006/jtbi.2003.3071
http://www.ncbi.nlm.nih.gov/pubmed/12642111
https://doi.org/10.1016/S0022-5193(03)00168-1
https://doi.org/10.1016/S0022-5193(03)00168-1
http://www.ncbi.nlm.nih.gov/pubmed/12941590
https://doi.org/10.1016/j.jtbi.2006.12.029
https://doi.org/10.1016/j.jtbi.2006.12.029
http://www.ncbi.nlm.nih.gov/pubmed/17292923
https://doi.org/10.1016/j.tibtech.2004.06.010
https://doi.org/10.1016/j.tibtech.2004.06.010
http://www.ncbi.nlm.nih.gov/pubmed/15283984
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1016/j.ymben.2003.09.002
http://www.ncbi.nlm.nih.gov/pubmed/14642354
http://www.ncbi.nlm.nih.gov/pubmed/20238418
https://doi.org/10.1093/bioinformatics/bti228
http://www.ncbi.nlm.nih.gov/pubmed/15613397
https://doi.org/10.1016/S0006-3495(02)75297-1
http://www.ncbi.nlm.nih.gov/pubmed/12425318
https://doi.org/10.1186/gb-2003-4-9-r54
http://www.ncbi.nlm.nih.gov/pubmed/12952533
https://doi.org/10.1073/pnas.0610772104
http://www.ncbi.nlm.nih.gov/pubmed/17267599
https://doi.org/10.1007/s002850200143
http://www.ncbi.nlm.nih.gov/pubmed/12181603
https://doi.org/10.1371/journal.pone.0210539


53. Schuster S, Kenanov D. Adenine and adenosine salvage pathways in erythrocytes and the role of S-

adenosylhomocysteine hydrolase. A theoretical study using elementary flux modes. Febs Journal.

2005; 272(20):5278–5290(13). https://doi.org/10.1111/j.1742-4658.2005.04924.x PMID: 16218958

54. Nelson DL, Cox MM. Lehninger principles of biochemistry (fourth edition). 4th ed. W.H. Freeman;

2005.

55. Lubert S, Mark BJ, L TJ. Biochemistry (Sixth edition). San Francisco: W.H. Freeman; 2007.

56. Dunaway GA, Kasten TP, Sebo T, Trapp R. Analysis of the phosphofructokinase subunits and isoen-

zymes in human tissues. Biochem J. 1988; 251(3):677–83. https://doi.org/10.1042/bj2510677 PMID:

2970843

57. Luzzatto L. Regulation of the activity of glucose-6-phosphate dehydrogenase by NADP+ and NADPH.

Biochim Biophys Acta. 1967; 146(1):18–25. https://doi.org/10.1016/0005-2744(67)90069-1 PMID:

4383500

58. Yoshida A, Lin M. Regulation of glucose-6-phosphate dehydrogenase activity in red blood cells from

hemolytic and nonhemolytic variant subjects. Blood. 1973; 41(6):877–91. PMID: 4145828

59. Rippa M, Giovannini PP, Barrett MP, Dallocchio F, Hanau S. 6-Phosphogluconate dehydrogenase: the

mechanism of action investigated by a comparison of the enzyme from different species. Biochim Bio-

phys Acta. 1998; 1429(1):83–92. https://doi.org/10.1016/S0167-4838(98)00222-2 PMID: 9920387

60. Takeuchi T, Nishino K, Itokawa Y. Purification and characterization of, and preparation of an antibody

to, transketolase from human red blood cells. Biochim Biophys Acta. 1986; 872(1-2):24–32. https://doi.

org/10.1016/0167-4838(86)90143-3 PMID: 3089282

61. Lonsdale D. Three case reports to illustrate clinical applications in the use of erythrocyte transketolase.

Evidence Based Complementary and Alternative Medicine. 2007; 4(2):247–250. https://doi.org/10.

1093/ecam/nel089 PMID: 17549243

62. Crespillo J, Llorente P, Argomaniz L, Montero C. APRT from erythrocytes of HGPRT deficient patients:

kinetic, regulatory and thermostability properties. Mol Cell Biochem. 2003; 254(1-2):359–63. https://doi.

org/10.1023/A:1027323521969 PMID: 14674717

63. Arnold WJ, Kelley WN. Adenine phosphoribosyltransferase. Methods Enzymol. 1978; 51:568–74.

https://doi.org/10.1016/S0076-6879(78)51079-3 PMID: 692402

64. Murakami K, Piomelli S. Identification of the cDNA for human red blood cell-specific hexokinase iso-

zyme. Blood. 1997; 89(3):762–6. PMID: 9028305

65. Murakami K, Blei F, Tilton W, Seaman C, Piomelli S. An isozyme of hexokinase specific for the human

red blood cell (HKR). Blood. 1990; 75(3):770–5. PMID: 2297576

66. Palsson B. Systems biology: properties of reconstructed networks. Cambridge Univ Pr; 2006.

67. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL. The implications of human metabolic

network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008; 105(29):9880–5. https://doi.

org/10.1073/pnas.0802208105 PMID: 18599447

68. Decker RH, Kang HH, Leach FR, Henderson LM. Purification and properties of 3-hydroxyanthranilic

acid oxidase. Journal of Biological Chemistry. 1961; 236(236):3076–82. PMID: 13884755

69. BrkićH. Human 3-hydroxyanthranilate 3,4-dioxygenase (3HAO) dynamics and reaction, a multilevel

computational study. Molecular Biosystems. 2015; 11(3):898–907. https://doi.org/10.1039/

c4mb00668b PMID: 25588817

70. Hum DW, Bell AW, Rozen R, Mackenzie RE. Primary structure of a human trifunctional enzyme. Isola-

tion of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohy-

drolase-formyltetrahydrofolate synthetase. Journal of Biological Chemistry. 1988; 263(31):15946–

15950. PMID: 3053686

71. Rozen R, Barton D, Du J, Hum D W, Mackenzie R E, Francke U. Chromosomal localization of the gene

for the human trifunctional enzyme, methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofo-

late cyclohydrolase-formyltetrahydrofolate synthetase. American Journal of Human Genetics. 1989; 44

(6):781–6. PMID: 2786332

72. Watkins D, Schwartzentruber JA, Ganesh J, Orange JS, Kaplan BS, Nunez LD, et al. Novel inborn error

of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1

gene in a single proband. Journal of Medical Genetics. 2011; 48(9):590–592. https://doi.org/10.1136/

jmedgenet-2011-100286 PMID: 21813566

73. Hosgood HD, Menashe I, Shen M, Yeager M, Yuenger J, Rajaraman P, et al. Pathway-based evaluation

of 380 candidate genes and lung cancer susceptibility suggests the importance of the cell cycle pathway.

Carcinogenesis. 2008; 29(10):1938–1943. https://doi.org/10.1093/carcin/bgn178 PMID: 18676680

74. Shaw GM, Lu W, Zhu H, Yang W, Briggs FB, Carmichael SL, et al. 118 SNPs of folate-related genes

and risks of spina bifida and conotruncal heart defects. Bmc Medical Genetics. 2009; 10(1):49–49.

https://doi.org/10.1186/1471-2350-10-49 PMID: 19493349

Extreme pathway and metabolic regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0210539 February 5, 2019 27 / 29

https://doi.org/10.1111/j.1742-4658.2005.04924.x
http://www.ncbi.nlm.nih.gov/pubmed/16218958
https://doi.org/10.1042/bj2510677
http://www.ncbi.nlm.nih.gov/pubmed/2970843
https://doi.org/10.1016/0005-2744(67)90069-1
http://www.ncbi.nlm.nih.gov/pubmed/4383500
http://www.ncbi.nlm.nih.gov/pubmed/4145828
https://doi.org/10.1016/S0167-4838(98)00222-2
http://www.ncbi.nlm.nih.gov/pubmed/9920387
https://doi.org/10.1016/0167-4838(86)90143-3
https://doi.org/10.1016/0167-4838(86)90143-3
http://www.ncbi.nlm.nih.gov/pubmed/3089282
https://doi.org/10.1093/ecam/nel089
https://doi.org/10.1093/ecam/nel089
http://www.ncbi.nlm.nih.gov/pubmed/17549243
https://doi.org/10.1023/A:1027323521969
https://doi.org/10.1023/A:1027323521969
http://www.ncbi.nlm.nih.gov/pubmed/14674717
https://doi.org/10.1016/S0076-6879(78)51079-3
http://www.ncbi.nlm.nih.gov/pubmed/692402
http://www.ncbi.nlm.nih.gov/pubmed/9028305
http://www.ncbi.nlm.nih.gov/pubmed/2297576
https://doi.org/10.1073/pnas.0802208105
https://doi.org/10.1073/pnas.0802208105
http://www.ncbi.nlm.nih.gov/pubmed/18599447
http://www.ncbi.nlm.nih.gov/pubmed/13884755
https://doi.org/10.1039/c4mb00668b
https://doi.org/10.1039/c4mb00668b
http://www.ncbi.nlm.nih.gov/pubmed/25588817
http://www.ncbi.nlm.nih.gov/pubmed/3053686
http://www.ncbi.nlm.nih.gov/pubmed/2786332
https://doi.org/10.1136/jmedgenet-2011-100286
https://doi.org/10.1136/jmedgenet-2011-100286
http://www.ncbi.nlm.nih.gov/pubmed/21813566
https://doi.org/10.1093/carcin/bgn178
http://www.ncbi.nlm.nih.gov/pubmed/18676680
https://doi.org/10.1186/1471-2350-10-49
http://www.ncbi.nlm.nih.gov/pubmed/19493349
https://doi.org/10.1371/journal.pone.0210539


75. Laura L, Kirsi K, Rami M, John-Patrick M, Miro V, Olli K, et al. High-throughput RNAi screening for novel

modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and

invasion. Oncotarget. 2012; 4(1):48–63.

76. Liu F, Liu Y, He C, Tao L, He X, Song H, et al. Increased MTHFD2 expression is associated with poor

prognosis in breast cancer. Tumour Biology the Journal of the International Society for Oncodevelop-

mental Biology & Medicine. 2014; 35(9):8685–8690. https://doi.org/10.1007/s13277-014-2111-x

77. Comings DE, Muhleman D, Dietz G, Sherman M, Forest GL. Sequence of Human Tryptophan 2,3-Diox-

ygenase (TDO2): Presence of a Glucocorticoid Response-like Element Composed of a GTT Repeat

and an Intronic CCCCT Repeat. Genomics. 1995; 29(2):390–396. https://doi.org/10.1006/geno.1995.

9990 PMID: 8666386

78. Rao NA, Ambili M, Jala VR, Subramanya HS, Savithri HS. Structure–function relationship in serine

hydroxymethyltransferase. Biochimica Et Biophysica Acta. 2003; 1647(1-2):24–9. https://doi.org/10.

1016/S1570-9639(03)00043-8

79. Stover P, Schirch V. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetra-

hydrofolate to 5-formyltetrahydrofolate. Journal of Biological Chemistry. 1990; 265(24):14227–33.

PMID: 2201683

80. Kadoglou NPE, Tsanikidis H, Kapelouzou A, Vrabas I, Vitta I, Karayannacos PE, et al. Effects of rosiglita-

zone and metformin treatment on apelin, visfatin, and ghrelin levels in patients with type 2 diabetes mellitus.

Metabolism Clinical & Experimental. 2010; 59(3):373–9. https://doi.org/10.1016/j.metabol.2009.08.005

81. Saddi-Rosa P, Oliveira CS, Giuffrida FM, Reis AF. Visfatin, glucose metabolism and vascular disease:

a review of evidence. Diabetol Metab Syndr. 2010; 2:21. https://doi.org/10.1186/1758-5996-2-21 PMID:

20346149

82. Gonzalez-Gay MA, Vazquez-Rodriguez TR, Garcia-Unzueta MT, Berja A, Miranda-Filloy JA, de Matias

JM, et al. Visfatin is not associated with inflammation or metabolic syndrome in patients with severe

rheumatoid arthritis undergoing anti-TNF-alpha therapy. Clinical and Experimental Rheumatology.

2010; 28(1):56–62. PMID: 20346239

83. Mara G, Frédéric VG, Anthony R, Fabienne A, Oberdan L. The nicotinamide phosphoribosyltransfer-

ase: a molecular link between metabolism, inflammation, and cancer. Cancer Research. 2010; 70(1):8–

11. https://doi.org/10.1158/0008-5472.CAN-09-2465

84. Paschou P, Kukuvitis A, Yavropoulou MP, Dritsoula A, Giapoutzidis V, Anastasiou O, et al. Genetic vari-

ation in the visfatin (PBEF1 / NAMPT) gene and type 2 diabetes in the Greek population. Cytokine.

2010; 51(1):25–7. https://doi.org/10.1016/j.cyto.2010.04.006 PMID: 20451405
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