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Abstract

Background: Improvement of single site cannulation for extracorporeal membrane
oxygenation (ECMO) therapy is pivotal for reduction of patient morbidity and
mortality in respiratory failure. To further improve the cardiopulmonary outcomes
and reduce end organ damage, we established a murine model for single site
cannulation with a double lumen cannula.

Results: We created a hemodynamically stable double lumen cannula and
successfully implanted it through the jugular vein into the upper and lower vena
cava. This allowed adequate drainage of the blood. Blood gas analysis showed
excellent oxygenation and CO2 reduction. There was no excessive bleeding. No signs
of right heart congestion were present which was confirmed in the histological
analysis of the liver. Histology demonstrated moderate lung damage and mild acute
kidney injury. Neutrophil infiltration was similar in ECMO and sham kidneys.

Conclusions: Veno-venous extracorporeal circulation deteriorates kidney function
and promotes moderate pulmonary damage.

Keywords: Mouse model, Extracorporeal membrane oxygenation, Single cannula,
Double lumen cannula

Introduction
Extracorporeal membrane oxygenation (ECMO) is an essential tool in cardiorespira-

tory failure [1]. In isolated respiratory failure, veno-venous (vv)-ECMO is the therapy

of choice as bridge to either recovery or transplantation [2]. In this setting, there are

two cannulas placed in the veins of the patient. The draining cannula is typically

placed through the femoral vein and advanced via the inferior vena cava to the right

atrium. The returning cannula is typically placed in the right jugular vein and advanced

to the border of the right atrium and upper vena cava. Through the membrane

oxygenator, blood is supplied with oxygen and carbon dioxide is washed out. Indica-

tions for vv-ECMO implementation include severe acute respiratory distress syndrome
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(ARDS), exacerbation of chronic obstructive pulmonary disease (COPD), and as a

bridge to lung transplantation [3, 4]. Although this system is highly effective, complica-

tions including bleeding, pneumothorax, and cannula infections have been reported

during cannulation and ongoing ECMO therapy [2, 4, 5]. Moreover, patients on awake

ECMO are difficult to mobilize when the femoral vein is cannulated. The use of a

double lumen cannula has been proposed to optimize physiotherapy, patient

mobilization, and patient comfort [6–8]. Additionally, placement of a double lumen

cannula at a single site is less traumatic and has been proven to be very effective when

CO2 elimination is needed. Major limitations of this system include reduced venous

backflow [9], relatively low blood flow [10], cannula displacement, and thrombosis [11].

To further improve patient outcomes and reduce morbidity, a reliable and reprodu-

cible animal model is needed for research purposes. Based on our previously estab-

lished mouse model of vv-ECMO [12], here we describe a novel murine double lumen

cannula for vv-ECMO support.

Material and methods
Animals

Nineteen male C57Bl/6 mice were obtained from Charles River (Sulzfeld, Germany) and

used for the experiments. Animals were randomly divided into sham-operated (n = 6) ani-

mals, 4 h vv-ECMO (n = 8) animals, and animals used in the design of the double lumen

cannula (n = 5, see below). The weight of mice ranged between 25 and 35 g. This study

was performed in compliance with the German Animal Protection Law (TierSchG) and

was approved by the local animal welfare committee (Lower Saxony State Office for

Consumer Protection and Food Safety, Protocol TSA 33.12-42502-04-16/2250).

Design and construction of the double lumen cannula

A 2F double lumen silicone-based catheter (Vygon GmbH & CO.KG Medizintechnik,

Aachen, Germany) was used as the basis for the production of the double lumen

cannula (Fig. 1). Using a sharp blade, outflow fenestrations were made in the catheter

at the eventual site of the superior vena cava and inferior vena cava (Fig. 2). Similarly,

inflow fenestrations were made at the height of the right atrium. To ensure optimal po-

sitioning of the fenestrations, multiple measurements were performed on five mouse

cadavers of a similar age/size to the experimental mice. For optimal drainage and min-

imal shunting, venous outflow fenestrations were made 0.2 mm, 0.4 mm, and 20mm

from the distal end. Atrial inflow fenestrations were made 0.4 mm and 0.5 mm from

the distal end. To prevent recirculation and shunting of the blood, the distal end of the

inflow cannula lumen was sealed.

Surgical procedure and extracorporeal membrane oxygenation

Surgical preparation (Fig. 3) and ECMO setup were carried out as previously described

[12]. In brief, all animals were anesthetized with isoflurane mask narcosis (Fig. 3 (a))

and spontaneous breathing was maintained. Subcutaneous carprofen (Zoetis, Parsip-

pany, NJ, USA) injections were given as additional analgesia (5 mg/kg body weight).

Perfusion solution consisted of a 1:1 solution of Tetraspan: Sterofundin (B Braun Med-

ical, Melsungen, Hesse, Germany) that had been heparinized (30 IU/ml). Prior to
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cannulation, the ECMO circuit was primed with 500 μl of perfusion solution. Buffering

of the solution was carried out using 2.5% v/v of an 8.4% solution of sodium bicarbon-

ate. An arterial pressure line in the left femoral artery was used for blood sampling and

blood pressure monitoring.

For cannulation, a lateral skin incision on the left side of the neck was made to

expose the left jugular vein. An 8-0 silk suture was placed cranially to ligate the distal

segment, and a slip knot was placed at the proximal end of the vein. After introducing

the double lumen cannula into the left jugular vein (Fig. 3 (b)), it was moved 3.5 cm in

the direction of the superior vena cava, and further into the inferior vena cava. The

cannula was then secured using slip-knots. After confirmation of correct position of

the cannula, extracorporeal circulation was started and continued for 4 h. In the sham

group, the surgical procedure for cannulation was identical to the ECMO animals; how-

ever, no extracorporeal circulation was commenced. In both ECMO- and sham-treated

animals, the procedure was performed for 4 h.

Blood gas analysis

Blood gas analysis (BGA) was performed from blood sampled from the femoral artery

to evaluate the oxygenation and metabolic state of animals undergoing vv-ECMO.

Blood tests of kidney and liver function

Blood samples were collected via the femoral artery prior to the procedure and via ex-

sanguination after termination of the experiment. Serum was stored at − 20 °C for later

Fig. 1 The two French double lumen cannula which were the basis for the double lumen single ECMO
cannula. Ruler for reference in mm
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Fig. 2 Schematic depiction of the double lumen silicone cannula. Two lines were constructed into a single cannula.
One line extracts blood (a) from the upper and lower vena cava before passing it through the oxygenator and
giving the blood back in the right atrium (b). Blue (c) and red arrows (d) show the fenestrations in the cannula
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analysis. Clinical chemistry was done using an Olympus analyzer (AU 400) according

to the manufacturer’s instructions to evaluate liver enzymes (glutamate oxaloacetate

transaminase (GOT) and glutamate pyruvate transaminase (GPT)) and kidney function

(creatinine, urea) after vv-ECMO. All values were corrected for hemodilution as previ-

ously described [13]. Furthermore, to evaluate hemolysis during the experiment, lactate

dehydrogenase (LDH) values were compared between the start of the experiment and

after 4 hours.

Histology

For organ fixation, lungs were filled with 4% paraformaldehyde via injection into the

trachea. Filled lungs were explanted and incubated in 4% formalin overnight at 4 °C.

After dehydration and deparaffinization, lungs were stained with hematoxylin and eosin

(H&E) and histologically assessed for pulmonary damage. The liver and kidney were

also collected, fixed in 4% paraformaldehyde, and stored for 24 h at 4 °C. Two-

micrometer paraffin sections were stained with periodic acid-Schiff (PAS) to evaluate

kidney and liver morphology. Assessment of acute kidney injury (AKI) and liver dam-

age was done using a method previously described [13].

Statistics

Statistical analyses were performed using GraphPad Prism version 5.0 software (Graph-

Pad Software Inc., San Diego, CA, USA). The Kolmogorov-Smirnov test revealed the

data was normally distributed. One-way ANOVA with post hoc Bonferroni tests were

used for statistical analysis. Unless otherwise stated, data are presented as mean ±

standard deviation (SD).

Fig. 3 Experimental setup with mask narcosis (a) and double lumen cannulation through the jugular vein
(b). During vv-ECMO, blood was circulated via a self-made oxygenator and returned via the right atrium
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Results
Hemodynamics and oxygenation after 4-h sham and ECMO treatment

During the experiments, stable hemodynamics were observed. No excessive blood loss

was noted, and this was confirmed by the relatively stable hematocrit (Hct) and

hemoglobin (Hb) values. Sham-operated animals had an initial Hct value of 42.5 ±

0.9%, which dropped after 4 h to 38.3 ± 0.9% (not significant, n.s.) due to regular blood

samplings (Fig. 4a). In general, approximately 150 μl of blood was taken over the course

of the experiment to analyze BGA in both arterial and venous blood. There was a simi-

lar drop in Hct seen in the vv-ECMO-treated group with an initial value of 24.5 ± 1.3%

and an end value of 18.3 ± 1.7% (p = 0.027) (Fig. 4a). A significantly lower hematocrit

was measured after 4 h of ECMO in comparison to 4 h sham (p = 0.0016) (Fig. 4a).

These findings were comparable to our previous data [14], and the lower values were

due to hemodilution.

Hemoglobin showed a similar drop over the course of the experiments. The initial

level of Hb of 13.6 ± 0.2 g/dL in the sham group was in the normal range and signifi-

cantly dropped during the experiment to 12.2 ± 0.3 g/dL (p = 0.003) due to blood sam-

pling (Fig. 4b). Although not statistically significant, a fall in hemoglobin from 8.7 ± 0.4

to 7.2 ± 0.4 g/dL was observed in the ECMO treatment group (p = 0.059), probably due

to hemolysis caused by the ECMO.

To ensure proper membrane oxygenator function, blood sampling was performed

directly before and after the oxygenator following initiation of vv-ECMO. Pre-

oxygenator pO2 (113.0 ± 14.1 mmHg) and post-oxygenator pO2 (680.9 ± 19.2

mmHg) showed a significant increase (p < 0.0001) indicating an excellent oxygen-

ation capacity of our membrane oxygenator (Fig. 5a). To evaluate animal oxygen-

ation, arterial BGAs were taken at the beginning of the experiment and were

compared to BGAs taken after 4 h. Once initiated, ECMO was associated with high

pO2 levels, which did not significantly change during the 4-h course of ECMO (p

= 0.09) (Fig. 5b). After 4 h, the ECMO group showed a significantly higher arterial

pO2 (567.1 ± 56.1 mmHg) (p < 0.001) compared to the sham group (312.0 ± 23.4

mmHg) (Fig. 5b). No significant differences in arterial pCO2 were recorded

Fig. 4 Hematocrit (a) and hemoglobin (b) values of sham-operated (n = 6) and 4-hour ECMO-treated (n =
8) animals significantly decreased over the course of the experiment. All values are given as mean ± SD.*p
< 0.05; **p < 0.01, ***p < 0.0001, ns not significant
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between the start and end of the experiment in the sham or ECMO groups (Fig.

5b). Similarly, no significant differences in venous pH or sO2 were observed be-

tween the start and end of the experiment for sham- or ECMO-treated animals

(data not shown).

Venous blood taken from the inferior vena cava showed better pO2 values after 4-h

ECMO therapy (p = 0.036) compared to the sham animals (Fig. 5c). There was no sig-

nificant rise in venous blood pO2 after 4-h ECMO compared to start of the experiment

(p = 0.17). No significant decrease in pCO2 values was seen over the course of 4 h in

either sham- or ECMO-treated animals (Fig. 5d, e).

Fig. 5 Blood gas analysis (BGA) was performed to ensure proper function of the oxygenator (a). pO2 (b, c)
and pCO2 (d, e) values were evaluated in the ECMO animals (n = 8) and sham animals (n = 6). All values
are given as mean ± SD.*p < 0.05; **p < 0.01, ***p < 0.0001, ns not significant
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Evaluation of organ damage after 4-h sham or ECMO treatment

Four hours after either sham operation or vv-ECMO with the double lumen single can-

nulation technique, organ damage was evaluated. No pulmonary pathology was seen

after 4 h in the sham group (Fig. 6a, c, e). Although the ECMO-treated animals showed

regular bronchial and vascular architecture, small peripheral vessel coagulopathy was

more frequently observed compared to sham-operated animals (Fig. 6).

Next, renal function and kidney histology were assessed. Significant differences in

serum creatinine and urea (p < 0.001) were seen after ECMO treatment compared to

sham-operated animals (Fig. 7a, b). These differences may be due to either pre-renal

acute kidney injury or hemolysis. Quantitative scoring (Fig. 7c) and histological evalu-

ation (Fig. 7d, e) of the kidney showed a significant increase in the AKI (p = 0.040)

score in the ECMO group, suggesting decreased renal function after vv-ECMO.

Fig. 6 Effect of ECMO treatment on lung histology. Shown are representative images of animals in either
the sham (a, c, e) or ECMO oxygenation group (b, d, f) at the end of the procedure. Both groups showed
normal bronchial and vascular architecture and normal general lung histology. Interestingly, animals treated
with 4-h ECMO oxygenation frequently showed peripheral small vessel coagulopathy. Original
magnifications × 2 (a, b), × 10 (c, d), and × 40 (e, f)
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Furthermore, although more GR-1 staining due to neutrophil infiltration was seen in

the kidney after 4-h ECMO compared to sham-treated animals (Fig. 7f, g), quantitative

scoring did not reach significance (p = 0.845).

After 4 h, blood tests for liver function revealed no significant differences between

ECMO- and sham-treated animals (Fig. 8a, b). Congestive hepatopathy can occur upon

congestive heart failure, but this data suggests right heart congestion did not occur

during the procedure. No histological abnormalities were seen in the H&E- and PAS-

stained cardiac samples (data not shown). As another measure of tissue damage, LDH

was measured in the blood. After 4 h, a significant increase in LDH concentration was

seen in ECMO-treated animals compared to sham treatment (p < 0.001) (Fig. 8c).

Liver pathology was evaluated using PAS staining and showed various extents of

irregular glycogen loss in all animals (Fig. 8d, e). However, there were no signs of

necrosis, cellular infiltration, or edema in liver tissue. Furthermore, quantification of

Fig. 7 Renal function and kidney histology. Clinical chemistry showed significantly elevated serum
creatinine and urea in the ECMO group (a, b). Quantification of kidney damage after PAS stain was done by
AKI score which showed mild AKI with distended tubuli in the ECMO group and almost normal renal
morphology in sham kidneys (c, d, g). GR-1 neutrophil infiltration slightly increased after ECMO in glomeruli
and in the tubulo interstitial space (e, f, h). All values are given as mean ± SD.*p < 0.05; **p < 0.01, ***p <
0.001, ns not significant (bar represents 100 μm)
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glycogen storage defects (Fig. 8f) did not show a significant difference in either treat-

ment group (p = 0.75).

Discussion
Animal models of bi-caval ECMO are rare, with to date, only two swine models being

described [15, 16]. To our knowledge, no papers on bi-caval double lumen ECMO in a

murine model have been published, making this a novel model. Although the classic

two cannula vv-ECMO has become increasingly popular in patients with respiratory

Fig. 8 Clinical chemistry and histology of the liver. Blood samples taken after 4 h showed no significant
elevation in GOT and GPT in the ECMO animals when compared to sham animals (a, b). LDH was
significantly elevated in the ECMO treatment group compared to the sham group (c). Although histological
evaluation of the liver did show reduced glycogen storage capacity in the ECMO group (d, e) compared to
the sham group, this was not statistically significant (f). All values are given as mean ± SD.*p < 0.05; **p <
0.01, ***p < 0.0001, ns not significant (bar represents 1000 μm)
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failure, this modality has its limitations. In small pediatric patients, there is no possibil-

ity for a second cannula as the femoral veins are often too small for cannulation. As

previously stated, patient immobilization due to ECMO makes physical therapy practic-

ally impossible and may prolong the intensive care unit stay. In awake ECMO patients,

ECMO tolerability is much greater and was not associated with an increase in compli-

cations such as bleeding [8, 10]. For this group of patients, a bi-caval double lumen

cannula has been proposed as a therapeutic option [17]. This single cannula is inserted

via the jugular vein and is ideally positioned using transesophageal echocardiog-

raphy [18]. The main objective of vv-ECMO is carbon dioxide (CO2) elimination and,

in part, supportive oxygenation in respiratory failure. Depending on the blood flow and

diameter of the cannula, the rate of CO2 elimination can be regulated. Our new small

animal model of double lumen ECMO is a proof of concept of the technique for poten-

tial future use to explore the pathomechanisms of SIRS, respiratory compensation in

acute or end-stage lung disorders, and other systemic complications purely related to

the blood damage caused by extracorporeal circulation. Additionally, there are com-

mercially available genetically modified mice that develop, for example, respiratory in-

sufficiency directly after birth or lung fibrosis in older age, in which ECMO could be

studied in the context of these underlying diseases. Moreover, our cannulation tech-

nique can be successfully used in other experimental models involving dialysis, cytokine

adsorbtion, plasmapheresis, or hemadsorbtion due to a similarity in function with other

venous double lumen catheters widely used in the clinic.

Our results showed a feasible, hemodynamically stable setup with proper oxygenation

and a trend of decreasing CO2 values. This suggests an optimized functioning of the

oxygenator and a minimal shunting of the ECMO blood. No clinical signs of heart con-

gestion were seen. Furthermore, clinical chemistry showed no increase in GOT and

GPT values, thus making right heart congestion less probable. Increases in creatinine

and urea values suggest a decrease in kidney function. Simultaneously, a significant in-

crease in LDH was seen which may be explained due to hemolysis during ECMO.

Hemolysis has previously been associated with impaired acute kidney failure after car-

diopulmonary bypass [19]. Kidney failure during extracorporeal circulation is common

and has multiple causes. In our model, the AKI was apparent with tubular damage

upon histological assessment. Previous work showed an association between tubular

damage and hemolysis, reduced renal blood flow, and hypoxia in ECMO [20–24]. AKI

is an expected clinically relevant consequence of ECMO, and therefore, our model can

be used to explore therapeutic interventions to prevent organ damage. In addition, due

to the availability of a large number of genetically modified mouse strains, the model

could also be used to investigate the molecular mechanisms leading to ECMO-related

organ damage. As it is often difficult to distinguish whether complications seen clinic-

ally are caused by ECMO itself or arise from the underlying disorders accompanying

acute and end-stage diseases, our model will allow researchers to specifically study the

effects of ECMO on a healthy organism.

Our model did not show a significant drop in CO2 concentration in the arterial

BGA over the course of a 4-h ECMO procedure. We believe this was due to spon-

taneous breathing of the animals. However, a clear trend in CO2 reduction was

observed. A further reduction in CO2 values may be achieved by increasing gas

flow or EMCO blood flow. Inducing a hypercapnic state in a mouse model would
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be beneficial to address this issue. As there are no small animal models available,

we could not compare these findings. Large animal ECMO models, however,

showed similar oxygenation results and comparable hemodynamics but did not re-

port renal or hepatic function parameters [15, 16]. In conclusion, we present the

proof-of-concept use of bi-caval double lumen ECMO in a murine model. Future

projects include application of this model in a murine lung disease model to deter-

mine the outcome using different ECMO modalities.

Conclusion
Veno-venous extracorporeal membrane oxygenation elicits a decrease in renal function

and significantly more histological renal damage. Furthermore, it induces pulmonary

morphological changes after 4 h in a murine model. Liver function and histology does

not seem to be affected, neither were there signs of right heart congestion.
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