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Abstract: The relationship between beehive weight and traffic is a fundamental open research
problem for electronic beehive monitoring and digital apiculture, because weight and traffic affect
many aspects of honeybee (Apis mellifera) colony dynamics. An investigation of this relationship
was conducted with a nondisruptive two-sensor (scale and camera) system on the weight and video
data collected on six Apis mellifera colonies in Langstroth hives at the USDA-ARS Carl Hayden Bee
Research Center in Tucson, Arizona, USA, from 15 May to 15 August 2021. Three hives had positive
and two hives had negative correlations between weight and traffic. In one hive, weight and traffic
were uncorrelated. The strength of the correlation between weight and traffic was stronger for longer
time intervals. The traffic spread and mean, when taken separately, did not affect the correlation
between weight and traffic more significantly than the exact traffic counts from videos. Lateral traffic
did not have a significant impact on weight.

Keywords: electronic beehive monitoring; continuous beehive monitoring; digital apiculture; bee
traffic; hive weight; physical sensors; sensor devices; sensor systems; Apis mellifera; correlation;
chi-square

1. Introduction

Hive weight is an important indicator of colony activity [1], and many amateur and
commercial operations measure weight continuously to estimate colony food reserves
and to gauge optimal honey harvesting times [2,3]. Weight changes are indicative of the
forager loss and gain during the day and of pollination activity [4,5]. Traffic is another
important factor affecting colony dynamics. Traffic at hive entrance may predict honey
weight gain [6], and rapid traffic increases at hive entrance may be due to robbing and
swarming events [7]. Continuous video traffic measurement is a nondisruptive, robust, and
inexpensive method to estimate hive traffic levels [8]. Sensor-based methods of monitoring
colonies have shown their effectiveness in estimating the effects of stressors (e.g., poor
nutrition or agrochemical exposure) on colony foraging activity and thermoregulation
that are difficult to detect using other means such as visual colony assessments by human
beekeepers [9]. Electronic beehive monitoring researchers have used sensors to measure
internal and external temperature, humidity, atmospheric pressure, wind direction and
speed, rainfall, shortwave radiation, weight, and traffic. While many researchers have
investigated the relationship between traffic and weather (e.g., [10–12]) or weight and
weather (e.g., [9,13–16]), the literature on continuous beehive monitoring, with few notable
exceptions (e.g., [6]), has a dearth of studies on the relationship of hive weight and traffic.
This problem is fundamental, because hive weight and traffic affect many aspects of colony
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dynamics. Furthermore, hive weight is a function of several factors such as colony food
collection and consumption, bee development and loss, moisture gain or loss due to nectar
inflow, ambient humidity and bee respiration, water inflow and outflow, robbing and
swarming, and external weather events. Some of these factors are associated with colony
traffic, while others are not. For example, humid weather adds to hive weight, because
moist wood (and many hives worldwide are made out of wood) is heavier than dry wood.
Thus, the weight change due to humidity, especially at night when bees do not fly, is not
associated with colony traffic. Thus, if we understand the relationship between hive weight
and traffic, we can use both measurements more precisely to identify behavioral markers
of Apis mellifera colonies and to improve data interpretation.

The study by Marceau et al. [6] is a rare attempt to shed light on the relationship
between the traffic at hive entrance estimated with an electronic bee counter and hive
weight on five Langstroth hives with Apis mellifera at an apiary of 22 Langstroth hives for
35 days in July and August 50 km west of Quebec city. The monitored period of each day
was from 9:00 to 16:00. For the first four hives, traffic counts were recorded at 16:00 for the
9:00–16:00 period, and the weight difference for every 24 h period was logged at 9:00. The
fifth hive was automatically monitored at 15 min intervals using data logging equipment
from 9:00 to 16:00 for the mean daily traffic activity (bees/h), and the hive weight difference
(kg) was recorded for the 24 h period at 9:00. The researchers proposed the quadratic model
GAIN = B0 + B1 · ACT2, where GAIN estimates the hive honey gain (kg), ACT is the average
bee activity between 9:00 and 16:00 (bees/h), and B0 and B1 are model coefficients. Marceau
et al. reported that the honey gain varied from 28.7 to 58.4 kg and that the average bee
activity for the 35 observation days varied from 19,403 bees/h for the least productive hive
to 27,408 bees/h for the most productive hive. The four resulting models were very similar,
with the best curve fitting obtained on the two most productive hives with R2 = 0.88 and
R2 = 0.90. The researchers concluded that the more active a colony was, the more honey
it produced, and the minimum activity rate required to obtain a positive daily gain was
14,000 bees/h. When the daily average activity remained below 14,000 bees/h, the hive
weight decreased. While the findings by Marceau et al. are significant, their investigation
had several important limitations. First, hive weight can be only an approximate estimate
of honey gain, because the latter is included in the former. Second, the directionality of bee
motion was not taken into account. Specifically, traffic in the vicinity of the hive consists of
incoming bees, outgoing bees, and laterally flying bees, which Marceau et al. did not take
into account. Third, the researchers made no attempt to distinguish the weight associated
with traffic and the weight not associated with it. Fourth, the researchers did not justify
why traffic at hive entrance was estimated from 9:00 to 16:00. Research (e.g., [9]) shows
that foragers start flying out as early as 5:00 and return to the hive as late 20:30 or even
later. Fifth, the datasets described in the article do not appear to be publicly available for
replication, standardization, and improvement.

Our investigation addresses the gap in the literature on the relationship of hive weight
and colony traffic by investigating the within-day relationship between hive weight and
traffic in the vicinity of a hive with a nondisruptive two-sensor (scale and camera) electronic
beehive monitoring (EBM) system. We make the following contributions to the body of
research on continuous hive monitoring. First, we formulate, prove, and experimentally
validate a necessary condition for the within-day independence of weight and traffic on
time periods from 1 h up to 6 h. Second, our experiments indicate that the correlation
of weight and traffic becomes stronger on time periods longer than 1 h. Third, while the
necessary condition for the independence was experimentally verified in our investigation,
the executed χ2 tests failed to verify the implied sufficiency condition for the within-day
independence of weight and traffic for any tested time period from 1 h up to 6 h. Thus, the
formulation of the within-day sufficiency conditions remains an open problem for electronic
beehive monitoring and theoretical apiary science. Fourth, our experiments show that some
hives had positive and some hives had negative correlations between weight and traffic. We
offer several conjectures on possible causes that may warrant further investigation. Fifth,
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the computed correlation coefficients and the executed χ2 tests showed that lateral traffic
did not have a significant impact on weight change and may be omitted in within-day
computational models that predict hive weight from traffic. Sixth, our experiments suggest
that the traffic spreads and means, when taken separately, did not affect the correlation
of weight and traffic more significantly than the exact traffic counts. Thus, exact traffic
counts may suffice as traffic estimates. Finally, we made public our curated datasets of
time-aligned weight and traffic measures from our field deployment at the USDA-ARS Carl
Hayden Bee Research Center in Tucson, Arizona (AZ), USA, in May–August 2021. These
datasets can be used as benchmarks for replication, standardization, and improvement.

Since EBM is a relatively recent branch of digital apiculture and does not yet have
standard terminology, we conclude the introduction with several definitions. We use the
terms bee and honeybee to refer to the Apis mellifera honeybee. We use the terms hive and
beehive to refer to a standard Langstroth hive or a variant thereof with an Apis mellifera colony.
We define the vicinity of a hive to be the cube-shaped space in front of the hive’s entrance
with dimensions 3 m × 3 m × 3 m continuously monitored with a camera-computer unit.
We use the term traffic to refer to all bee traffic in the vicinity of the hive. We use the term
total traffic to refer to the bee traffic that includes incoming traffic (number of bees flying into
the hive), outgoing traffic (number of bees flying out of the hive), and lateral traffic (number
of bees flying parallel to the landing pad of the hive) over a given period of time. We
use the term electronic beehive monitoring (EBM) to refer to the acquisition and analysis of
digital data on the behavior of a managed bee colony through various sensors deployed
in or around the hive. We use the adjectives nondisruptive and noninvasive with respect to
EBM to describe the type of EBM that requires no structural modification of the hive and
no deployment of active or passive sensors inside the hive or on individual bees. EBM
solutions are nondisruptive insomuch as they do not disrupt any natural cycles of the
monitored colonies and preserve the sacredness of the honeybee space. We note that, unlike
other state-of-the-art EBM investigations (e.g., [5,16]) that rely on disruptive solutions (e.g.,
radio tags on bees or structural hive modifications), we used only nondisruptive methods
in our study.

The remainder of our article is organized as follows. In Section 2, we detail the
materials and methods of our investigation. In Section 3, we present our results. In Section 4,
we discuss our results. In Section 5, we present our conclusions. Our supplementary
materials include not only the datasets and additional tables and plots but also several
short videos that illustrate important hardware and software aspects of our EBM system,
which the readers may want to watch before proceeding to the remainder of the article.
References to the figures and tables in the supplementary materials start with the prefix S
(e.g., S54).

2. Materials and Methods
2.1. Data

The dataset was acquired during the deployment of 10 BeePi monitors (e.g., [17]) on
Apis mellifera colonies in Langstroth hives at the USDA-ARS Carl Hayden Bee Research
Center in Tucson, Arizona (AZ), USA (GPS coordinates: 32◦13′18.274′′ N, 110◦55′35.324′′ W)
from 20 May to 15 August 2021. All colonies had Italian queens from two breeders: one in
California and one in Hawaii. The queens were all painted (blue for breeder 1; green and
yellow for breeder 2) to enable queen verification throughout the experiment. All queens
were one year old. No hives swarmed during the monitored period. Each BeePi monitor
was equipped with a Raspberry Pi 3 model B v1.2 computer coupled to a Raspberry Pi v2
8-megapixel camera. Timestamped 30-second mp4 25 frames per second videos were taken
by each monitor every 15 min of the 3 m × 3 m × 3 m cube-shaped space in front of the
hive on top of which the monitor was mounted. The videos were captured from 7:00 to
20:30 due to the poor visibility at the site apiary before 7:00 and after 20:30. The videos
were saved on each monitor’s 5 TB USB storage device. All 10 hives were each placed on
the 10 stainless steel electronic scales (Tekfa model B-2418 and Avery Weigh-Tronix model
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BSAO1824-200; max. capacity: 100 kg, precision: ±20 g; operating temperature: −30 ◦C to
70 ◦C) and linked to 16-bit dataloggers (Hobo UX120-006M External Channel data logger,
Onset Computer Corporation, Bourne, MA). The hive weight was measured in kilograms
(kg) and logged every 5 min, which was the default time period of the data logger. Four of
the ten BeePi monitors were damaged during a severe storm in Tucson, AZ, in July 2021
and were fixed in early August 2021. However, due to this data acquisition gap, the data
from these hives were not used in this investigation. We henceforth refer to the remaining
six hives from which the weight and traffic data were collected by their IDs used in our
logs: H17, H19, H41, H43, H47, and H53. Each of the 13,353 videos (see Table 1) collected
from the six hives was processed by the BeePIV algorithm [8]. BeePIV converts video
frames to particle motion frames, computes particle displacement vector fields, classifies
individual displacement vectors as incoming, outgoing, and lateral, and uses vector counts
(non-negative integers) to measure incoming, outgoing, and lateral bee traffic. Total traffic is
estimated as the sum of the incoming, outgoing, and lateral measurements. The timestamps
on weight and traffic measurements were used to time-align them into one CSV file for each
hive. The final dataset consisted of six CSV files (one per hive) of time-aligned incoming
(IN), outgoing (OUT), lateral (LAT), total (TOT) counts and weight measurements. Since
weight measurements were logged every 5 min while traffic measurements were logged
every 15 min, each weight measurement time-aligned with a traffic measurement was
computed as the mean of the three weight measurements the middle of which had the
same timestamp with the traffic measurements. Weight measurements were raw in that
they included external impacts (e.g., someone puts a heavy object such as a brick or a
super on top of the hive). Thus, when the weight rose or dropped abruptly by ≈20 kg
and returned to the previous level within 30 min, which is physically impossible in a real
beehive, the measurement was considered to reflect an external impact and was replaced
with the mean of the neighbors before and after it. Table 1 summarizes the information on
the CSV data files.

Table 1. A quantitative summary of the curated dataset; the number of records n for each hive
specifies the number of time-aligned weight and traffic measurements.

Hive Num Records (n) Num Recorded Days Mean Records per Day

H17 1838 36 51
H19 3019 56 54
H41 1842 40 46
H43 1630 30 54
H47 2518 46 55
H53 2506 56 45

Total 13,353 56 ≈50.83

2.2. Hive Inspection and Treatment

All monitored hives had regular hive inspections carried out by the fifth author for
the duration of the experiment. We counted frames of bees and mite drops and logged
qualitative brood assessments. Frames of bees are counts of individual frames in a hive
that are completely covered by bees on both sides. If only one side of a frame is completely
covered with bees, then it is counted as 1/2 of a full frame. It should be noted that such
measurements as 1/2, 1/4, 1/8 of a full frame are visual assessments by the beekeeper.
Counts of frames of bees are an estimate of the overall health of a colony. Mite drops are
counts of Varroa mites on a sticky board. A sticky board is a thin (≈2 cm thick) rectangular
piece of corrugated plastic on which a thin film of Vaseline (or other adhesive substances
such as plant oil) is placed with a paper towel. The sticky board was inserted into the
screened bottom board underneath each monitored hive. As mites drop from bees in a
colony, they stick to the board and can be visually counted by the beekeeper. Greater mite
drops indicate higher levels of mite infestation, which may negatively impact the colony’s
productivity. Brood assessments are the beekeeper’s qualitative assessments of the brood’s
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condition. We used the following qualitative labels in our brood assessments: straight,
straight with punctured caps, spotty, PMS (parasitic mite syndrome), no brood, and chalk
brood. Straight brood indicates a productive laying queen. Straight brood with punctured
caps also indicates a productive queen with potential minor laying problems. Spotty brood
shows that a queen lays eggs in isolated and typically disconnected cell regions, which may
cause productivity problems or colony failure later on. PMS characterizes the brood with
white larvae that appear chewed or sunken on the side of some cells. Chalk brood is caused
by a fungus called Ascosphaera apis. Frames affected by chalk brood have white chunks of
mummified brood that resemble small pieces of white chalk. This disease infects a hive
through reproductive spores attached to pollen, robbing bees, or tools used in already
infected hives. Hives infected with chalk brood often fail and present a danger to the other
hives in the apiary due to bee drift. Apivar strips were applied to all monitored hives
on 8 July 2021 to treat Varroa mites. We assessed the population strength of each colony
by calculating the weight of the adult bee mass (bee mass) by subtracting from the total
weight of the hive the combined weight of the woodenware, the electronics, and the frames
without the bees [9]. The adult bee mass measurements were conducted twice on each hive
at the beginning (June 2021) and at the end (August 2021) of the monitored period.

2.3. Random Variables and Correlations

We measured hive weight and traffic as two jointly observed random variables W
(weight) and T (traffic). Our samples were

(W1, T1), . . . , (Wn, Tn),

where Wi and Ti, 1 ≤ i ≤ n, are time-aligned weight and traffic measurements for a given
hive (see Table 1 for specific values of n). We use the notation Wt and Tt to denote random
variables whose values range over the values of W and T at time t. The correlation between
two random variables is typically measured with Pearson’s, Spearman’s, and Kendall’s
correlation coefficients [18–20], denoted as ρP, ρS, and ρK, respectively. We tested the
absence against the presence of correlation with the following hypotheses:

Hρ,0 : ρ = 0;
Hρ,1 : ρ 6= 0.

(1)

where ρ = ρP, ρ = ρS, or ρ = ρK. Hρ,0 was rejected in favor of Hρ,1 at p ≤ 0.05. We use
the notation ρ̂P, ρ̂S, and ρ̂K to denote the computed estimates of ρP, ρS, and ρK. Thus, we
computed Pearson, a statistical measure of linear dependency between two variables, of n
measurements (Wi, Ti) as

ρ̂P = ∑n
i=1(Wi−W)(Ti−T)√

∑n
i=1(Wi−W)2

√
∑n

i=1(Ti−T)2
. (2)

Spearman and Kendall measure a monotonic association between two random variables,
and are more robust versions of Pearson, because they rely on ranks. The rank of an
observation Wi, R(Wi), is its position in a list of measurements for a random variable
sorted in ascending order. For example, if there are four measurements W1 = 6.3, W2 = 8,
W3 = 2.5, and W4 = 7.4, then the sorted list is (W3 = 2.5, W1 = 6.3, W4 = 7.4, W2 = 8)
and the ranks are R(W1) = 2, R(W2) = 4, R(W3) = 1, and R(W4) = 3. We computed
Spearman and Kendall of n time-aligned measurements (Wi, Ti) as

ρ̂S =
1
n ∑n

i=1 R(Wi)R(Ti)−(n+1)2/4
(n2−1)/12 ;

ρ̂K =
∑n

i=1 ∑n
j>i I{Wi≶Wj ,Ti≶Tj}−∑n

i=1 ∑n
j>i I{Wi≶Wj ,Ti≷Tj}

n(n−1)/2 ,

(3)
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where the event {Wi ≶ Wj, Ti ≶ Tj} refers to the situation when the comparison signs
between Wi and Wj and Ti and Tj are the same. Thus, if Wi < Wj, then Ti < Tj, and if
Wi > Wj, then Ti > Tj. The event {Wi ≶ Wj, Ti ≷ Tj} refers to the situation when the
comparison signs between Wi and Wj and Ti and Tj are different. Thus, if Wi > Wj, then
Ti < Tj, and if Wi < Wj, then Ti > Tj.

We computed the correlation coefficient heat map of weight (W) and the five traffic
types for each hive: IN, OUT, difference between IN and OUT (IN-OUT), sum of IN and
OUT (IN+OUT), and total (TOT=IN+OUT+LAT). We used the autocorrelation function
(ACF) to detect non-randomness in weight and traffic viewed as time series [21]. The ACF
evaluates the similarity between a time series (i.e., the signal) and its copy with a shift,
which is referred to as a lag. The ACF is a function of a lag. Let S1, S2, . . . , Sn be a time
series of observations, then the ACF of the lag L is defined as the Pearson correlation ρP
between Si and Si+L as

ρ̂P =
∑n−L

i=1 (Si − S1:(n−L))(Si+L − SL:n)√
∑n

i=1(Si − S1:(n−L))
2
√

∑i=1(Si+L − SL:n)2
, (4)

where S1:(n−L) and S1:(n−L) are the mean values of the series S1, S2, . . . , Sn−L and SL, S2, . . . ,
Sn, respectively. Autocorrelation plots are used to visually assess the presence of trends
and cycles in data. A trend is a pattern in a time series that does not repeat at least within
the captured period. Cyclicity is a component that regularly repeats itself over time. If a
time series has a trend, the ACF does not reach zero unless the lag is sufficiently long. If a
time series contains a significant cycle, the autocorrelation plot typically shows spikes at
multiples of lags equal to the period.

2.4. Weight and Traffic Changes

Since each BeePi monitor captured a 30-s video every 15 min from which the BeePIV
algorithm extracted the integers IN, OUT, LAT, and TOT, we measured the change in traffic
over a lag of 15k minutes as

∆kTt =
∣∣∣∑tk

i=1+(t−1)k Ti −∑
(t−1)k
i=1+(t−2)k Ti

∣∣∣. (5)

Thus, if k = 4, then the lag is 1 h; if k = 8, then the lag is 2 h, etc. The values of ∆kTt
were logarithmically transformed to make the rate of change distribution closer to normal
as they approximately follow a log-normal distribution (see Figures S1 and S2 in the
Supplementary Materials). Since weight measurements were logged every 5 min, for every
Ti the time-aligned Wi was computed as the mean of Wi−1, Wi, and Wi+1. The change in
weight over a lag of 15k minutes was computed as

∆kWt =
∣∣∣W1+tk −W1+(t−1)k

∣∣∣, (6)

where the values of 1+ tk and 1+ (t− 1)k were chosen so that W1+tk and W1+(t−1)k always
belonged to the video monitoring period (7:00–20:30) of the same day. The variables ∆kWt
were assumed to be independent and identically distributed for any k. Specifically, if
k 6= k′, then ∆kWt and ∆k′Wt may not have identical distributions. However, if d and d′ are
two different days, ∆kWt on day d is assumed to be independent of ∆kWt on day d′, but
the distribution of ∆kWt is assumed to be identical on d and d′. The variables ∆kTt were
analogously assumed to be independent and identically distributed. We denote the weight
change over the lag 15k as ∆kW and the traffic change over the same lag as ∆kT. The change
in the variance (σ2) and the mean (µ) of T were computed as
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∆kσ2(T)t =
∣∣∣σ2
(

T1+(t−1)k, T2+(t−1)k, ..., Ttk

)
− σ2

(
T1+(t−2)k, ..., T(t−1)k

)∣∣∣;
∆kµ(T)t =

∣∣∣µ(T1+(t−1)k, T2+(t−1)k, ..., Ttk

)
− µ

(
T1+(t−2)k, ..., T(t−1)k

)∣∣∣. (7)

An example of calculating ∆kW, ∆kT, ∆kσ2(T)t, and ∆kµ(T)t is given in Appendix A.

2.5. Joint Probabilities

We defined the function

Dε(Zt) = Iε(∆kZt) =

{
0, i f |Z1+tk − Z1+(t−1)k| < ε

1, otherwise,
(8)

to be indicative of the event {∆kZt = |Z1+tk − Z1+(t−1)k| ≥ ε}. The function divides the
values of ∆kZt into two categories: 0 and 1. Thus, if εW and εT are two thresholds for
the change in weight and traffic, respectively, then DεW (Wt) = 1 signifies the change in
weight between times t− 1 and t at or above εW , while DεT (Tt) = 1 signifies the change in
bee traffic between t− 1 and t at or above εT . If Ẑi is the estimate of Zt at time i (i.e., the
observed value), the probability of {Dε(Zt) = 1} can be estimated as the average of the
occurrences of this event in n trials as

P(Dε(Zt) = 1) ≈ ∑n
i=1 Dε(Ẑi)

n
= P∗(Dε(Zt) = 1). (9)

A necessary condition of the independence between the random variables of Xt,
Yt, Xt−1, and Yt−1 can be formulated as follows and proved as a theorem (a proof is in
Appendix A).

A Necessary Condition for Independence (NCI): If Xt, Xt−1, Yt, Yt−1 are discrete
independent random variables, then, for any εX and εY,

P(DεX (Xt) = 1, DεY (Yt) = 1) = P(DεX (Xt) = 1) · P(DεY (Yt) = 1). (10)

If εX = εY = 0 and Xt = Wt, Xt−1 = Wt−1, Yt = Tt, Yt−1 = Tt−1, the following
paradox occurs

1
1≈ P∗(D0(Wt) = 1|D0(Tt) = 1)

2≈ P∗(D0(Wt) = 1). (11)

Equation (11) is a paradox in the following sense. If εW = εT = 0, both Wt and Tt change in
most trials between times t− 1 and t, which makes the left side of Equation (11) true. In
other words,

1
1≈ P∗(D0(Wt) = 1|D0(Tt) = 1).

However, if no restrictions are placed on weight and traffic measurements through εW
and εT , Wt does not depend on Tt, which makes the right side of Equation (11) true. In
other words,

P∗(D0(Wt) = 1|D0(Tt) = 1)
2≈ P∗(D0(Wt) = 1). (12)

Thus, the thresholds for weight and traffic, εW and εT , must be above zero. Furthermore,
the traffic threshold εT must be further constrained as

∀εT > 0 : P(DεT (Tt) = 1) > 0, (13)
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because otherwise the joint probability of {DεW (Wt) = 1} and {DεT (Tt) = 1} is 0 whenever
P(DεT (Tt) = 1) is 0. To establish the feasible values of εW and εT , we used our datasets to
compute the sets

∆T = {∆kTt : ∀t = 1, 2, ..., bn/kc};
∆W = {∆kWt : ∀t = 1, 2, ..., bn/kc}, (14)

where n is the total number of records in the dataset (see Table 1) and k ∈ {4, 8, 12, 16, 20, 24}.
Thus, since all the lags are 15 k, we tested the lags from 15× 4 min (1 h) up to 15× 24 min
(6 h). For each hive, we computed the suprema (i.e., the upper bounds) as

ε∗W = max
εW∈∆W

εW ;

ε∗T = max
εT∈∆T

εT
(15)

for each lag (1 h, 2 h, 3 h, 4 h, 5 h, 6 h), and 15 traffic measurements: 5 types of traffic (i.e.,
IN, OUT, TOT, IN-OUT, IN+OUT), 5 variances (i.e., σ2(IN), σ2(OUT), σ2(TOT), σ2(IN-OUT),
σ2(IN+OUT)), and 5 means (i.e., µ(IN), µ(OUT), µ(TOT), µ(IN-OUT), µ(IN+OUT)). We also
tested the necessary condition for Independence (NCI) in Equation (10) on our dataset for
each tuple of the three feasible values (i.e., k, 0 < εW < ε∗W , 0 < εT < ε∗T) by computing for
each hive the threshold θ such that

max
θ
{|P∗(DεW (Wt) = 1, DεT (Tt) = 1)− P∗(DεW (Wt) = 1)P∗(DεT (Tt) = 1)| ≤ θ}. (16)

in order to discover the upper bound of the difference between the joint and marginal
probabilities. The value of θ in Expression (16), to which we refer as maxD, was computed
for all 15 traffic measurements. We also computed the argmaxima of absolute differences
between the joint probability (the left-hand side of Equation (10)) and the product of the
marginal probabilities (the right-hand side of Equation (10)) for all hives.

2.6. X2 Tests

The NCI implies a sufficiency criterion of the independence of Xt, Xt−1, Yt, Yt−1, which
can be formulated as follows.

A Sufficiency Condition for Independence (SCI): Let Xt, Xt−1, Yt, Yt−1 are discrete
independent random variables. If, for any εX and εY,

P(DεX (Xt) = 1, DεY (Yt) = 1) = P(DεX (Xt) = 1) · P(DεY (Yt) = 1),

then Xt, Xt−1, Yt, Yt−1 are independent.
Since we cannot prove this criterion as a theorem, because, as of now, it is unclear to

us how to formulate general, entomological realistic assumptions on the distributions of
the variables, we executed the χ2 tests to estimate the independence of Wt, Wt−1, Tt, Tt−1
on our dataset. For each sample (W1, T1), . . . , (Wn, Tn), we introduced k grouping intervals
∆1, . . . , ∆k for values ∆kW and m grouping intervals ∇1, . . . ,∇m for ∆kT values. We used
the following hypotheses in the χ2 tests:

Hχ2,0 : prc = pr · pc;

Hχ2,1 : prc 6= pr · pc,
(17)

where prc is the probability of an observation belonging to ∆r ×∇c, pr is the probability
of ∆kW ∈ ∆r, and pc is the probability of ∆kT ∈ ∇c. We split the domain of ∆kW and ∆kT
into sub-intervals with the same probability to ensure that the probability of ∆kWt falling
into any sub-interval is equal for all intervals. Since the true distributions of W and T
are unknown, we separated both domains into the intervals with the the same number of
counts from our dataset, which is the standard approach in χ2 tests [22]. The literature on
the χ2 tests has two recommendations, which we used for all lags in our χ2 tests. The first
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recommendation, REC1, is that each cell in the χ2 cumulative table for (Wt, Tt) contain at
least 5 observations on average, which is a standard requirement for the practicability of χ2

tests [22]. The second recommendation, REC2, is to split the domain of the investigated
samples into a number of intervals m in accordance with the number of samples n. For
example, if n is in [40, 100), then m ∈ [7, 9], if n is in [100, 500), then m ∈ [8, 12] [23]. If
REC2 is followed, the deviation of the histogram from the actual distribution density is
minimal [24]. To estimate the impact of lags on the relationship between hive weight and
traffic, we computed the Hχ2,0 rejection ratios for all hives and lags from 1 h up to 6 h in 1 h
increments. We also computed the correlation coefficients and their p-values for all hives
and the same lags between Wt and Tt to see if these two different statistical methods agree
on the impact.

3. Results

Figure 1 shows the correlation heat map of Pearson, Spearman, Kendall for all
monitored hives and five traffic types. Each cell of the heat map gives the computed
coefficient value between IN, OUT, IN-OUT, IN+OUT, and TOT, on the one hand, and the
weight of a given hive, on the other hand. Thus, in the bottom left cell (IN, H53), 0.527 is the
Pearson coefficient between IN and W of hive H53. Table 2 gives the p-values for Pearson,
Spearman, and Kendall for the monitored hives. Table 3 provides the suprema ε∗W and ε∗T
for hive H17 computed by Equation (15). The suprema values for the other hives are given
in the supplementary materials (see Tables S1–S5). For space considerations, we chose to
present the results in terms of hive H17 as a representative of the group that included hives
H17, H19, H41, H43, and H53, because these hives exhibited similar trends and patterns
different from those of hive H47.

Figure 1. Correlation heat map of weight (W) and 5 types of traffic (T) on the x-axis for hives H17,
H19, H41, H43, H47, and H53 on the y-axis; IN—incoming traffic; OUT—outgoing traffic; TOT—total
traffic; IN-OUT—difference of IN and OUT; IN+OUT—sum of IN and OUT; TOT = IN + OUT + LAT
(sum of IN, OUT, and LAT), where LAT—lateral traffic; IN, OUT, LAT, and TOT are non-negative
integers.
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Table 2. Pearson, Spearman, and Kendall p-values rounded to 3 decimal places for hives H17, H19,
H41, H43, H47, and H53 and five traffic types: IN (incoming), OUT (outgoing), TOT (total), IN-OUT
(difference of IN and OUT), and IN+OUT (sum of IN and OUT), where TOT = IN+OUT+LAT and
LAT is lateral traffic; IN, OUT, LAT, and TOT are non-negative integers; p-values for H47 are bolded,
because it was the only hive for which Hρ,0 was not rejected at p ≤ 0.05 for any coefficient and any
traffic type; HXX refers to H17, H19, H41, H43, and H53, because their p-values were identically 0.

Hive Pearson Spearman Kendall

IN OUT TOT IN-OUT IN+OUT IN OUT TOT IN-OUT IN+OUT IN OUT TOT IN-OUT IN+OUT

H47 0.724 0.715 0.721 0.801 0.719 0.675 0.284 0.661 0.629 0.656 0.661 0.265 0.651 0.604 0.639
HXX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Suprema ε∗W and ε∗T computed according to Equation (15), for hive H17 and for 5 types of
traffic, 5 variances, and 5 means; IN—incoming traffic; OUT—outgoing traffic; TOT—total traffic;
LAT—lateral traffic; IN—OUT (difference between IN and OUT), IN + OUT (sum of IN and OUT);
TOT = IN + OUT + LAT; W column gives ε∗W for weight measurements and corresponding lags;
IN, OUT, TOT, and LAT are non-negative integers; exact measurement columns give ε∗W for exact
measurements of IN, OUT, TOT, IN-OUT, IN+OUT and lags; variance columns give ε∗T for σ2(X),
where X ∈ {IN, OUT, TOT, IN-OUT, IN+OUT} and lags; mean columns give ε∗T for µ(X), where where
X ∈ {IN, OUT, TOT, IN-OUT, IN+OUT}.

Lag Exact Measurement Variance Mean

(hours) W IN OUT TOT IN-OUT IN+OUT IN OUT TOT IN-OUT IN+OUT IN OUT TOT IN-OUT IN+OUT

1 0.754 7.856 7.968 8.707 6.585 8.606 11.85 11.949 13.459 10.899 13.261 6.581 6.47 7.321 5.198 7.22
2 0.807 8.463 8.659 9.328 7.223 9.246 12.083 12.051 13.652 10.4 13.45 6.58 6.383 7.249 5.143 7.167
3 1.056 8.783 9.013 9.68 7.494 9.597 11.873 11.865 13.445 10.051 13.251 6.528 6.298 7.195 5.01 7.113
4 1.344 8.988 9.179 9.865 7.602 9.781 11.814 11.792 13.37 9.776 13.185 6.406 6.215 7.093 4.83 7.009
5 1.43 9.129 9.326 10.008 7.719 9.926 11.762 11.753 13.324 9.608 13.14 6.331 6.133 7.012 4.723 6.93
6 1.455 9.254 9.446 10.129 7.795 10.048 11.672 11.673 13.238 9.455 13.055 6.268 6.076 6.951 4.617 6.87

The autocorrelation plots for weight and total traffic (TOT) for hive H17 are given in
Figure 2. The plots for the other hives are in the supplementary materials (Figures S3–S7).

Figure 2. Autocorrelation plots of weight (a), total traffic (TOT) (b), and change in weight over
1 h (c) for hive H17 given using a standard python method statsmodels.graphics.tsaplots; the lags for
(a,b) change from 0 to 145, where value 145 approximately equals 2.5 periods as 54 is the full number
of records per day; the lag for (c) runs from 0 to 50 (≈3.5 periods) with a period of 12 (i.e., the number
of data points per day for k = 4); semi-transparent solid blue regions represent confidence intervals
for ACF values.
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The ACF plots indicate that both weight and traffic include trend components insomuch
as the amplitudes gradually decrease as the lag increases. Figure 2a,c show that trends and
cycles are present in the weight data. Figures S3–S7 in the supplementary materials indicate
that the weight and traffic of the other hives also exhibit trends and cyclical patterns.
Figure 2b reflects a cyclical pattern in TOT with a period of 54 points (i.e., the full number
of records per day) with the ACF peaks corresponding to L ≈ 54 and L ≈ 108.

The computation of Equation (16) on our dataset showed that if the difference between
t and t − 1 (i.e., the lag) was no longer than 6 h, then for any 0 < εW < ε∗W and
0 < εT < ε∗T , the difference between the joint probability P∗(DεW (Wt) = 1, DεT (Tt) = 1)
and the marginal probabilities P∗(DεW (Wt) = 1) · P∗(DεT (Tt) = 1) did not exceed 0.15. In
other words,

|P∗(DεW (Wt) = 1, DεT (Tt) = 1)− P∗(DεW (Wt) = 1) · P∗(DεT (Tt) = 1)| ≤ 0.15. (18)

Figure 3 shows the graphs of the joint and marginal probabilities for lags of 1 h,
3 h, and 6 h and five traffic types for all values of 0 < εW < ε∗W and 0 < εT < ε∗T .
Tables 4, S6 and S7 give the argmaxima of the absolute differences between the exact
counts, variances, and means of incoming, outgoing, total, and lateral traffic, as well
as the difference between incoming and outgoing traffic, the sum of incoming and outgoing
traffic, and the corresponding value of εW and εT for hive H17.

Figure 3. Joint probability values (green) and product of marginal probabilities (red) for incoming
(IN), outgoing (OUT), total (TOT), difference of incoming and outgoing (IN-OUT), sum of incoming
and outgoing (IN+OUT), and all values 0 < εW < ε∗W and 0 < εT < ε∗T ; IN, OUT, and TOT are
non-negative integers.
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Table 4. The maxima and argmaxima of the absolute difference between the joint probability and
the product of marginal probabilities of exact traffic counts and different lags for hive H17; each
entry has format (maxD, εW , εT); IN—incoming traffic, OUT—outgoing traffic; TOT—total traffic;
IN-OUT—difference between IN and OUT; IN+OUT—sum of IN+OUT; IN, OUT, TOT, IN-OUT, and
IN+OUT are integers.

Lag maxD, εW , εT
(hours) IN OUT TOT IN-OUT IN+OUT

1 (0.072, 0.051, 5.416) (0.059, 0.059, 6.227) (0.068, 0.051, 6.339) (0.029, 0.077, 3.871) (0.066, 0.051, 6.382)
2 (0.059, 0.181, 7.050) (0.051, 0.145, 7.098) (0.060, 0.145, 7.848) (0.038, 0.284, 4.727) (0.054, 0.145, 7.813)
3 (0.051, 0.226, 6.701) (0.042, 0.214, 6.347) (0.046, 0.228, 7.496) (0.044, 0.054, 4.754) (0.044, 0.228, 7.419)
4 (0.071, 0.602, 7.467) (0.065, 0.602, 7.505) (0.069, 0.602, 8.305) (0.045, 0.049, 5.182) (0.069, 0.602, 8.234)
5 (0.055, 0.080, 8.027) (0.060, 0.080, 8.019) (0.058, 0.314, 8.971) (0.078, 0.574, 4.963) (0.060, 0.295, 8.895)
6 (0.077, 0.181, 7.840) (0.070, 0.113, 7.946) (0.083, 0.181, 8.695) (0.053, 0.493, 6.435) (0.078, 0.181, 8.627)

Tables 5, S41 and S42 give the χ2 statistics C for the exact traffic counts, their variances,
means, and different lags, and their p-values for hive H17.

Table 5. Chi-square statistics and p-values of exact traffic counts for different lags for hive H17; 3
p values smaller than 0.05 are bolded; IN—incoming traffic; OUT—outgoing traffic; TOT—total traffic.

Lag C and p-Value
(hours) IN OUT TOT IN-OUT IN+OUT

1 (88.523, 0.023) (77.522, 0.119) (90.778, 0.016) (51.015, 0.880) (94.585, 0.008)
2 (35.668, 0.077) (27.817, 0.316) (36.710, 0.061) (30.741, 0.198) (33.929, 0.109)
3 (16.438, 0.423) (14.751, 0.543) (16.985, 0.387) (26.175, 0.052) (15.488, 0.489)
4 (24.382, 0.081) (22.313, 0.133) (24.379, 0.082) (15.655, 0.477) (20.985, 0.179)
5 (7.203, 0.616) (12.325, 0.196) (7.551, 0.580) (10.224, 0.333) (7.551, 0.580)
6 (10.964, 0.278) (7.732, 0.561) (9.093, 0.429) (13.680, 0.134) (8.386, 0.496)

Table 6 gives the traffic types and lags for which Hχ2,0 was rejected at p ≤ 0.05, which
occurred in 142 out of 540 tested cases.

Table 6. Lags for which Hχ2,0 was rejected for monitored hives; IN—incoming traffic; OUT—outgoing
traffic; TOT—total traffic; σ2(X)—variance of X; µ(X)—mean of X; � means that Hχ2,0 was not rejected
for any lag; bolded lags are the lags for which both recommendations at the end of Section 2.6
are satisfied.

Traffic Measurement H17 H19 H41 H43 H47 H53

IN 1 5,6 5,6 5 4,5 4,5,6
OUT � 5,6 5,6 5,6 5 4,5,6
TOT 1 5,6 5,6 5,6 5 4,5,6
IN-OUT � 5,6 6 � 5 �
IN+OUT 1 5,6 5,6 5 5 4,5,6
σ2(IN) 1,2,3,6 3,5 6 � 3,4,5,6 2,4,5,6
σ2(OUT) 1,2,3,6 2 � � � 2,4,5,6
σ2(TOT) 1,3 1 6 � 3,5,6 2,4,5,6
σ2(IN-OUT) 3,4 4 3 � � 5,6
σ2(IN+OUT) 1,2,3 � 6 � 3,6 4,5,6
µ(IN) � 6 6 � 5,6 4,5,6
µ(OUT) 1 6 5,6 6 4,5 4,5,6
µ(TOT) 1,2 6 4,6 1,6 5,6 4,5,6
µ(IN-OUT) � 3,6 � � 4,5,6 4
µ(IN+OUT) 1,2 6 6 6 5,6 1,4,5,6
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Table 7 presents the Pearson coefficients and the corresponding p-values for hive
H17 for different lags. The analogous tables for the other hives are available in the
supplementary materials (see Tables S58–S62).

Table 7. Pearson coefficients and corresponding p-values of different types of traffic measurements
and different lags for hive H17; each cell is a tuple (c, p) where c is Pearson and p is p-value;
IN—incoming traffic; OUT—outgoing; TOT—total.

Lag (in hours) IN OUT TOT IN-OUT IN+OUT

1 (−0.288, 1.33 × 10−9)
(−0.362, 1.17 ×

10−14)
(−0.324, 6.76 ×

10−12) (0.490, 3.92 × 10−27)
(−0.329, 3.06 ×

10−12)
2 (−0.328, 1.98 × 10−6) (−0.406, 2.15 × 10−9) (−0.367, 8.61 × 10−8) (0.539, 1.53 × 10−16) (−0.372, 5.34 × 10−8)
3 (−0.367, 1.64 × 10−5) (−0.445, 1.01 × 10−7) (−0.406, 1.50 × 10−6) (0.579, 4.22 × 10−13) (−0.411, 1.09 × 10−6)
4 (−0.394, 6.03 × 10−5) (−0.480, 5.82 × 10−7) (−0.436, 7.10 × 10−6) (0.627, 4.71 × 10−12) (−0.442, 5.11 × 10−6)
5 (−0.399, 8.17 × 10−4) (−0.483, 3.55 × 10−5) (−0.440, 1.95 × 10−4) (0.628, 1.24 × 10−8) (−0.446, 1.54 × 10−4)
6 (−0.496, 4.17 × 10−5) (−0.582, 7.16 × 10−7) (−0.539, 6.07 × 10−6) (0.716, 6.08 × 10−11) (−0.545, 4.71 × 10−6)

Tables 8–12 show our counts of the frames of bees, mite drops, brood quality assessments,
adult bee mass measurements, and the queen status inspections.

Table 8. Frames of bees in monitored hives; frames of bees is a visual count of frames completely
covered with bees on both sides; all inspection dates in columns were in 2021; NA—not available.

Hive 27 May 8 June 30 July 28 July 13 August

H17 8 9 13 18 18
H19 12 11 13 14 18
H41 6 6 4 4 4
H43 7 NA 7 8 15
H47 6 NA 4 3 5
H53 10 8 7 10 15

Table 9. Mite drop measurements in monitored hives; mite drop is the mean number of mites per day
on a sticky board under the hive; all periods in columns refer to 2021; the start and end of each period
are in the month/day format; a new period started on 7 August 2021 after new Apivar strips were
installed in monitored hives; the last row represents Apivar treatment periods; Apivar is a polymer
strip used to treat Varroa mites.

Hive 27 May–7 June 7 June–6 July 6 July–8 July 8 July–16 August

H17 2.3 7 9.5 19.3
H19 13 26 42 29.7
H41 3.7 2.5 7.5 4.7
H43 6.3 6 11 8.3
H47 1.7 6.5 4.5 3.7
H53 10 9 17 10.3

Pre-treatment Mite treatment Post-treatment

Table 10. Brood quality measurements in monitored hives; STR—straight; SPT—spotty;
PMS—parasitic mite syndrome; NA—not available; colonies with PMS have white larvae that
appear chewed or sunken on the side of the cell.

Hive 27 May 8 June 30 July 28 July 13 August

H17 STR STR STR STR STR
H19 STR STR STR STR STR
H41 SPT PMS SPT STR/SPT SPT
H43 NA NA STR STR/SPT STR/SPT
H47 NA NA SPT/PMS SPT/PMS SPT
H53 STR STR SPT STR SPT
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Table 11. Bee mass (kg) in monitored hives measured using the method in [9]; N/A—not applicable.

Hive 8 June 2021 30 June 2021 13 August 2021

H17 2.32 N/A 4.42
H19 N/A 2.12 4.10
H41 0.86 N/A 1.32
H43 N/A 2.05 3.15
H47 N/A 0.79 1.45
H53 N/A 1.36 3.08

Table 12. Queen status inspections of monitored hives; all dates in columns were in 2021; blu—queen
from breeder 1 colored blue; gr—queen from breeder 2 colored green; yel—queen from breeder 2
colored yellow; Q+—queen spotted; Q+?—queen not spotted but its presence is clear from eggs in
cells; Q?—queen not spotted; SSQR—supersedure queen removed; QR—queen spotted and removed;
N/A – not available.

Hive 19 May 27 May 8 June 30 June 28 July 13 August

H17 Q+blu Q+blu Q+blu Q+blu Q+? Q+blu
H19 Q+yel Q+? Q+yel Q+yel Q+yel Q?
H41 Q+yel Q+yel SSQR Q+yel Q+yel Q+yel
H43 Q+blu Q? N/A Q+blu Q+blu Q?
H47 QR+blu Q+yel N/A Q+yel Q+yel Q+yel
H53 Q+gr Q+gr Q+gr Q+gr Q+gr Q+gr

4. Discussion

Figure 1 shows that the correlation coefficients between weight and all traffic
measurements, except for IN-OUT, are relatively close to each other. Hive H17 was the only
hive with notable correlations between IN-OUT and weight for all three coefficients. Hive
H53 showed strong correlations between weight and the four traffic measurements (IN,
OUT, TOT, and IN+OUT). Hives H19 and H41 showed moderately positive correlations
which were not as strong as those of hive H53. Hives H17 and H43 showed negative
correlations, with H17 correlations being more negative than those of H43. H17 was the
only hive for which the sign of the correlation coefficients between Wt and IN-OUT were
different from those of IN, OUT, TOT, and IN+OUT. All correlations of H47 were ≈0, which
suggests that measured traffic and weight for this hive were uncorrelated. Table 2 shows
that H47 was the only hive for which Hρ,0 was not rejected for any coefficient and any
traffic type at p ≤ 0.05. For all other hives, Hρ,0 was rejected at p ≤ 0.05. H47 was the only
hive whose weight did not increase with time. The weight of H47 oscillated between 40 and
41.5 kg throughout the experiment (see Figure 4). This observation leads to a conjecture that
weight and traffic may not be correlated in hives that are not gaining weight, which merits
further investigation. There may exist a traffic threshold per given lag below which a hive
does not gain weight. Marceau et al. [6] experimentally concluded that for a positive daily
gain the traffic must be at least 14,000 bees/h, but did not elaborate on whether this was
mean traffic or real traffic. Our assumption of the independence and identical distribution
of the values of ∆kWt (and ∆kTt) on different days is reasonable insomuch as it is hard to
assume that the differences in weight (and traffic) taken on a specific time interval on one
day are related to the differences in weight (and traffic) taken on the same time interval
but on a different day. More field data are required to investigate the independence and
identical distribution of ∆kWt and ∆kTt for different lags.

Tables 3, 4, S6 and S7 for hive H17, the analogous tables for the other hives in the
supplementary materials, and the plots in Figure 3 give an experimental validation of the
result in Inequality (18) in that the difference between the joint and marginal probabilities
was relatively small. In other words, traffic Wt and weight Tt might have been necessarily
(but not sufficiently!) independent in the monitored hives so long as the lag did not
exceed 6 h. The joint probabilities and the marginal probability products in Tables 4 and
S6–S22 diverge by no more than 15% across all 15 traffic measurements for all hives (See
Inequality (18)). The maximum absolute difference occurred mostly on the median values
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for weight and traffic. The divergence as a function of εW and εT reached its maximum when
εW and εT were such that P∗(DεW (Wt) = 1) ≈ P∗(DεT (Tt) = 1) ≈ 0.5 (see Tables S23–S40).
As the tables with P∗ at the extrema in the supplementary materials show, this observation
held for all hives. Inequality (18) suggests that the events {∆kWt ≥ εW} and {∆kTt ≥ εT}
are independent for any εW and εT , for all 15 traffic measurements and all lags from 1 h up
to 6 h. Consequently, the necessary condition of independence (NCI) of weight and traffic
was experimentally verified on our dataset. Of course, this verification does not imply
that weight and traffic were independent on the tested lags, because our χ2 results failed to
verify the implied sufficiency condition for independence (SCI).

Figure 4. Weight (kg) vs. time of hives H17, H19, H41, H43, H47, and H53; first (leftmost) and last
(rightmost) x-labels depict first and last day of time-aligned weights and video records; additional
marks on x-axis in between leftmost and rightmost labels denote periods when videos were not taken
due to hardware failures (e.g., 13 June/4 July on x-axis of H53 plot means that in H53 videos were not
taken from 13 June 2021 up to 4 July 2021); row (A): weight vs. time for hives with positive correlation
coefficients; row (B): weight vs. time with negative correlation coefficients; in row (B) weight vs. time
plot of H47 is in gray box; H47 is the only hive for which Hρ,0 and Hχ2,0 were not rejected.

The results in Table 5 and Tables S41–S57 in the supplementary materials, and Table 6
indicate that there was an association between Wt and traffic measurements at p ≤ 0.05 for
all hives. However, these results should be interpreted with caution because the χ2 tests
fail to distinguish Hχ2,0 from Hχ2,1 if the probabilities of the observations falling into the
partitioning intervals are the same for both hypotheses. On our dataset, the longer the lag
was, the smaller the number of records for that lag were recorded. More field deployments
are needed to increase the number of records for longer lags. Several rejections of Hχ2,0
at smaller lags suggest that W and T may be correlated even on smaller lags. The hives
whose weight and several traffic measures were related at lags of 1 h and 2 h (hives H17,
H19, and H53) saw significant weight gains (+20 kg) for the entire monitored period of
May–August 2021. This might indicate that the more frequently foragers leave the hive,
the more weight the hive gains. It is unclear, however, whether the weight gain of a hive
depends on the forager fly rate or on the efficiency of individual foragers (i.e., how much
payload each forager brings back to the hive). Table 6 indicates that there is a relationship
between traffic as measured by IN, TOT, IN+OUT, µ(OUT), µ(TOT), and µ(IN+OUT) and
the weight for all hives.

The Pearson coefficients in Table 7 indicate that as the lag increased from 1 h to 6 h, the
absolute value of Pearson increased, which means that on longer lags Wt and Tt became
more correlated for hive H17 and the other hives (see the tables in the supplementary
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materials), except for H47. This observation, however, should not be interpreted as causality,
because there may have been an underlying hidden variable (e.g., the declining health
of the queen) that caused the two random variables to change in tandem. The p-values
in Table 7 show that for hive H17, Hρ,0 was rejected for all lags. Similar observations
(i.e., stronger Pearson correlation between Wt and Tt on longer lags, and Hρ,0 rejection
for all lags) can be made on the analogous tables for all other hives, except for hive H47,
in the supplementary materials (see Tables S58–S62). For H47, Hρ,0 was not rejected for
any lags. H41 and H47 were the only two hives that did not have significant gains in
both weight (see Figure 4) and bee mass (see Table 11) at the end of the experiment. The
weight of H41 increased only by 6 kg, and the weight of H47 essentially remained the same.
However, H41 had positive within-day correlations between weight and traffic, while the
same correlations in H47 were negative and close to zero. H47 had lower counts of frames
of bees, with the counts falling from 6 on 27 May 2021 to 5 on 13 August 2021 (see Table 8).
H41 was the only other hive where the frames of bees fell from six to four during the same
period. For H47, the mite drop started at 1.7 (the lowest of all hives) at the beginning of
the monitored period and rose to 3.7 in August, 2021 (see Table 9). Table 10 shows that
H47 and H41 were infected with the PMS and had spotty brood patterns. Table 11 shows
that H47 had the lowest bee mass in June, 2021, and the second lowest bee mass at the
end of the experiment in August, 2021, which may explain why H47 had the lowest mite
drop. In H41, a supersedure queen was present in the hive for about one week. This queen
was removed on 8 June 2021 (see Table 12) and replaced by a new one year old Italian
queen from the same breeder from the queen bank at the USDA ARS Center in Tucson, AZ.
The new queen might have been more productive than the removed queen, which may
explain why H41 had positive and H47 negative correlations between weight and traffic in
Figure 1. The supersedure queen may have mated with Africanized feral drones in Tucson,
AZ, which may have affected traffic patterns in H41. In H47, an Italian queen from breeder
1 was removed on 19 May 2021 (four days after the start of the experiment) due to lack
of productivity and replaced with a one-year-old Italian queen from breeder 2 from the
same queen bank. Thus, H47 was the only hive where a one-year-old Italian queen from
one breeder was replaced by a one-year-old Italian queen from a different breeder, which
may have been a contributing factor in the lack of correlation between hive weight and
traffic in this hive. All other queens survived and no other hives were re-queened during
the monitored period.

Tables 13 and 14 summarize the Hχ2,0 rejection ratios for all lags. Table 13 takes into
account the χ2 results for all lags, while Table 14 gives the results for the lags satisfying both
recommendations, REC1 and REC2, for χ2 tests at the end of Section 2.6. Table 13 shows
that as the lag increased from 1 h to 6 h, the frequency of Hχ2,0 rejection also increased,
indicating that for all hives Wt and Tt became more frequently associated as the lags became
longer, which corroborates the result achieved with the Pearson coefficients in Table 7. The
same tendency is observed in Table 14. Therefore, the observation that the strength of the
correlation between Wt and Tt increased with the lag was confirmed by the correlation
coefficients and χ2 results. Additional field deployments will enable us to collect more
data in order to investigate which lags maximize weight–traffic correlation and to find
computational methods for determining the optimal duration of traffic observations for
accurate weight prediction from traffic. Table 15 gives the Hχ2,0 rejection ratios for exact
traffic measurements, traffic measurement variances, and traffic measurement means and
indicates that the rejection ratios are basically the same for the three statistics, which
suggests that traffic variance and traffic mean, when taken separately, do not affect the
correlation between Wt and Tt more significantly than exact traffic counts. Thus, the latter
may suffice in computational models that relate weight and traffic.
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Table 13. Lags and Hχ2,0 rejection ratios for all monitored hives.

Lag (in Hours) Hχ2 ,0-Rejected/Number of Tests

1 13/90 ≈ 14.4%
2 9/90 = 10.0%
3 11/90 ≈ 12.2%
4 20/90 ≈ 22.2%
5 40/90 ≈ 44.4%
6 49/90 ≈ 54.4%

Table 14. Lags and Hχ2,0 rejection ratios for which the domains of Wt and Tt were split into the
numbers of intervals satisfying the recommendations REC1 and REC2.

Lag (in Hours) Hχ2 ,0-Rejected/Number of Tests

1 13/90 ≈ 14.4%
2 4/45 ≈ 8.9%
3 2/15 ≈ 13.3%

Table 15. Hχ2,0 rejection ratios for exact traffic measurements (i.e., counts), traffic measurement
variances, and traffic measurement means.

Traffic Measurements Hχ2 ,0-Rejected/Number of Tests

Exact traffic measurements 46/180 ≈ 25.6%
Traffic measurement variances (σ2) 50/180 ≈ 27.8%

Traffic measurement means (µ) 46/180 ≈ 25.6%

While the necessary condition for the independence (NCI) of weight and traffic was
experimentally verified, the χ2 tests failed to verify the implied sufficiency condition for
independence (SCI) for any lag. A possible explanation is that Dε(·) in Equation (8) divides
the values of ∆kW and ∆kT into two categories, while the χ2 tests divide ∆kZt into multiple
(more than two) categories. The computed correlation coefficients and the executed χ2

tests indicate that the relation between total traffic (TOT) and weight Wt and the sum of the
incoming and outgoing traffic (IN+OUT) and Wt are basically the same, which suggests
that lateral traffic did not have a significant impact on weight change and may be omitted
in computational models that relate weight and traffic. Additional field deployments will
allow us curate larger datasets to test the strength of the relation and, as opportunity arises,
discover its statistical or mathematical nature.

5. Conclusions

Hive weight Wt and traffic Tt were more correlated on longer lags. The strength
of the correlation increased with the lag when estimated with Pearson, Spearman, and
Kendall. The χ2 tests also showed that as the lag increased from 1 h to 6 h, the frequency
of Hχ2,0 rejection increased, indicating that Wt and Tt became more related on longer lags
for all hives. This conclusion may not be causal, because there may have been underlying
hidden variables (e.g., the health of the queen) that caused Wt and Tt to change in tandem.
Our autocorrelation analysis suggests that both weight and total traffic exhibit trends
and cyclical patterns. A feasible reason why some hives had positive and some hives
had negative correlations between Wt and Tt may lie in the genetic differences between
the queen lines from two U.S. breeders of Italian queens, which may warrant further
investigation in the future. A number of factors could contribute to the lack of correlation
between hive weight and traffic in H47: the replacement of the original queen with a queen
from a different breeder, insignificant gain in bee mass, spotty brood patterns, and PMS
infection. The spread in traffic and average traffic, when taken separately, did not affect
the correlation of Wt and Tt more significantly than the exact traffic counts from videos.
The correlation coefficients and the χ2 tests showed that the relation between total traffic
(TOT) and weight Wt and the sum of incoming and outgoing traffic (IN+OUT) and Wt are
basically the same. Thus, lateral traffic (LAT) did not have a significant impact on weight
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change and may be omitted in computational models that relate hive weight and traffic in
the vicinity of the hive. We hope that our study and similar studies will eventually result in
a methodology to separate the hive weight associated with traffic from the hive weight not
associated with it, which, in turn, will lead to the construction of computational models
that predict hive weight from hive traffic.

Supplementary Materials: The following supplementary materials are available at https://www.
mdpi.com/article/10.3390/s22134824/s1: (1) the PDF with three video sets that illustrate how the
BeePIV algorithm processes videos with different levels of bee traffic; Tables S1–S62 with additional
hive-specific correlation coefficients and p-values; and Figures S1–S7 that illustrate additional
hive-specific aspects of autocorrelation of weight and traffic; (2) six datasets of weight and traffic
which we used for the reported research.
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The following abbreviations are used in this manuscript:

EBM Electronic beehive monitoring
USDA-ARS United States Department of Agriculture-Agricultural Research Service
TB Terabyte = 1024 gigabytes
USB Universal serial bus
kg,g Kilogram, gram
km,m Kilometer, meter
h Hour
◦C Degree Celsius
MP4 MPEG-4 Part 14: Motion Picture Experts Group software for real-time data streams
ID Identification
PIV Particle image velocimetry
CSV Comma-separated values
IN Incoming bee traffic (bees flying toward the hive)
OUT Outgoing bee traffic (bees flying away from the hive)
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LAT Lateral bee traffic (bees flying in parallel to the hive)
TOT Total bee traffic in the vicinity of the hive
NCI Necessary condition for independence
SCI Sufficiency condition for independence
REC Recommendation

Appendix A

Suppose that Table A1 is our dataset. If we want to measure the change in the exact
counts with the lag of one hour, then the exact counts are as follows.

∆4W1 = |W1+1·4 − W1+(1−1)4| = |W5 − W1| = 5− 2 = 3;
∆4IN1 = |IN1+(1−1)4 + IN2+(1−1)4 + IN3+(1−1)4 + IN1·4 − 0| =

= |IN1 + IN2 + IN3 + IN4| = 20 + 12 + 10 + 18 = 60;
∆4OUT1 = |OUT1 + OUT2 + OUT3 + OUT4 − 0| = 10 + 6 + 15 + 9 = 40;
∆4TOT1 = |TOT1 + TOT2 + TOT3 + TOT4 − 0| = 35 + 19 + 29 + 30 = 113;
∆4IN-OUT1 = |(IN1 − OUT1) + (IN2 − OUT2) + (IN3 − OUT3) + (IN4 − OUT4)− 0| =

= (20− 10) + (12− 6) + (10− 15) + (18− 9) = 10 + 6− 5 + 9 = 20;
∆4IN+OUT1 = |(IN1 + OUT1) + (IN2 + OUT2) + (IN3 + OUT3) + (IN4 + OUT4)− 0|

= (20 + 10) + (12 + 6) + (10 + 15) + (18 + 9) = 30 + 18 + 25 + 27 = 100;
∆4W2 = |W1+2·4 − W1+(2−1)4| = |W9 − W5| = |3− 5| = 2;
∆4IN2 = |IN1+(2−1)4 + IN2+(2−1)4 + IN3+(2−1)4 + IN2·4 − IN1+(1−1)4 − IN2+(1−1)4−

− IN3+(1−1)4 − IN1·4| = |IN5 + IN6 + IN7 + IN8 − IN1 − IN2 − IN3 − IN4| =
= |13 + 8 + 11 + 17− 20− 12− 10− 18| = |49− 60| = 11;

∆4OUT2 = |OUT5 + OUT6 + OUT7 + OUT8 − OUT1 − OUT2 − OUT3 − OUT4| =
= |8 + 7 + 5 + 10− 10− 6− 15− 9| = |30− 40| = 10;

∆4TOT2 = |TOT5 + TOT6 + TOT7 + TOT8 − TOT1 − TOT2 − TOT3 − TOT4| =
= |26 + 17 + 18 + 34− 35− 19− 29− 30| = |95− 113| = 18;

∆4IN-OUT2 = |(IN5 − OUT5) + (IN6 − OUT6) + (IN7 − OUT7) + (IN8 − OUT8)−
− (IN1 − OUT1)− (IN2 − OUT2)− (IN3 − OUT3)− (IN4 − OUT4)| =
= |(13− 8) + (8− 7) + (11− 5) + (17− 10)− (20− 10)− (12− 6)−
− (10− 15)− (18− 9)| = |5 + 1 + 6 + 7− 10− 6 + 5− 9| = | − 1| = 1;

∆4IN+OUT2 = |(IN5 + OUT5) + (IN6 + OUT6) + (IN7 + OUT7) + (IN8 + OUT8)−
− (IN1 + OUT1)− (IN2 + OUT2)− (IN3 + OUT3)− (IN4 + OUT4)| =
= |(13 + 8) + (8 + 7) + (11 + 5) + (17 + 10)− (20 + 10)− (12 + 6)−
− (10 + 15)− (18 + 9)| = |21 + 15 + 16 + 27− 30− 18− 25− 27| =
= | − 21| = 21.

Table A1. Example dataset with nine records of W—weight, IN—incoming traffic, OUT—outgoing
traffic, LAT—lateral traffic, and TOT—total traffic; TOT = IN + OUT + LAT.

TIME STEP W IN OUT LAT TOT

1 2 20 10 5 35

2 3 12 6 1 19

3 1 10 15 4 29

4 4 18 9 3 30

5 5 13 8 5 26

6 2 8 7 2 17

7 1 11 5 2 18

8 1 17 10 7 34

9 3 3 14 9 26
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If we want to measure the change in the variation of measurements IN, OUT, TOT, IN-OUT,
and IN+OUT with the lag of one hour, then the variations are as follows.

∆4σ2(IN)1 = |σ2(IN1, IN2, IN3, IN4)− 0| = σ2(20, 12, 10, 18) = 17;
∆4σ2(OUT)1 = σ2(OUT1, OUT2, OUT3, OUT4) = σ2(10, 6, 15, 9) = 10.5;
∆4σ2(TOT)1 = σ2(TOT1, TOT2, TOT3, TOT4) = σ2(35, 19, 29, 30) = 33.6875;
∆4σ2(IN-OUT)1 = σ2(IN1 − OUT1, IN2 − OUT2, IN3 − OUT3, IN4 − OUT4) =

= σ2(20− 10, 12− 6, 10− 15, 18− 9) = σ2(10, 6,−5, 9) = 35.5;
∆4σ2(IN+OUT)1 = σ2(IN1 + OUT1), IN2 + OUT2, IN3 + OUT3, IN4 + OUT4) =

= σ2(30, 18, 25, 27) = 19.5;
∆4σ2(IN)2 = |σ2(IN5, IN6, IN7, IN8)− σ2(IN1, IN2, IN3, IN4)| =

= |σ2(13, 8, 11, 17)− σ2(20, 12, 10, 18)| = |10.6875− 17| = 6.3125;
∆4σ2(OUT)2 = |σ2(OUT5, OUT6, OUT7, OUT8)− σ2(OUT1, OUT2, OUT3, OUT4)| =

= |σ2(8, 7, 5, 10)− σ2(10, 6, 15, 9)| = 7.25;
∆4σ2(TOT)2 = |σ2(TOT5, TOT6, TOT7, TOT8)− σ2(TOT1, TOT2, TOT3, TOT4)| =

= |σ2(26, 17, 18, 34)− σ2(35, 19, 29, 30)| = 13.5;
∆4σ2(IN-OUT)2 = |σ2(IN5 − OUT5, IN6 − OUT6, IN7 − OUT7, IN8 − OUT8)−

− σ2(IN1 − OUT1, IN2 − OUT2, IN3 − OUT3, IN4 − OUT4)| =
= |σ2(5, 1, 6, 7)− σ2(10, 6,−5, 9)| = 30.3125;

∆4σ2(IN+OUT)2 = |σ2(IN5 + OUT5, IN6 + OUT6, IN7 + OUT7, IN8 + OUT8)−
− σ2(IN1 + OUT1, IN2 + OUT2, IN3 + OUT3, IN4 + OUT4)| =
= |σ2(21, 15, 16, 27)− σ2(30, 18, 25, 27)| = 3.1875.

The measure of the change in the mean of IN, OUT, TOT, IN-OUT, and IN+OUT with the
lag of one hour are as follows.

∆4µ(IN)1 = |µ(IN1, IN2, IN3, IN4)− 0| = µ(20, 12, 10, 18) = 15;
∆4µ(OUT)1 = µ(OUT1, OUT2, OUT3, OUT4) = µ(10, 6, 15, 9) = 10;
∆4µ(TOT)1 = µ(TOT1, TOT2, TOT3, TOT4) = µ(35, 19, 29, 30) = 28.25;
∆4µ(IN-OUT)1 = µ(IN1 − OUT1, IN2 − OUT2, IN3 − OUT3, IN4 − OUT4) =

= µ(20− 10, 12− 6, 10− 15, 18− 9) = µ(10, 6,−5, 9) = 5;
∆4µ(IN+OUT)1 = µ(IN1 + OUT1), IN2 + OUT2, IN3 + OUT3, IN4 + OUT4) =

= µ(30, 18, 25, 27) = 25;
∆4µ(IN)2 = |µ(IN5, IN6, IN7, IN8)− µ(IN1, IN2, IN3, IN4)| =

= |µ(13, 8, 11, 17)− µ(20, 12, 10, 18)| = |12.25− 15| = 2.75;
∆4µ(OUT)2 = |µ(OUT5, OUT6, OUT7, OUT8)− µ(OUT1, OUT2, OUT3, OUT4)| =

= |µ(8, 7, 5, 10)− µ(10, 6, 15, 9)| = |7.5− 10| = 2.5;
∆4µ(TOT)2 = |µ(TOT5, TOT6, TOT7, TOT8)− µ(TOT1, TOT2, TOT3, TOT4)| =

= |µ(26, 17, 18, 34)− µ(35, 19, 29, 30)| = |23.75− 28.25| =
= 4.5;

∆4µ(IN-OUT)2 = |µ(IN5 − OUT5, IN6 − OUT6, IN7 − OUT7, IN8 − OUT8)−
− µ(IN1 − OUT1, IN2 − OUT2, IN3 − OUT3, IN4 − OUT4)| =
= |µ(5, 1, 6, 7)− µ(10, 6,−5, 9)| = |4.75− 5| = 0.25;

∆4µ(IN+OUT)2 = |µ(IN5 + OUT5), IN6 + OUT6, IN7 + OUT7, IN8 + OUT8)−
− µ(IN1 + OUT1), IN2 + OUT2, IN3 + OUT3, IN4 + OUT4)| =
= |µ(21, 15, 16, 27)− µ(30, 18, 25, 27)| = |19.75− 25| =
= 5.25.

A Necessary Condition for Independence Theorem (NCIT): If Xt, Xt−1, Yt, Yt−1 are
discrete independent random variables, then, for any εX and εY,

P(DεX (Xt) = 1, DεY (Yt) = 1) = P(DεX (Xt) = 1) · P(DεY (Yt) = 1).
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Proof. Let us consider the probability P(Xt −Xt−1 = x, Yt −Yt−1 = y), where x, y ∈ R are
arbitrary numbers. Since Xt, Xt−1, Yt, Yt−1 are discrete and independent, this probability
can be written as

P(Xt − Xt−1 = x, Yt −Yt−1 = y)

= ∑
i

∑
j

P(Xt = x− ai, Xt−1 = ai, Yt = y− bj, Yt−1 = bj)

= ∑
i

∑
j

P(Xt = x− ai)P(Xt−1 = ai)P(Yt = y− bj)P(Yt−1 = bj)

= ∑
i

P(Xt = x− ai)P(Xt−1 = ai) ·
(

∑
j

P(Yt = y− bj)P(Yt−1 = bj)

)

=

(
∑

i
P(Xt = x− ai)P(Xt−1 = ai)

)
· P(Yt −Yt−1 = y)

= P(Xt − Xt−1 = x)P(Yt −Yt−1 = y).

Thus, Xt − Xt−1 and Yt −Yt−1 are independent discrete variables, and, consequently,
|Xt − Xt−1| and |Yt − Yt−1| are independent as well. Therefore, for any εX and εY in R,
we have

P(|Xt − Xt−1| ≥ εX , |Yt −Yt−1| ≥ εY) = P(|Xt − Xt−1| ≥ εX , |Yt −Yt−1| ≥ εY),

if and only if

P(DεX (Xt) = 1, DεY (Yt) = 1) = P(DεX (Xt) = 1) · P(DεY (Yt) = 1).

Thus, ∀εX ∈ (0, ε∗X), εY ∈ (0, ε∗Y),

P(DεX (Xt) = 1, DεY (Yt) = 1) = P(DεX (Xt) = 1) · P(DεY (Yt) = 1).
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