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Abstract: An end-fire radiating implantable antenna with a small footprint and broadband operation
at the frequency range of 3–5 GHz is proposed for high-data-rate wireless communication in a
brain–machine interface. The proposed Vivaldi antenna was implanted vertically along the height of
the skull to avoid deformation in the radiation pattern and to compensate for a gain–loss caused by
surrounding lossy brain tissues. It was shown that the vertically implanted end-fire antenna had a
3 dB higher antenna gain than a horizontally implanted broadside radiating antenna discussed in
recent literature. Additionally, comb-shaped slot arrays imprinted on the Vivaldi antenna lowered
the resonant frequency by approximately 2 GHz and improved the antenna gain by more than
2 dB compared to an ordinary Vivaldi antenna. An antenna prototype was fabricated and then
tested for verification inside a seven-layered semi-solid brain phantom where each layer had similar
electromagnetic material properties as actual brain tissues. The measured data showed that the
antenna radiated toward the end-fire direction with an average gain of −15.7 dBi under the frequency
of interest, 3–5 GHz. A link budget analysis shows that reliable wireless communication can be
achieved over a distance of 10.8 cm despite the electromagnetically harsh environment.

Keywords: brain–machine interface; implantable antenna; link budget analysis; specific absorption
rate; tissue-emulating phantom; ultra-wideband antenna; Vivaldi antenna

1. Introduction

Brain signal monitoring has gained considerable attention not only from brain scien-
tists but also from electronics engineers. Real-time neural data extracted by a brain–machine
interface (BMI) or brain–computer interface (BCI) can be used for various applications,
such as restoring sensory functions and controlling robotic prostheses [1]. A review of the
basic concept of BCI, its applications, and challenges were extensively discussed in [2].
A conventional technique such as electroencephalography (EEG) requires a wired elec-
trode to be attached on the scalp to monitor brain signals [3]. However, several studies
have demonstrated the need for implanting a wireless BMI deep into the brain to monitor
both the electroencephalogram (EEFG) and electrocorticography (ECoG) for cognitive and
speech control [4–9]. Neuralink [10], a neurotechnology company, has recently presented a
pioneering deep BMI with wireless communication and power-charging functions.

A wireless BMI consists of electrodes, an analog integrated circuit, a digital signal
processing unit, a radio frequency (RF) front-end, and an antenna. They are packed
into a biocompatible housing whose footprint typically ranges from 10 × 10 mm2 to
20 × 20 mm2 [5–13].

The slightly large size of a brain implant is primarily due to the antenna size. For
instance, the size of a half-wavelength patch antenna at the 2.4 GHz industrial-scientific-
medical (ISM) frequency band in free space is approximately 60 × 60 mm2. The antenna size
can be reduced to fit into the housing by considering the high dielectric constants of brain
tissues (e.g., cortical bone or dura) and by applying antenna miniaturization techniques
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(e.g., meandering, folding, and shorting). However, most of the reported works suffer from
a low antenna gain (<−20 dBi) that is due to the high dielectric loss of brain tissues. The
study showed that the antenna gain reduced by 10.7 dB after implanting it in the brain [5].

Typically, a brain-implanted antenna is located under the skull, immersed horizontally
in the dura or cerebrospinal fluid (CSF), as shown in Figure 1a. This circumstance lowers
the antenna gain because the skull is thick (~7 mm at the bregma) and lossy (loss tangent,
tanδ, ~0.3) [14,15]. A full-wave electromagnetic simulation study indicated a reduction
of at least 2 dB in antenna gain because of the thick skull. Deformation of the antenna
radiation pattern is another issue. A broadside antenna horizontally placed under the skull
is expected to radiate toward the zenith. However, unexpected large back lobes and side
lobes are often seen after implanting an antenna in such a complex brain environment [16],
i.e., the broadside radiation is not guaranteed because of the impact of the thick skull layer,
high permittivity brain tissues, and small antenna ground plane.
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Figure 1. Conceptual illustrations of the brain-implanted antenna placement: (a) conventional
horizontal placement and (b) proposed vertical placement.

This paper presents an end-fire radiating antenna implanted vertically in the skull.
Figure 1b shows the conceptual illustration of the vertical placement. The antenna was
placed along the thickness of the skull and then connected upright to the integrated circuit
(IC). Hence, the antenna had more design freedom as long as the height conformed to the
thickness of the skull. More importantly, the antenna gain can be significantly improved
throughout the bandwidth of interest. The proposed antenna was designed for 3–5 GHz
impulse radio ultra-wideband (IR-UWB), which could transfer the data at a high rate with
a low power consumption because of its wider operation bandwidth [17,18]. A tapered
slot antenna, the so-called Vivaldi antenna, was employed to cater to this wide bandwidth.
The Vivaldi antenna is a well-known end-fire radiating antenna that provides broadband
impedance matching and radiation performance owing to its gradual tapered structure [19].
However, we found that an abrupt tapering profile was required because the end-fire
length was limited to the skull thickness. This abrupt profile limited the end-fire gain and
bandwidth. Therefore, a slot array was implemented in the proposed design to resolve
the issue. The slot array improved the gain and reduced the antenna resonant frequency,
implying the size miniaturization. As a result, the antenna gain is enhanced approximately
2 dB and 3 dB by introducing the new Vivaldi antenna and by implanting the antenna
vertically in the skull.

The rest of the paper is organized as follows. Section 2 describes the antenna design.
Furthermore, it provides details of the brain environment and slot array structure. Section 3
presents the antenna prototype fabrication process and measurement results. Section 4
discusses the specific absorption rate (SAR) simulation and measurement results along
with the link budget analysis to estimate the performance of the communication system
equipped with the proposed antenna. Section 5 concludes the paper.

2. Antenna Design

Figure 2 provides an overview of the proposed skull-embedded Vivaldi antenna. It was
vertically installed against the dura matter below the skull. The antenna was sandwiched
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inside a Taconic RF-35, a biocompatible insulator with relative permittivity (εr) and loss
tangent (tanδ) of 3.5 and 0.002, respectively. Its low tanδ value at the antenna design
frequency (i.e., 3–5 GHz) is beneficial for improving the antenna gain [11]. In addition, the
RF-35 is mechanically durable (tensile strength of 27,000 psi and dimensional stability of
0.00004 mm/mm) and has a low moisture absorption of 0.02%. The height of the insulator
was fixed to 7 mm, corresponding to a typical height of an adult human skull. The thickness
and width of the insulator were 0.5 mm and 12 mm, respectively (see Figure 2). The width
of 12 mm matched half of the guided wavelength (λg) at the center frequency (4 GHz). The
geometry of the insulated Vivaldi antenna was optimized using full-wave electromagnetic
simulation software (Ansys HFSS). The goal was to achieve a good impedance matching
condition (reflection coefficient, S11 < −10 dB) and high end-fire gain (>−15 dB) over a wide
bandwidth (3–5 GHz) even in the lossy brain environment. It consisted of seven different
layers of brain tissues; their material properties and thicknesses assigned in the simulation
model are listed in Table 1 [20]. The material properties of each layer are presented in the
center frequency 4 GHz of the target bandwidth (3–5 GHz).
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Figure 2. The proposed Vivaldi antenna surrounded by insulators and embedded in the skull.

Table 1. Material properties of brain tissues at 4 GHz.

Layer Relative Permittivity (εr) Loss Tangent (tanδ) Thickness (mm)

Skin 40.84 0.297 1
Fat 5.12 0.160 2

Skull 10.53 0.310 7
Dura 40.10 0.308 1.5
CSF 63.73 0.366 2

The geometry of the Vivaldi antenna is depicted in Figure 3. The tapered slot at the
middle gradually opened up to support a smooth impedance transition and to generate
end-fire radiations over a broad bandwidth. Simulation results showed that an ordinary
Vivaldi antenna modeled in the given area of 7 × 12 mm2 resonated around 6 GHz, which
is higher than the desirable 4 GHz (i.e., the center frequency of 3–5 GHz). Therefore, an
antenna miniaturization technique was required to reduce the antenna footprint. One way
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to miniaturize a Vivaldi antenna is to add horizontal slots along the side edges [21–23].
The horizontal slots act as a choke to lessen undesirable currents flowing at the side edges,
which can improve the impedance-matching condition. However, this method accompanies
the decrease of end-fire gain. The substrate size along the longitudinal direction was
extended [24] and driving elements between the tapered slots were added to recover the
end-fire gain [22].
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Figure 3. Geometry of the proposed Vivaldi antenna with vertical slots.

Instead of horizontal slots, the proposed Vivaldi implemented comb-shaped vertical
slots to miniaturize the Vivaldi antenna. We found that the method effectively improved the
end-fire gain by concentrating more currents along the tapered slot in the middle. Figure 4
shows the surface current densities at 3, 4, and 5 GHz for the conventional Vivaldi without
slots and proposed Vivaldi with slots. The conventional design exhibited excessive currents
at the bottom edge where the antenna feed was located. Stronger currents were observed
at the lower frequency of 3 GHz, which has a longer wavelength. However, the proposed
design gradually distributed these currents to the center tapered slot and three vertical slots,
making the electrical length longer (miniaturization) and main radiating source stronger
(improved gain). The similarity in current distributions at 3, 4, and 5 GHz imply that a
stable radiation characteristic can be maintained over a broad bandwidth.
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Figure 4. Comparisons of surface current densities of conventional and proposed Vivaldi antennas.

Figure 5a,b show the simulation results of S11 and realized gain while embedding the
antenna in the seven-layer brain phantom. We compared S11 and the realized gain of the
proposed Vivaldi antenna to that of the conventional Vivaldi antenna. The resonant fre-
quency was shifted down from 6 GHz to 4 GHz by introducing the vertical slots. Moreover,
the realized gain plot showed an improvement of 1–3 dB at the target frequency range,
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3–5 GHz; an average of −13 dBi realized gain can be achieved. It is worth noting that
the realized gain of a conventional Vivaldi is low, about 6 GHz, despite the S11 being low,
implying its antenna impedance matching and radiation performances have a discrepancy.
In contrast, the proposed Vivaldi’s resonant frequency and the frequency exhibiting high
realized gain are matched. Altogether, the vertical installation of the end-fire antenna and
optimization of its geometry improved the realized gain by approximately 3 dB and 2 dB
(total of 5 dB) relative to horizontally installed broadside antennas, respectively.
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Figure 6 shows parametric studies of S11 by altering the slot’s geometry. The width
of slot (s) can be used to tune the antenna’s resonant frequency (see Figure 6a). Here,
s between each slot is set to be the same to make the optimization process concise. The
wider s shifted the resonant frequency toward the lower end, resulting in antenna miniatur-
ization by introducing more slot inductance than capacitance. Slot length (l1) was another
parameter for adjusting the resonant frequency (see Figure 6b). The longer l1 provided
more inductance without altering the capacitance. Therefore, the resonant frequency shifted
left with increasing l1. We note that l1 is the length of the first slot. The second and third
slots were longer. Their lengths were determined by the Vivaldi’s exponential curvature
profile at the middle. In particular, l1 = 2.4 mm, l2 = 2.8 mm, and l3 = 3.4 mm. Table 2
lists the final antenna’s geometrical parameters. These values were obtained for the target
frequency range, 3–5 GHz, with the given antenna space, 12 mm × 7 mm; however, the
s and l parametric optimizations can be applied for any frequency band and antenna size.
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Table 2. Optimized antenna parameters.

Parameter Length (mm)

s 0.4
w 0.8
h 1.6
l1 2.4
l2 2.8
l3 3.4

3. Antenna Prototype Fabrication and Measurement

Having obtained promising broadband and high gain simulation results, an antenna
prototype was fabricated and then tested for experimental validation. The measured
antenna parameters were S11, radiation patterns, and realized gain. They were measured
by inserting the antenna prototype into an in-house fabricated seven-layer brain phantom.

3.1. Fabrication of Brain-Tissue-Emulating Phantom

The radiation performance of an implantable antenna is highly affected by its sur-
rounding environment. Hence, it is important to test the antenna inside a human tissue-
mimicking phantom exhibiting similar electromagnetic material properties (i.e., εr and tanδ)
of the actual environment—the brain for this study. A liquid phantom is often used to test
implantable antennas [25,26]. However, such a homogeneous phantom is insufficient to
represent the complex brain environment consisting of multiple layers with different mate-
rial properties. We fabricated seven different semi-solid tissue-emulating layers following
recipes provided in [12]. Figure 7 shows the fabricated seven layers and their stack-up. The
material properties of each layer were measured by an open-ended coaxial probe [27] and
compared to the known values listed in Table 1 for validation. The size of the stack-up was
10 cm × 10 cm × 7.2 cm.
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3.2. Fabrication of Antenna Prototype

Figure 8 shows the fabricated antenna prototype. The optimized Vivaldi geometry,
including the vertical slot array, was implemented on a 0.5 mm thick Taconic RF-35 substrate.
A conventional printed circuit board (PCB) fabrication process was used to etch the antenna
footprint on the substrate. Figure 8a shows the fabricated antenna itself, while Figure 8b
shows a combination of the antenna and coaxial cable. As can be seen, the antenna was
directly fed by a coaxial cable instead of a bulky RF connector (e.g., SMA connector). The
outer conductor of the cable was directly soldered to one Vivaldi arm to feed the balanced
Vivaldi antenna with the unbalanced coaxial cable; the inner conductor was routed through
a hole punctured at the substrate and then soldered to the other arm. After that, the antenna
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was covered by another piece of 0.5 mm Taconic RF-35 as an insulator (i.e., superstrate) as
depicted in Figure 8c.
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Figure 8. Fabricated antenna prototype: (a) antenna printed on a substrate, (b) antenna connected to
a coaxial cable, and (c) antenna covered by a superstrate.

3.3. Measurement of S11

The fabricated antenna was placed into the seven-layer phantom for measurements.
More specifically, the antenna was vertically inserted in the skull layer; hence, the top and
bottom of the antenna were touching the fat and dura layer, respectively (see Figure 2).
Figure 9 shows the test setup for S11 measurement. The phantom (with the antenna inside)
was placed on a mount made with low permittivity and low loss Rohacell® foam. The
coaxial cable sticking out from the phantom was connected to a vector network analyzer
(Anritsu MS2038C). Figure 10 compares the measured and simulated S11 of the proposed
and conventional Vivaldi antennas. The latter is an ordinary Vivaldi that does not have the
vertical slot array, as depicted in the inset of Figure 10. The red and black lines correspond
to S11 responses of the proposed and conventional Vivaldi, respectively. The measured
S11 data indicated that the resonant frequency of the proposed Vivaldi was 2 GHz lower
than the conventional Vivaldi (4.3 GHz versus 6.3 GHz), which confirms the antenna
miniaturization effect caused by the vertical slot array. The simulation results of S11 are
drawn with solid lines. They agree well with the measurements. The measured resonant
frequencies were higher than those from simulations by approximately 300 MHz and
150 MHz for the proposed and conventional antennas, respectively, possibly because of
slight discrepancies in the phantom’s material properties. We note that the phantom’s
εr and tanδ are highly affected by the amount of water evaporation with time. It is hard
to avoid the water evaporation in spite of precautions when handling the semi-solid
phantoms. Solutions to prevent this difficulty can include wrapping each tissue phantom
with a thin layer of low permittivity material or using 3D-printed biomaterials with a low
moisture content.
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3.4. Measurement of Radiation Pattern

The far-field radiation patterns of the proposed antenna were measured in an accred-
ited antenna chamber [28]. Figure 11 shows the seven-layer phantom (with the antenna
inside) mounted on a positioner. The latter was capable of 3D rotation (180◦ in elevation and
360◦ in azimuth). The z-direction shown in the figure corresponds to the end-fire direction
where the aperture of the antenna points is. Figure 12a shows the measured 3D radiation
pattern at the center frequency, 4 GHz. It shows that most radiation is pointed toward the
zenith (z-direction) with a high front-to-back ratio (FBR) of 16 dB. Furthermore, Figure 12b,c
present the measured 2D E-plane and H-plane patterns. They were normalized by the peak
gain value and then compared with the simulated radiation patterns. Good agreements
can be observed, implying the prototype fabrication and measurement procedures were
valid. Figure 13 shows the measured realized gain in the z-direction at the frequency range
of 2 to 6 GHz. We compared the measured realized gain of the conventional Vivaldi (see
Figure 10 b) with that of the proposed Vivaldi (see Figure 10). The measured realized gain
data was not steady in the bandwidth of interest, and it was approximately 2 dB lower
than the simulation data (see Figure 5b); however, the gain improvement of the proposed
design compared to the conventional Vivaldi was clearly observed. A gain improvement
is observed because of the added vertical slots, which redirect more currents along the
tapered slot as described in the simulation study, Figure 4. The average improvement
was 2.68 dB throughout 3–5 GHz, which is similar to the improvement demonstrated
in Figure 5b. Table 3 compares previously reported brain-implanted antennas and the
proposed Vivaldi in terms of their operation frequency, size, and gain. It also includes the
conventional Vivaldi’s gain to highlight the gain improvement of the proposed Vivaldi.
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Figure 13. A comparison of measured realized gain of the conventional and proposed Vivaldi antennas.

Table 3. Comparison of brain-implanted antennas.

Antenna Frequency (GHz) Size (mm3) Gain (dBi)

[11] 2.40–2.48 39.9 −20.75
[12] 2.42–2.50 50 −25
[14] 2.40–2.48 101.6 −17.3

Conventional Vivaldi 3–5 42 −18.3
Proposed Vivaldi 3–5 42 −15.7

4. Specific Absorption Rate and Link Budget Analysis
4.1. Specific Absorption Rate

It is required to examine the specific absorption rate (SAR)—the amount of non-
ionizing radiated power absorbed by the surrounding biological tissues—for an implantable
wireless device. SAR standards differ by countries or regulatory agencies; however, two
SAR standards are mainly considered: IEEE C95.1-1999 [29] and IEEE C95.1-2005 [30]. The
maximum allowable SAR values are 1.6 W/kg averaged over 1 g of tissue and 2 W/kg
over 10 g of tissue for IEEE C95.1-1999 and IEEE C95.1-2005, respectively.

SAR values were computed and analyzed using the same simulation setup as the
antenna performance analysis (see Section 2). Figure 14a,b show the simulated SAR-1g
and SAR-10g for various frequencies after supplying an input power of 1 W to the antenna
embedded in the bone layer. The SAR-1g in Figure 14a continuously increased with
increasing frequency, while the SAR-10g in Figure 14b shows a peak and null at 3.6 GHz
and 5.1 GHz, respectively. The SAR values were very high because of the high input power
of 1 W, e.g., 240 W/kg and 59.4 W/kg at 4 GHz for SAR-1g and SAR-10g, respectively.
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However, the actual SAR is expected to have a much lower value because the power
consumed by the RF-front-end of implantable devices generally lies within 100 µW to a few
mW [31]. Hence, we calculated the maximum allowable input power to the antenna that
satisfied the SAR-1g (1.6 W/kg) and SAR-10g (2 W/kg) criteria. They are marked by the red
dashed lines. The SAR-1g criterion can be fulfilled as long as the input power is less than
5.9 mW for the frequency range of 3–5 GHz as in Figure 14a. The maximum allowable input
power for the SAR-10g was 33.6 mW as in Figure 14b, which is less stringent than SAR-1g.
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Figure 14. The simulated SAR and maximum allowable input power of the proposed antenna
inside the seven-layer phantom: (a) SAR-1g and (b) SAR-10g. The insets show simulated SAR value
distributions around the antenna.

We measured SAR using a SAR robot in an accredited test facility [32]. Figure 15a
shows the SAR robot and probe and Figure 15b shows the actual test set-up with the
phantom and signal generator as the source. Figure 15c provides a zoomed-in view of the
phantom placements. The seven-layer phantom with the antenna inside was attached at the
bottom of a SAR flat phantom. A SAR probe was scanned by the robot arm at the opposite
side of the empty flat phantom, and the E-field magnitudes radiated from the antenna
were collected. The antenna was fed by a coaxial cable connected to a signal generator.
The SAR values at a wireless local area network (WLAN) of 2.45 GHz and 5.8 GHz were
measured because of the lack of SAR measurement procedure for 3–5 GHz IR-UWB. The
output power from the signal generator was set to 1 mW. Figure 16 shows the measured
SAR distribution. The total scan area was 150 × 150 mm2. The zoomed scan volume after
identifying the hot spot was 40 × 40 × 35 mm3. The hot spot locations for 2.45 GHz and
5.8 GHz were comparable. The higher frequency (5.8 GHz) showed a higher averaged
SAR-1g value of 0.42 W/kg than that of the lower frequency (2.45 GHz) (i.e., 0.11 W/kg).
Both of them were much lower than the 1.6 W/kg limit. These measurement trials provide
a reasonable postulation that SAR is not a problematic issue despite that the measured
frequencies were not exactly matched to the target frequencies.
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4.2. Link Budget Analysis

A link budget analysis [33,34] was conducted to estimate the approximate performance
of an implantable wireless communication system equipped with the proposed Vivaldi
antenna. We assumed a point-to-point wireless communication system whose transmitting
antenna was the proposed Vivaldi implanted in the brain and the receiving antenna was
a broadband testing antenna [35] situated outside of the head. Table 4 summarizes the
parameters for the link budget analysis. The link margin (LM) is a power margin at the
receiver, allowing a satisfying wireless communication quality. More specifically:

LM(dB) = Pr − Pr(min) (1)

where Pr corresponds to the received power and Pr(min) denotes the minimum required
power for the receiver. LM typically spans from 3 to 20 dB. We set it to 20 dB, the most
demanding requirement, to reflect the harsh wireless communication environment. The
assigned transmit power (Pt) was −25 dBm, which is a typical output power of a trans-
mitter for implantable devices [31]. The realized gain of the transmitting (Tx) antenna
(i.e., implanted antenna) was given by −16.67 dB based on the measurement in the data
presented in Section 3. Furthermore, the receiving (Rx) antenna’s realized gain was set
to 6.65 dB, which corresponds to the antenna gain at 4 GHz of a broadband tapered slot
antenna [35]. The required signal-to-noise ratio (SNR) per bit, or the energy per bit to noise
power spectral density ratio (Eb/N0), was set to 9.6 dB by assuming an ideal phase-shift
keying (PSK) performance. The bit rate was set to 256 Mbps, which is reasonably high for
brain-signal monitoring [34]. Finally, the path loss (L0) was calculated for the free-space at-
tenuation. In the equation, λ4GHz denotes the free-space wavelength of 4 GHz (i.e., 75 mm)
and D denotes the distance between the Tx and Rx. In fact, D is the parameter of interest
for this link budget analysis. According to the Friis transmission formula [33]:

Pr(dB) = Pt + RGt + RGr − L0 (2)

Pr(min)(dB) =
Eb
N0

+ KT0 + B (3)

Plugging (2) and (3) into (1) and then applying the parameters from Table 4 provided
D = 108.1 mm, i.e., the transmitted brain signal can be reliably received with LM of 20 dB at
the receiver located at 108.1 mm above the head. We note that this distance was reduced to
80.4 mm if the conventional Vivaldi with a realized gain of −19.24 dB was used instead of
using the proposed Vivaldi.
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Table 4. Parameters for link budget analysis.

Parameters Values at 4 GHz

Link margin (LM) 20 dB
Transmit power (Pt) −25 dBm

Tx Ant. realized gain (RGt) −16.67 dB
Rx Ant. realized gain (RGr) 6.65 dB

SNR per bit (Eb/N0) 9.6 dB
Boltzmann’s constant (K) 1.38 × 10−23

Temperature (T0) 298 K
Bit rate (B) 256 Mbps

Path Loss (L0) 20 log
(

4πD
λ4GHz

)
dB

5. Conclusions

The full-wave electromagnetic simulations showed that the end-fire antenna vertically
embedded in the skull exhibited two times (3 dB) higher antenna gain than an ordinary
case—a broadside antenna horizontally embedded below the skull. The proposed end-fire
Vivaldi antenna was measured to have a small footprint of 12 × 7 mm2 because of the novel
comb-shaped slot arrays behind the main aperture. These slot arrays not only promote the
antenna miniaturization but also enhance the gain and bandwidth. The geometry of the
antenna was carefully optimized by full-wave simulations to operate in the 3–5 GHz IR-
UWB frequency range. An antenna prototype was fabricated and a series of measurements
were performed by embedding the antenna in an in-house-made seven-layer brain-tissue-
emulating phantom to verify the antenna performance. The measurement results of the
proposed Vivaldi showed that the resonant frequency was 2 GHz lower, and the gain was
2.6 dB higher than the conventional Vivaldi without slot arrays. Furthermore, the proposed
Vivaldi can be a promising candidate for brain-to-outside wireless communication based
on the link budget and SAR analyses. Based on our findings, it could be worthwhile for
surgeons and medical professionals to identify pathways for implanting antennas in the
skull during a brain surgery (e.g., craniotomy).
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