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We propose a mathematical model for the transmission dynamics of SARS-CoV-2 in 
a homogeneously mixing non constant population, and generalize it to a model where 
the parameters are given by piecewise constant functions. This allows us to model 
the human behavior and the impact of public health policies on the dynamics of the 
curve of active infected individuals during a COVID-19 epidemic outbreak. After 
proving the existence and global asymptotic stability of the disease-free and endemic 
equilibrium points of the model with constant parameters, we consider a family 
of Cauchy problems, with piecewise constant parameters, and prove the existence 
of pseudo-oscillations between a neighborhood of the disease-free equilibrium and 
a neighborhood of the endemic equilibrium, in a biologically feasible region. In 
the context of the COVID-19 pandemic, this pseudo-periodic solutions are related 
to the emergence of epidemic waves. Then, to capture the impact of mobility in 
the dynamics of COVID-19 epidemics, we propose a complex network with six 
distinct regions based on COVID-19 real data from Portugal. We perform numerical 
simulations for the complex network model, where the objective is to determine a 
topology that minimizes the level of active infected individuals and the existence 
of topologies that are likely to worsen the level of infection. We claim that this 
methodology is a tool with enormous potential in the current pandemic context, 
and can be applied in the management of outbreaks (in regional terms) but also to 
manage the opening/closing of borders.
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1. Introduction

The history of the pandemics that have already plagued mankind has revealed that there are consistently 
periods of marked increase in infected individuals, followed by phases in which the numbers are relatively 
lower. In these cases, there is also a repetition of these oscillations that are called pandemic waves. A second 
wave of the pandemic poses an imminent threat to society, with an immense cost in terms of human lives 
and a devastating economic impact, it is therefore, crucial to try to avoid the emergence of pandemic waves.

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respira-
tory syndrome coronavirus-2 (SARS-CoV-2). The World Health Organization announced the COVID-19 
outbreak as a pandemic on 11 March 2020 [29]. At the time of writing, several countries across Europe are 
seeing a resurgence in COVID-19 cases after successfully controlling the first outbreak and started to take 
action to face the so-called second wave [12]. Mathematical tools have been important in the analysis and 
control of COVID-19 pandemic, see e.g. [16,18,19,22] and references cited therein.

In this paper, we propose a mathematical model given by a system of ordinary differential equations 
based on the model from [23], for the transmission dynamics of SARS-CoV-2 in a homogeneously mixing 
population, and we generalize it to a non constant population model with piecewise constant parameters. 
Considering parameters determined by piecewise constant functions allows to model the governmental and 
public health decisions of political actors, which have a large influence on the behaviors of individuals, 
which in turn can change the dynamics of the epidemic, see e.g. [1,3,11]. Moreover, the piecewise constant 
parameters also allow to mathematically model the human behavior in the application of non-pharmaceutical 
interventions (NPI), such as, physical distancing, limited size of indoor and outdoor gatherings, teleworking, 
regular cleaning of frequently-touched surfaces and appropriate ventilation of indoor spaces, mask use, 
avoiding close contact and hand washing, see e.g. [8,13].

Viruses need cells to replicate themselves, as they are not able to do so on their own. Depending on the 
type of virus, contagion is more or less facilitated depending on the means of transmission. In the case of 
SARS-COV-2, the transmission is carried out through droplets containing viruses that are sent from the 
respiratory tract. Accordingly, as the airways are the gateway to the virus, the proximity of people and the 
dynamics imposed by the movement are a determining factor in the spread of the COVID-19 disease. The 
proof that the movement of people is a determining factor for contagion is that during the recent periods 
of confinement the number of infections has decreased very markedly [27].

In this paper, the COVID-19 mathematical model is improved by constructing a complex network of 
dynamical systems, following the framework presented in [6,7], in order to take into account the mobilities 
of individuals, which are also known to play a decisive role in the dynamics of the epidemic. We investigate 
in which cases such a COVID-19 second wave can occur, by establishing sufficient conditions for pseudo-
periodic solutions: see, e.g., [9,15,28] for traveling waves results in epidemiological models and [2,4,5,14] for 
complex network models.

Our model is calibrated in order to fit with the real data of the COVID-19 dynamics in six regions of 
Portugal mainland, namely Norte, Centro, Lisboa e Vale do Tejo, Alentejo, Algarve and Pinhal Litoral.

Numerical simulations are provided where we explore the effect of the topology of the network on the 
dynamics of the epidemics (disposal of connections and coupling strength). We identify which type of 
topology minimizes the level of infection of the epidemic, and which type of topology worsens the number 
of infected individuals.

This paper is organized as follows. In Section 2, we propose a mathematical model for the transmission 
dynamics of SARS-COV-2, with constant parameters and variable population size. We show that the model 
admits two equilibrium points and we analyze their local and global stability. In Section 3, we consider 
piecewise constant parameters, which allows to model the impact of public health policies and the human 
behavior in the dynamics of the COVID-19 epidemic. The existence and uniqueness of global solutions of the 
model with piecewise constant parameters is proved. An important result in the context of the COVID-19 
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pandemic and the resurgence of epidemic waves, is proved in Section 4, where a sufficient condition is proved 
to the existence of pseudo-periodic solutions. In Section 5, we construct a complex network of SAIRP models 
with piecewise constant parameters, where each node represents one of six regions in Portugal, and where 
the values of the parameters differ from one region to another. The case study, with COVID-19 real data 
from Portugal, is analyzed in Section 6, where we calibrate the model to each of the six regions and after, 
numerical simulations are performed in order to determine the topology that minimizes the average number 
of active infected individuals in Portugal. The results obtained in this paper are discussed, in Section 7, 
from a practical point of view and its implications in the management of the COVID-19 pandemic waves. 
We end the paper in Section 8, with some conclusions and future work.

2. Model with constant parameters

We propose a compartmental SAIRP mathematical model, based on [23], where the population is sub-
divided into five classes: susceptible individuals (S); asymptomatic infected individuals (A); active infected 
individuals (I); removed (including recovered and COVID-19 induced deaths) (R); protected individuals 
(P ). The total population, N(t) = S(t) +A(t) + I(t) +R(t) +P (t), with t ∈ [0, T ] representing the time (in 
days) and T > 0, has a variable size where the recruitment rate, Λ, and the natural death rate, μ > 0, are 
assumed to be constant. The susceptible individuals S become infected by contact with active infected I
and asymptomatic infected A individuals, at a rate of infection β (θA+I)

N , where θ represents a modification 
parameter for the infectiousness of the asymptomatic infected individuals A. The remaining assumptions 
follow the ones from [23]. Only a fraction q of asymptomatic infected individuals A develop symptoms and 
are detected, at a rate v. Active infected individuals I are transferred to the recovered/removed individuals 
R, at a rate δ, by recovery from the disease or by COVID-19 induced death. A fraction p, with 0 < p < 1, 
is protected (not immune) from infection, by the application of non-pharmaceutical interventions (NPI), 
such as, physical distancing, limited size of indoor and outdoor gatherings, teleworking, regular cleaning of 
frequently-touched surfaces and appropriate ventilation of indoor spaces, mask use and hand washing, see 
e.g. [8,13], that prevent from being exposed to the infection, and is transferred to the class of protected 
individuals P , at a rate φ. A fraction m of protected individuals P returns to the susceptible class S, at 
a rate w. In what follows, for the sake of simplification, we use the notation ν = vq and ω = wm. The 
previous assumptions are described by the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = Λ − β(1 − p) (θA(t)+I(t))
N(t) S(t) − φpS(t) + ωP (t) − μS(t),

Ȧ(t) = β(1 − p) (θA(t)+I(t))
N(t) S(t) − νA(t) − μA(t),

İ(t) = νA(t) − δI(t) − μI(t),

Ṙ(t) = δI(t) − μR(t),

Ṗ (t) = φpS(t) − ωP (t) − μP (t).

(1)

2.1. Existence, positivity and boundedness of solutions

The equations of the SAIRP model (1) can be rewritten as

ẋ(t) = f (x(t), α) , t > 0, (2)

with x = (S, A, I, R, P )T ∈ R5 and α = (Λ, μ, β, p, θ, φ, ω, ν, δ)T ∈ R9, where the non-linear operator f
is defined in R5 ×R9 by



4 C.J. Silva et al. / J. Math. Anal. Appl. 514 (2022) 125171
f(x, α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Λ − β(1 − p) (θA+I)
N − φpS + ωP − μS

β(1 − p) (θA+I)
N S − νA− μA

νA− δI − μI

δI − μR

φpS − ωP − μP

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

In order to prove that the problem determined by (2) is well-posed, we introduce the compact region 
Ω ⊂ R5 defined by

Ω =
{
x = (S, A, I, R, P )T ∈

(
R+)5 ; 0 < S + A + I + R + P ≤ Λ

μ

}
. (4)

The following theorem establishes the existence of global solutions to (2).

Theorem 1. For any x0 = (S0, A0, I0, R0, P0)T ∈ Ω, the Cauchy problem given by (2) and x(0) = x0 admits 
a unique solution, denoted by x(t, x0), defined on [0, ∞), whose components are non-negative. Furthermore, 
the region Ω defined by (4) is positively invariant.

Proof. The existence of a local in time solution x(t, x0) to problem (2) starting from x0 ∈ Ω follows from the 
theory of ordinary equations (see, for instance, [20]). The non-negativity of the components is guaranteed 
by the quasi-positivity of the non-linear operator f = (fj)1≤j≤5, which means that it satisfies the property

fi(x1, . . . , xi−1, 0, xi+1, . . . , x5, α) ≥ 0,

for all x = (x1, . . . , x5) ∈ (R+)5, i ∈ {1, . . . , 5} and α ∈ R9. By virtue of Proposition A.17 in [24], it follows 
that the components of any solution x(t, x0) stemming from x0 in Ω remain non-negative in future time. 
Finally, summing the five equations of system (2) leads to

Ṅ(t) + μN(t) ≤ Λ, t > 0,

from which it is deduced, using Gronwall’s lemma, that

N(t) ≤
[
N(0) − Λ

μ

]
e−μt + Λ

μ
, t > 0.

The latter inequality proves that the region Ω defined by (4) is positively invariant. �
Remark 1. A possible alternative for establishing the existence of a positively invariant region is to apply 
the method described in [25, Chapter 14]: if the vector field corresponding to the system points into the 
interior of the region, then the region is seen to be positively invariant.

Note also that the upper bound Λμ involved in the definition of the region Ω can be physically interpreted: 
if the mortality rate μ increases, then the diameter of the region Ω decreases, which roughly speaking means 
that the population described by the system is smaller. In parallel, if Λ increases, then the region Ω is 
enlarged, which means that a higher initial recruitment guarantees a numerous population.

2.2. Equilibrium points and basic reproduction number

In this section, we study the equilibrium points of system (1) and derive their expressions with respect 
to the parameters of the model. We compute the basic reproduction number, denoted by R0, following the 
approach in [26].
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Proposition 1. The model (1) has two equilibrium points:

• disease-free equilibrium, denoted by Σ0, given by

Σ0 = (S0, A0, I0, R0, P0) =
(

Λ (ω + μ)
μ (pφ + μ + ω) , 0, 0, 0,

φ pΛ
μ (pφ + μ + ω)

)
; (5)

• endemic equilibrium, Σ+, whenever R0 > 1, given by

Σ+ = (S+, A+, I+, R+, P+) (6)

with

S+ = Λ(ω + μ)
(pφ + μ + ω)μR

−1
0 ,

A+ = Λ
ν + μ

R−1
0 (R0 − 1) ,

I+ = Λν
(ν + μ)(δ + μ)R

−1
0 (R0 − 1) ,

R+ = δΛν
(ν + μ)(δ + μ)μR

−1
0 (R0 − 1) ,

P+ = Λφp
(pφ + μ + ω)μR

−1
0 ,

(7)

where the basic reproduction number, R0, is given by

R0 = β (1 − p) (δ θ + μ θ + ν) (ω + μ)
(δ + μ) (ν + μ) (pφ + μ + ω) . (8)

Proof. The computation of the equilibrium points and the basic reproduction number follows standard 
arguments, see [26]. �
2.3. Local and global stability analysis

In what follows we prove the local and global asymptotic stability of the disease-free equilibrium (DFE), 
when the basic reproduction number satisfies the inequality R0 < 1. For R0 > 1, we prove that the endemic 
equilibrium is globally asymptotically stable in a biologically meaningful compact positive invariant region.

Theorem 2 (local stability of the DFE). The disease-free equilibrium, Σ0, is locally asymptotically stable 
whenever R0 < 1.

Proof. For the sake of simplicity, let

N := β (1 − p) (δ θ + μ θ + ν) (ω + μ) and D := (δ + μ) (ν + μ) (pφ + μ + ω)

denote the numerator and denominator, respectively, of the basic reproduction number, R0, given by (8). 
The Jacobian matrix of system (1), evaluated at the disease-free equilibrium (5), is given by
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M (Σ0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(φ p + μ) − θ β (μ+ω)(1−p)
φ p+μ+ω −β (μ+ω)(1−p)

φ p+μ+ω 0 ω

0 −βθ(1−p)(μ+ω)+(μ+ν)(pφ+μ+ω)
φ p+μ+ω

β (μ+ω)(1−p)
φ p+μ+ω 0 0

0 ν −δ − μ 0 0

0 0 δ −μ 0

φ p 0 0 0 −(μ + ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues of the matrix M (Σ0) are given by λ1 = λ2 = −μ, λ3 = −(φp + μ + ω) and the remaining 
two, λ4 and λ5, are the roots of the polynomial p(λ) given by

p(λ) = λ2 + Bλ + C,

where B = −βθ(1−p)(ω+μ)
(pφ+μ+ω) +δ+2μ +ν and C = D−N

pφ+μ+ω . Applying the Routh–Hurwitz criterion, we conclude 
that model (1) is locally stable if, and only if, B > 0 and C > 0. It is easy to show that C > 0 whenever 
R0 < 1. The coefficient B is positive when

βθ(1 − p)(ω + μ) < (δ + 2μ + ν)(pφ + μ + ω) .

Since all parameters take positive values, we have

βθ(1 − p)(ω + μ) < β (1 − p) (δ θ + μ θ + ν) (ω + μ)︸ ︷︷ ︸
N

.

From R0 < 1, we have N < D and, therefore,

β (1 − p) (δ θ + μ θ + ν) (ω + μ)︸ ︷︷ ︸
N

< (δ + μ) (ν + μ) (pφ + μ + ω)︸ ︷︷ ︸
D

.

From the biological meaning of δ, μ and ν, we have that 0 < δ, μ, ν < 1 (observe that their unit is day −1). 
Therefore,

0 < δ + μ < 2 and 0 < μ + ν < 2

and

1
δ + μ

>
1
2 and 1

μ + ν
>

1
2 ,

that is,

1
δ + μ

+ 1
μ + ν

> 1 .

Multiplying the previous inequality by (δ + μ)(μ + ν) we have
(

1
δ + μ

+ 1
μ + ν

)
(δ + μ)(μ + ν) > (δ + μ)(μ + ν) .

In other words,

(δ + μ)(μ + ν) < δ + 2μ + ν .
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Therefore,

(δ + μ) (ν + μ) (pφ + μ + ω) < (δ + 2μ + ν) (pφ + μ + ω) ,

which ensures that B > 0. It follows the local asymptotic stability of the disease-free equilibrium Σ0. �
Theorem 3 (global stability of the DFE). If R0 < 1, then the disease-free equilibrium, Σ0, is globally asymp-
totically stable in Ω.

Proof. Since R0 < 1, we can write R0 = 1 − η with 0 < η < 1. We obtain that

β (1 − p) (δ θ + μ θ + ν) (ω + μ)
(δ + μ) (ν + μ) (pφ + μ + ω) = 1 − η,

which leads to

β (1 − p) (δ θ + μ θ + ν)
(δ + μ) (ν + μ) = k(1 − η), (9)

where k is defined by

k = pφ + μ + ω

μ + ω
.

A fortiori, we have:

β(1 − p)θ
ν + μ

< k(1 − η). (10)

Now we consider the following functional given by

L = S − S0 − S0 ln S

S0
+ A + ζI + ξ

(
P − P0 − P0 ln P

P0

)
+ χ

(
N −N0 −N0 ln N

N0

)
,

where ζ and ξ are defined by

ζ = k(1 − η)(ν + μ) − β(1 − p)θ
kν(1 − η) , ξ = ωP0

φpS0
, (11)

and χ is a positive constant which will be determined below. Recall that N0 = Λ
μ , and note that ζ > 0 by 

virtue of (10). As constructed, L is a non-negative functional and we have

L = 0 ⇐⇒ (S,A, I,R, P ) = Σ0.

Now we compute the derivative of L along the solutions of the SAIRP model (1) starting in Ω. We have

L̇ =
(

1 − S0

S

)
Ṡ + Ȧ + ζİ + ξ

(
1 − P0

P

)
Ṗ + χ

(
1 − N0

N

)
Ṅ

=
(

1 − S0

S

)[
Λ − β(1 − p)θA + I

N
S − (pφ + μ)S + ωP

]

+
[
β(1 − p)θA + I

N
S − (ν + μ)A

]
+ ζ [νA− (δ + μ)I]

+ ξ

(
1 − P0

)
[φpS − (ω + μ)P ] + χ

(
1 − N0

)
(Λ − μN).
P N
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Now we use the relations

Λ = (pφ + μ)S0 − ωP0, pφS0 = (ω + μ)P0

to obtain

L̇ =
(

1 − S0

S

)[
−β(1 − p)θA + I

N
S − (pφ + μ)(S − S0) + ω(P − P0)

]

+
[
β(1 − p)θA + I

N
S − (ν + μ)A

]
+ ζ [νA− (δ + μ)I]

+ ξ

(
1 − P0

P

)
[φp(S − S0) − (ω + μ)(P − P0)] + χ

(
1 − N0

N

)
(Λ − μN).

First step. Let us examine the terms involving (S − S0) and (P − P0). We have

Θ1 = − (pφ + μ)
(

1 − S0

S

)
(S − S0) + ω

(
1 − S0

S

)
(P − P0)

+ ξpφ

(
1 − P0

P

)
(S − S0) − ξ(ω + μ)

(
1 − P0

P

)
(P − P0)

= − (pφ + μ)S0

(
1 − S0

S

)(
S

S0
− 1
)

+ ωP0

(
1 − S0

S

)(
P

P0
− 1
)

+ ξpφS0

(
1 − P0

P

)(
S

S0
− 1
)
− ξ(ω + μ)P0

(
1 − P0

P

)(
P

P0
− 1
)

= − (pφ + μ)S0

(
S0

S
+ S

S0
− 2
)

+ ωP0

[(
P

P0
+ S0

S
− 2
)

+
(

1 − P

P0
× S0

S

)]

+ ξpφS0

[(
S

S0
+ P0

P
− 2
)

+
(

1 − S

S0
× P0

P

)]
− ξ(ω + μ)P0

(
P0

P
+ P

P0
− 2
)
.

Choosing ξ such that ωP0 = ξpφS0, the latter equality becomes

Θ1 = − (pφ + μ)S0

(
S0

S
+ S

S0
− 2
)

+ ωP0

(
P

P0
+ S0

S
− 2
)

+ ωP0

(
1 − P

P0
× S0

S

)

+ ωP0

(
1 − S

S0
× P0

P

)
+ ωP0

(
S

S0
+ P0

P
− 2
)
− ξ(ω + μ)P0

(
P0

P
+ P

P0
− 2
)

= [−(pφ + μ)S0 + ωP0]
(
S0

S
+ S

S0
− 2
)

+ [ωP0 − ξ(ω + μ)P0]
(
P0

P
+ P

P0
− 2
)

+ ωP0

(
2 − S0S

−1

P0P−1 − P0P
−1

S0S−1

)
.

Elementary computations show that

−(pφ + μ)S0 + ωP0 < 0, ωP0 − ξ(ω + μ)P0 = 0.

Now we use the standard inequality

2 − x− 1
x
≤ 0, ∀x > 0,

to conclude that Θ1 ≤ 0. Thus, we obtain
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L̇ ≤
(

1 − S0

S

)[
−β(1 − p)θA + I

N
S

]
+
[
β(1 − p)θA + I

N
S − (ν + μ)A

]

+ ζ [νA− (δ + μ)I] + χ

(
1 − N0

N

)
(Λ − μN).

Second step. We examine the terms involving A and I. After simplifications, we have

L̇ ≤ β(1 − p)θA
[
S0

N
− (ν + μ) − ζν

β(1 − p)θ

]
+ β(1 − p)I

[
S0

N
− ζ(δ + μ)

β(1 − p)

]
− χμ

(N −N0)2

N

≤ β(1 − p)θA
[
S0

N0
− (ν + μ) − ζν

β(1 − p)θ

]
+ β(1 − p)I

[
S0

N0
− ζ(δ + μ)

β(1 − p)

]

+ β(1 − p)θA
(
S0

N
− S0

N0

)
− χ

2 μ
(N −N0)2

N

+ β(1 − p)I
(
S0

N
− S0

N0

)
− χ

2 μ
(N −N0)2

N
.

Next, we write

Θ2 = β(1 − p)θA
(
S0

N
− S0

N0

)
− χ

2 μ
(N −N0)2

N
= β(1 − p)θS0

NN0
A (N0 −N) − χ

2 μ
(N −N0)2

N
.

By virtue of Young’s inequality, we have

A(N0 −N) ≤ εA2

2 + (N0 −N)2

2ε ,

where ε is a positive coefficient which can be chosen arbitrarily small. It follows that

Θ2 ≤ β(1 − p)θS0

NN0

[
εA2

2 + (N0 −N)2

2ε

]
− χ

2 μ
(N −N0)2

N

≤ β(1 − p)θ A
N

×A× εS0

2N0
+
[
β(1 − p)θS0

2N0ε
− χ

2 μ
]

(N −N0)2

N
.

Since A ≤ N , we obtain

Θ2 ≤ β(1 − p)θ ×A× εS0

2N0
+
[
β(1 − p)θS0

2N0ε
− χ

2 μ
]

(N −N0)2

N
.

Similar computations show that

β(1 − p)I
(
S0

N
− S0

N0

)
− χ

2 μ
(N −N0)2

N
≤ β(1 − p) × I × εS0

2N0
+
[
β(1 − p)S0

2N0ε
− χ

2 μ
]

(N −N0)2

N
.

We obtain that

L̇ ≤ β(1 − p)θA
[
S0

N0

(
1 + ε

2

)
− (ν + μ) − ζν

β(1 − p)θ

]
+ β(1 − p)I

[
S0

N0

(
1 + ε

2

)
− ζ(δ + μ)

β(1 − p)

]

+
[
β(1 − p)θS0

2N0ε
− χ

2 μ
]

(N −N0)2

N
+
[
β(1 − p)S0

2N0ε
− χ

2 μ
]

(N −N0)2

N
.

Now we choose
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ε = 2η
1 − η

= 2(1 −R0)
R0

> 0,

which yields 1 + ε
2 = 1

1−η . Since S0
N0

= 1
k , we obtain, by virtue of (11),

S0

N0

(
1 + ε

2

)
− (ν + μ) − ζν

β(1 − p)θ = 1
k(1 − η) − (ν + μ) − ζν

β(1 − p)θ = 0.

Analogously, it is seen that

S0

N0

(
1 + ε

2

)
− ζ(δ + μ)

β(1 − p) = 1
k(1 − η) − ζ(δ + μ)

β(1 − p)

= β(1 − p)(θδ + θμ + ν) − k(1 − η)(ν + μ)(δ + μ)
β(1 − p)νk(1 − η) = 0,

by virtue of (9). After those simplifications, we obtain

L̇ ≤
[
β(1 − p)θS0

2N0ε
− χ

2 μ
]

(N −N0)2

N
+
[
β(1 − p)S0

2N0ε
− χ

2 μ
]

(N −N0)2

N

≤
[
β(1 − p)S0

N0ε
− χμ

]
(N −N0)2

N
,

since θ ≤ 1. Finally, we choose χ > 0 sufficiently large so that

β(1 − p)S0

N0ε
− χμ < 0,

which guarantees that L̇ ≤ 0. In other words, the functional L is a Lyapunov function for the flow induced 
by the SAIRP model (1). The conclusion follows from LaSalle’s invariance principle [17]. �

The next theorem establishes the global stability of the endemic equilibrium (EE) Σ+ defined by (7), in 
an invariant region Γ ⊂ Ω. It remains an open question to determine if the endemic equilibrium is globally 
asymptotically stable in the whole region Ω.

Theorem 4 (global stability of the EE). The compact region Γ defined by

Γ =
{
x = (S, A, I, R, P )T ∈

(
R+)5 ;S + A + I + R + P = Λ

μ

}
(12)

is positively invariant under the flow induced by system (1). It contains the disease-free equilibrium, Σ0, 
and the endemic equilibrium, Σ+, if R0 > 1. Furthermore, if R0 > 1, then the endemic equilibrium Σ+ is 
globally asymptotically stable in Γ.

Proof. Let us first prove that Γ is positively invariant under the flow induced by system (1). We denote by 
x(t, x0) =

(
S(t), A(t), I(t), R(t), P (t)

)
the solution of system (1) starting from x0 ∈ Γ. Summing again 

the five equations of system (1) leads to

Ṅ(t) + μN(t) = Λ, t > 0,

where N(t) = S(t) + A(t) + I(t) + R(t) + P (t). Consequently, we have
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N(t) =
[
N(0) − Λ

μ

]
e−μt + Λ

μ
, t > 0.

Now we have N(0) = Λ
μ since x0 ∈ Γ. It follows that N(t) = Λ

μ for all t > 0, which proves that Γ is positively 
invariant. Next, we easily verify that Σ0 and Σ+ belong to Γ. Now we turn to prove the global stability of 
Σ+ in Γ. To that aim, we introduce the functional V defined by

V = c1

(
S − S+ − S+ ln S

S+

)
+ c2

(
A−A+ −A+ ln A

A+

)

+ c3

(
I − I+ − I+ ln I

I+

)
+ c4

(
P − P+ − P+ ln P

P+

)
,

(13)

with positive coefficients c1, c2, c3, and c4 satisfying

c1 = c2, c1ωP+ = c4pφS+, c3νA+ = c1β(1 − p)S+I+
N+

, (14)

where N+ = Λ
μ . As constructed, V is a non-negative functional and we have

V = 0 ⇐⇒ (S,A, I,R, P ) = Σ+.

We compute the time derivative of V along the solutions of system (1) starting in Γ. Using the fact that 
Σ+ is an equilibrium of system (1), we obtain, after simplifications, that

V̇ = c1

(
1 − S+

S

)[
β(1 − p)θA+ + I+

N+
S+ − β(1 − p)θA + I

N+
S + ω(P − P+) − (pφ + μ)(S − S+)

]

+ c2

(
1 − A+

A

)[
β(1 − p)θA + I

N+
S − β(1 − p)θA+ + I+

N+
S+ − (ν + μ)(A−A+)

]

+ c3

(
1 − I+

I

)
[ν(A−A+) − (δ + μ)(I − I+)]

+ c4

(
1 − P+

P

)
[pφ(S − S+) − (ω + μ)(P − P+)] .

We perform elementary computations, so as to split V̇ into four terms, as follows:

V̇ = Φ1 + Φ2 + Φ3 + Φ4,

with

Φ1 = c1

(
1 − S+

S

)
[ω(P − P+) − (pφ + μ)(S − S+)]

+ c4

(
1 − P+

P

)
[pφ(S − S+) − (ω + μ)(P − P+)] ,

Φ2 = −c1β(1 − p)θS+A+

N+

(
S

S+
+ S+

S
− 2
)
,

Φ3 = −c3(δ + μ)I+
(

I

I+
+ I+

I
− 2
)

+ c3νA+

(
1 − I+

I

)(
A

A+
− 1
)

+ c1
β(1 − p)

(
1 − S+

)
(I+S+ − IS) + c2

β(1 − p)
(

1 − A+
)

(IS − I+S+),

N+ S N+ A
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Fig. 1. Phase portraits in the (S, A, I) space, illustrating the global stability of the equilibrium points. (a) Global stability of the 
disease-free equilibrium (R0 < 1). (b) Global stability of the endemic equilibrium (R0 > 1).

Φ4 =
[
−c2(ν + μ)A+ + c1β(1 − p)θS+A+

N+

](
A

A+
+ A+

A
− 2
)
.

First, similar computations as in the proof of the global stability of the disease-free equilibrium Σ0 show 
that Φ1 ≤ 0, since c1ωP+ = c4pφS+. Next, it is seen that Φ2 ≤ 0, by virtue of the elementary inequality

u + 1
u
− 2 ≥ 0, ∀u ∈ R.

Afterwards, remarking that (δ + μ)I+ = νA+, algebraic computations show that Φ3 = Ψ1 + Ψ2 with

Ψ1 = c3νA+

(
3 − S+

S
− AI+

A+I
− A+IS

AI+S+

)
,

Ψ2 = c3νA+

(
A

A+
+ A+

A
− 2
)
.

We introduce u = S+
S , v = AI+

A+I and w = A+IS
AI+S+

. It is observed that uvw = 1. By virtue of the standard 
inequality

(
uvw
)1/3 ≤ u + v + w

3 ,

we deduce that Ψ1 ≤ 0. Finally, using (7) and (14), we show that Φ4 + Ψ2 = 0. Gathering the above results 
shows that V̇ ≤ 0. Therefore, we have proved that the functional V is a Lyapunov function for the flow 
induced by the SAIRP model (1). The conclusion follows once again from LaSalle’s invariance principle 
[17]. �

The theoretical results proved in Theorems 3 and 4 are illustrated in Fig. 1.

Remark 2. In the critical case R0 = 1, it is easily observed, by virtue of equation (7), that the equilibrium 
points Σ0 and Σ+ coincide. In that case, Σ0 is not hyperbolic and looses its stability, thus it might belong 
to a compact invariant set, while not being asymptotically stable.

3. Model with piecewise constant parameters

The human behavior and the governmental public health decision makers have a strong influence on the 
dynamics of the epidemics and it appears necessary to take into account these complex effects into the 
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mathematical model, albeit it seems very difficult to accurately measure the impacts of these behaviors on 
the model parameters, especially on the basic reproduction number R0. In this section, we model the human 
behavior and the impact of the decision makers policies, by considering in model (1) parameters determined 
by piecewise constant functions. We prove the existence and uniqueness of global solutions of the resulting 
model. We start by subdividing the time line [0, +∞) into a finite number of n intervals

[T0, T1) ∪ [T1, T2) ∪ · · · ∪ [Tn, +∞),

with disjoint unions, and introduce a piecewise constant function α defined on each time interval as

α(t) = αi, t ∈ [Ti, Ti+1), 0 ≤ i ≤ n,

with T0 = 0, Tn+1 = +∞ and αi ∈ R9. Next, we consider the sequence of Cauchy problems defined for each 
initial condition x0 ∈ Ω by

⎧⎪⎨
⎪⎩

x(0) = x0, ẋ(t) = f
(
x(t), α0

)
, T0 < t < T1,

x(Ti) = lim
t→Ti

t∈(Ti−1, Ti)

x(t), ẋ(t) = f
(
x(t), αi

)
, Ti < t < Ti+1, 1 ≤ i ≤ n . (15)

We are now in a position to derive the existence and uniqueness result.

Proposition 2. For any initial condition x0 ∈ Ω, the sequence of Cauchy problems given by (15) admits 
a unique global solution, denoted again by x(t, x0), whose components are non-negative. Furthermore, the 
region Ω is positively invariant.

Proof. Applying Theorem 1, a finite number of times, directly provides the existence and uniqueness of 
global solutions to problem (15). �

Note that the solutions of problem (15) are continuous on the time interval [T0, +∞), but may not be 
of class C 1 at t = Ti, 0 ≤ i ≤ n − 1. From the modeling point of view, each change of parameters occurring 
at time t = Ti (1 ≤ i ≤ n − 1) corresponds, for example, to a public announcement of confinement/lift of 
confinement or prohibition of displacement.

4. Existence of pseudo-periodic solutions

In this section, we show that piecewise constant parameters can lead to pseudo-periodic solutions. This 
result has important practical applications in the context of the COVID-19 pandemic. During the first 
months of the COVID-19 pandemic, the first concern of governments was to decrease the level of infected 
individuals. This was achieved, in great part, by confinement decisions. However, those confinement decisions 
had a large impact on the economy, and it was important to decide to lift this ban. Consequently, the risk 
of a premature relaxation was the second concern of governments, since it was feared to provoke a second 
wave of infection. The existence of multiple epidemic waves in a pandemic can be mathematically justified 
by the following theorem.

Theorem 5. Assume that the disease-free equilibrium, Σ0, admits a non-trivial basin of attraction Ω0 ⊂ Ω
if R0 < 1, and that the endemic equilibrium Σ+ admits a non-trivial basin of attraction Ω+ ⊂ Ω if R0 > 1. 
Let α0 and α+ denote two sets of parameters of system (1) such that R0(α0) < 1 and R0(α+) > 1. Let 
x0 ∈ Ω0 and consider the sequence of Cauchy problems
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Fig. 2. Solution of the sequence of Cauchy problems (16) exhibiting pseudo-oscillations between a neighborhood N0 of Σ0 and a 
neighborhood N + of Σ+ in Ω. Here I denotes the number of active infected individuals and p the fraction, 0 < p < 1, of susceptible 
individuals S that is transferred to the protected class P .

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(T0) = x0, ẋ(t) = f
(
x(t), α0

)
, T0 < t < T1,

x(Ti) = lim
t→Ti

t∈(Ti−1, Ti)

x(t), ẋ(t) = f
(
x(t), α+), Ti < t < Ti+1, for i odd,

x(Ti) = lim
t→Ti

t∈(Ti−1, Ti)

x(t), ẋ(t) = f
(
x(t), α0

)
, Ti < t < Ti+1, for i even,

(16)

for 1 ≤ i ≤ n, where Ti is such that x(Ti) ∈ Ω+, for i odd, and x(Ti) ∈ Ω0, for i even. Then the solution 
x(t, x0), of the latter sequence of Cauchy problems, exhibits pseudo-oscillations between a neighborhood N0
of Σ0 and a neighborhood N + of Σ+ in Ω.

Proof. The initial condition x0 of the sequence of Cauchy problems (16) has been chosen in Ω0, which is 
assumed to be the basin of attraction of Σ0. Since α0(R0) < 1, then the solution x(t, x0) is attracted to Σ0
and thus reaches a neighborhood N0 of Σ0 after a finite time T1. Now it is assumed that x(T1) belongs to 
the basin of attraction Ω+ of Σ+. Since α+(R0) > 1, then the solution x(t, x0) is now attracted to Σ+ and 
thus reaches a neighborhood N + of Σ+ after a finite time T2. Next, we assume that x(T2) belongs to the 
basin of attraction Ω0 of Σ0. Since α0(R0) < 1, then the solution x(t, x0) is now attracted to Σ0 and thus 
reaches again the neighborhood N0 of Σ0 after a finite time T3. Repeating those arguments a finite number 
of times leads to the desired conclusion, that is, the solution x(t, x0) exhibits pseudo-oscillations between 
the neighborhoods N0 and N + of Σ0 and Σ+, respectively. �

Note that the assumption x(T1) ∈ Ω+ is directly satisfied for T1 large enough, if Σ0 belongs to the interior 
of Ω+ in Ω. Similarly, the assumption x(T2) ∈ Ω0 is directly satisfied for T2 large enough, if Σ+ belongs to 
the interior of Ω0 in Ω. By virtue of Theorem 3, the latter property is directly satisfied since Ω0 = Ω. A 
numerical simulation of a solution of the sequence of Cauchy problems (16), exhibiting pseudo-oscillations 
between a neighborhood N0 of Σ0 and a neighborhood N + of Σ+ in Ω, is depicted in Fig. 2.

5. Dynamics of a complex network of non-identical SAIRP models

It is now widely admitted that mobilities play an important role on the dynamics of epidemics, at 
numerous stages of their development. In this section, we propose to study the propagation of the COVID-
19 outbreak in Portugal by modeling this country by a complex network in which the six regions studied 
previously for the calibration of the model (1) are considered.

In a first stage, we show how to construct a complex network of SAIRP models. Let us consider the six 
regions of Portugal, as depicted in Fig. 3. Those six regions are connected by a finite number of links that 
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Fig. 3. Six regions of Portugal and some of their connections: (1) Norte; (2) Centro; (3) Lisboa e Vale do Tejo; (4) Alentejo; (5) 
Algarve; (6) Pinhal Litoral.

define a graph G = (V , E ) made of a set V of 6 vertices, which correspond to the six regions (Norte, Centro, 
Lisboa e Vale do Tejo, Alentejo, Algarve, Pinhal Litoral), and of a set E of edges, which model the main 
connections between those 6 regions. In order to describe the state of each region, we couple each vertex of 
the graph with one instance of the model (15). Since each region has its own specificity, we consider that 
the multiple instances of the model are non-identical, which means that the values of the parameters can 
differ from one region to another.

We introduce the following notations:

xi = (Si Ai, Ii, Ri, Pi)T ∈ R5, 1 ≤ i ≤ 6,

X = (x1, . . . , x6)T ∈
(
R5)6 ,

HX = (Hx1, . . . , Hx6)T ∈
(
R5)6 ,

α(t) =
(
α1(t), . . . , α6(t)

)
∈
(
R9)6 ,

where H is the matrix of coupling strengths defined by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σS 0 0 0 0
0 σA 0 0 0
0 0 σI 0 0
0 0 0 σR 0
0 0 0 0 σP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

with non negative coefficients σS , σA, σI , σR and σP .
Next we define a matrix L of connectivity as follows. For each edge (k, j) ∈ E , k �= j, we set Lj,k =

εj,k > 0. If (k, j) /∈ E , k �= j, we set Lj,k = 0. The diagonal coefficients satisfy
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Lj,j = −
n∑

k=1
k �=j

εk,j ,

thus L is a matrix whose sum of coefficients in each column is null. For instance, the connectivity matrix of 
the graph corresponding to Fig. 3 is given by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L11 ε12 0 0 0 ε16

ε21 L22 ε23 ε24 0 ε26

0 ε32 L33 ε34 0 ε36

0 ε42 ε43 L44 ε45 0
0 0 0 ε54 L55 0
ε61 ε62 ε63 0 0 L66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with

L11 = −(ε21 + ε61),

L22 = −(ε12 + ε32 + ε42 + ε62),

L33 = −(ε23 + ε43 + ε63),

L44 = −(ε24 + ε34 + ε54),

L55 = −ε45,

L66 = −(ε16 + ε26 + ε36).

In this complex network model, we consider that an edge (k, j) ∈ E , k �= j, models a connection between 
two regions k and j, which corresponds to human displacements from region k towards region j. Moreover, 
the parameter σS models the rate of susceptible individuals in region k which migrate towards vertex j. The 
parameters σA, σI , σR and σP are defined analogously. This implies that our model can take into account 
the situation where a part of the population is not concerned with the migrations. For instance, it is relevant 
to consider σI = σP = 0, while σS > 0 and σA > 0. The set of edges E and the coupling strengths stored 
in the matrix H define what is usually called the topology of the complex network.

Next, we make explicit the equations that describe the state of region j ∈ {1, . . . , 6}:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡj = Λj − βj(1 − pj) (θjAj+Ij)
Nj

Sj − φjpjSj + ωjPj − μjSj + σS

5∑
k=1

Lj,kSk,

Ȧj = βj(1 − pj) (θjAj+Ij)
Nj

Sj − νjAj − μjAj + σA

5∑
k=1

Lj,kAk,

İj = νjAj − δjIj − μjIj + σI

5∑
k=1

Lj,kIk,

Ṙj = δjIj − μjRj + σR

5∑
k=1

Lj,kRk,

Ṗj = φjpjSj − ωjPj − μjPj + σP

5∑
k=1

Lj,kPk,

(17)

where the time dependence is omitted, in order to lighten the notations. In particular, the parameters can 
be determined by piecewise constant functions as in model (15).
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In the next theorem, we establish the existence and uniqueness of global solutions to the complex network 
problem (17) as for models (1) and (15). Following [7], we introduce the minimum mortality rate μ0 defined 
by

μ0 = min
1≤j≤6

μj ,

the positive coefficient Λ0 defined by

Λ0 =
6∑

j=1
Λj ,

and the compact region

Θ =

⎧⎨
⎩(xj)1≤j≤30 ∈ (R+)30 ;

30∑
j=1

xj ≤
Λ0

μ0

⎫⎬
⎭ . (18)

Theorem 6. For any X0 ∈ Θ, the Cauchy problem given by (17) and X(0) = X0 admits a unique solution 
denoted by X(t, X0), defined on [0, ∞), whose components are non-negative. Furthermore, the region Θ
defined by (18) is positively invariant.

Proof. The existence and uniqueness of local in time solutions is immediate. The non-negativity property 
is guaranteed by the quasi-positivity of the non-linear operator determined by the right hand side of system 
(17). The total population in the complex network, defined by

N(t) =
6∑

j=1

[
Sj(t) + Aj(t) + Ij(t) + Rj(t) + Pj(t)

]
, t ≥ 0,

satisfies

Ṅ(t) ≤ −μ0N(t) + Λ0, t ≥ 0,

since the matrix of connectivity L is a zero column sum matrix. It follows that

N(t) ≤
[
N(0) − Λ0

μ0

]
e−μ0t + Λ0

μ0
, t ∈ [0, T ],

which leads to the intended conclusion. �
In the next section, we apply previous complex network to the real data from COVID-19 in Portugal, 

since the first confirmed active COVID-19 case, in March 2, 2020, until September 17, 2020.

6. Portugal case study: complex network with 6 regions

In this section, we calibrate the number of active infected individuals I given by the SAIRP model with 
piecewise constant parameters (15), to six distinct regions from Portugal. We show that the model allows to 
fit well the Portuguese real data available in [10]. Taking into account these parameter values, we perform 
numerical simulations of the complex network problem (17), where the main goal is to investigate the effect 
of the topology on the dynamics of the epidemics, and determine a topology that minimizes the level of 
active infected individuals.
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Table 1
Initial conditions for each of the six regions in Portugal.

Region S0 A0 I0 R0 P0

Norte 3125804 2
0.15 2 0 0

Centro 1480664 1
0.15 1 0 0

Lisboa e Vale do Tejo 3659871 1
0.15 1 0 0

Alentejo 166726 2
0.15 2 0 0

Algarve 451006 1
0.15 1 0 0

Pinhal Litoral 271078 3
0.15 3 0 0

Table 2
Constant parameter values that take the same values for the six regions, in Portugal.

Parameter Description Value Reference

Λ Recruitment rate 0.19%×N0
365 [21]

μ Natural death rate 1
81×365 [21]

θ Modification parameter 1 [23]
v Transfer rate from A to I 1 [23]
q Fraction of A individuals that are confirmed to be infected 0.15 [23]

Table 3
Constant parameter values that differ from one region to another, in Portugal.

Region φ
(transfer rate from S to P )

δ
(transfer rate from I to R)

w
(transfer rate from P to S)

Norte φ = 1
12 δ = 1

27 w = 1
45

Centro φ = 1
11 δ = 1

27 w = 1
45

Lisboa e Vale do Tejo φ = 1
11 δ = 1

27 w = 1
45

Alentejo φ = 1 δ = 1
21 w = 1

41
Algarve φ = 1

6 δ = 1
21 w = 1

45
Pinhal Litoral φ = 1 δ = 1

21 w = 1
43

6.1. Model with piecewise constant parameters: fitting to real data from 6 Portuguese regions

We first consider the SAIRP model with piecewise constant parameters (15) and show that the class I
fits well the active confirmed cases of infected individuals provided by the Portuguese National Authorities 
[10] for six regions of Portugal mainland, as depicted in Fig. 3, where (1) represents the region Norte, (2) 
Centro, (3) Lisboa e Vale do Tejo, (4) Alentejo, (5) Algarve and (6) Pinhal Litoral.

The initial conditions S0, A0, I0, R0 and P0 at time t = 1, where t = 1 corresponds to the day of the first 
confirmed cases of COVID-19 disease in each region, which differ from one region to another, see Table 1. 
Namely, the first cases occurred in each region at: Norte, March 2, 2020; Centro, March 3, 2020; Lisboa e 
Vale do Tejo, March 3, 2020; Alentejo, March 18, 2020; Algarve, March 8, 2020.

Some of the parameters take constant values for all the period of time under consideration and are the 
same for the six regions, see Table 2. Others, even taking constant values for all time window, differ from 
one region to another, see Table 3.

The parameters β, m and p are piecewise continuous, taking different values depending on the considered 
time interval and the region, see Tables 4 and 5.

Figs. 4–6 show that the SAIRP model (15) with piecewise constant parameters describes well the active 
infected cases in the six Portuguese regions under consideration.

Moreover, the active infected cases of all Portugal can also be modeled, see Fig. 7.
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Table 4
Piecewise constant parameter values for the regions Norte, Centro and Lisboa e Vale do Tejo.

Region β
(transmission rate)

p
(transfer fraction from S to P )

m
(transfer fraction from P to S)

Norte
Time interval: [1; 75] β1 = 1.40 m1 = 0.09 p1 = 0.675
Time interval: [75; 122] β2 = 0.15 m2 = 0.15 p2 = 0.60
Time interval: [122; 170] β3 = 1.28 m3 = 0.14 p3 = 0.56
Time interval: [170; 200] β4 = 1.46 m4 = 0.17 p4 = 0.52

Centro
Time interval: [1; 69] β1 = 1.351 m1 = 0.10 p1 = 0.675
Time interval: [69; 94] β2 = 0.45 m2 = 0.09 p2 = 0.60
Time interval: [94; 164] β3 = 1.10 m3 = 0.16 p3 = 0.56
Time interval: [164; 199] β4 = 1.33 m4 = 0.17 p4 = 0.54

Lisboa e Vale do Tejo
Time interval: [1; 36] β1 = 1.45 m1 = 0.16 p1 = 0.675
Time interval: [36; 54] β2 = 1.13 m2 = 0.13 p2 = 0.69
Time interval: [54; 129] β3 = 1.41 m3 = 0.13 p3 = 0.56
Time interval: [129; 160] β4 = 1.10 m4 = 0.11 p4 = 0.57
Time interval: [160; 199] β5 = 1.43 m5 = 0.17 p5 = 0.54

Table 5
Piecewise constant parameter values for the regions Alentejo, Algarve and Pinhal Litoral.

Region β
(transmission rate)

p
(transfer fraction from S to P )

m
(transfer fraction from P to S)

Alentejo
Time interval: [1; 11] β1 = 3.50 m1 = 0.40 p1 = 0.675
Time interval: [11; 29] β2 = 7.80 m2 = 0.45 p2 = 0.45
Time interval: [29; 84] β3 = 4.40 m3 = 0.38 p3 = 0.55
Time interval: [84; 104] β4 = 6.90 m4 = 0.46 p4 = 0.48
Time interval: [104; 124] β5 = 2.70 m5 = 0.30 p5 = 0.56
Time interval: [124; 184] β6 = 4.10 m6 = 0.36 p6 = 0.44

Algarve
Time interval: [1; 36] β1 = 1.11 m1 = 0.10 p1 = 0.60
Time interval: [36; 69] β2 = 1.37 m2 = 0.20 p2 = 0.52
Time interval: [69; 91] β3 = 0.80 m3 = 0.20 p3 = 0.55
Time interval: [91; 109] β4 = 1.90 m4 = 0.32 p4 = 0.45
Time interval: [109; 149] β5 = 1.35 m5 = 0.22 p5 = 0.58
Time interval: [149; 194] β6 = 1.35 m6 = 0.30 p6 = 0.55

Pinhal Litoral
Time interval: [1; 7] β1 = 3.00 m1 = 0.09 p1 = 0.675
Time interval: [7; 23] β2 = 8.15 m2 = 0.25 p2 = 0.44
Time interval: [23; 77] β3 = 5.00 m3 = 0.16 p3 = 0.55
Time interval: [77; 115] β4 = 7.80 m4 = 0.25 p4 = 0.42
Time interval: [115; 145] β5 = 4.15 m5 = 0.15 p5 = 0.52
Time interval: [145; 186] β6 = 7.75 m6 = 0.27 p6 = 0.42

6.2. Complex network model: numerical simulations for COVID-19 in Portugal

Considering the six regions from Fig. 3, and the parameter values from Section 6.1, we perform numerical 
simulations of the complex network problem (17). The main goal is to investigate the effect of the topology 
on the dynamics of the epidemics. In particular, we analyze the existence of a topology which minimizes 
the average number of active infected individuals during a fixed time interval. Moreover, we analyze if other 
topologies are likely to worsen the level of infection.
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Fig. 4. Active infected cases of COVID-19. The black dotted lines represent the real data and the continuous lines represent the 
active infected individuals, I, output of the SAIRP model with piecewise constant parameters from Table 4. Left: region Norte. 
Right: region Centro. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Fig. 5. Active infected cases of COVID-19. The black dotted lines represent the real data and the continuous lines represent the 
active infected individuals, I, output of the SAIRP model with piecewise constant parameters from Tables 4–5. Left: region Lisboa 
e Vale do Tejo. Right: region Alentejo.

In order to model the mobilities of susceptible and asymptomatic individuals, we set σS = σA > 0, whereas 
we fix σI = σR = σP = 0. We test a sample of 1000 randomly generated topologies among 216 topologies (id 
est sets of edges), for σS = σA ∈ [0.01, 0.1]. For each randomly generated topology, we perform a numerical 
integration of the complex network problem (17), with the same parameters α1, α2, . . . , α6 as considered 
in Section 6.1. The computation has been performed with Python 3.5 language, in a Debian/Gnu-Linux 
environment. For each integration, we have computed the number of average number of active infected 
individuals, that is, individuals of the class I, per day. The results are depicted in Fig. 8, where the average 
number of active infected individuals, per day, is depicted for the randomly generated topologies and σS =
σA = 0.01, and in Fig. 9, where the average number of active infected individuals is depicted with respect 
to the coupling strengths σS = σA for a couple of remarkable topologies. The numerical results reveal the 
existence of a certain number of topologies that decrease the level of infection, compared to the empty 
topology, which corresponds to the situation where individuals do not migrate from one region to another. 
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Fig. 6. Active infected cases of COVID-19. The black dotted lines represent the real data and the continuous lines represent the 
active infected individuals, I, output of the SAIRP model with piecewise constant parameters from Table 5. Left: region Algarve. 
Right: region Pinhal Litoral.

Fig. 7. Active infected cases of COVID-19 in Portugal. The black dotted lines represent the real data and the continuous lines 
represent the active infected individuals, I, output of the SAIRP model with piecewise constant parameters. Initial conditions: 
S0 = 10295894, I0 = 2, A0 = 2

0.15 , R0 = 0, Q0 = 0. The constant parameters take the values φ = 1, δ = 1
27 , w = 1

45 and the 
remaining constant parameters take the values in Table 2. The first infected case with COVID-19 in Portugal, t = 1, occurred 
on March 2, 2020. Piecewise constant parameters: t ∈ [1; 73], β1 = 1.505; m1 = 0.09; p1 = 0.675; t ∈ [73; 90], β2 = 0.50; m2 =
0.09; p2 = 0.65; t ∈ [90; 130], β3 = 1.15; m3 = 0.18; p3 = 0.58; t ∈ [130; 163], β4 = 0.96; m4 = 0.16; p4 = 0.61; t ∈ [163; 200], 
β5 = 1.50; m5 = 0.17; p5 = 0.58.

Among those topologies, one minimizes the level of cumulated infected individuals. This optimal topology 
is depicted in Fig. 10 (b). It is worth noting that this optimal topology connects the regions Norte, Centro, 
Lisboa e Vale do Tejo and Pinhal Litoral, but it does not connect those four regions to Alentejo and Algarve. 
In parallel, the numerical simulations exhibit numerous topologies that increase the level of infection. We 
have presented in Fig. 10 (c) and (d) two examples of such topologies. The corresponding levels of infection 
are presented in Fig. 9. Topology (c) leads to a level of infection that overcomes the level of the empty 
topology for only a weak coupling strength, whereas topology (d) seems to permanently overcome the level 
of the empty topology. We remark that the topologies that increase the level of infection seem to connect the 
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Fig. 8. Average number of active infected individuals, per day, for a sample of 1000 randomly generated topologies, for σS = σA =
0.01. The black line shows the level of infection for the empty topology. The green circle shows the optimum topology which 
minimizes the level of infection, whereas the red circle shows the topology which leads to the highest level of infection.

Fig. 9. Average number of active infected individuals, for each topology, with respect to the coupling strengths σS = σA. Left: 
optimum topology which minimizes the level of infection of the epidemics. Right: two examples of topologies that can increase 
the level of infection, compared to the empty topology, which corresponds to the situation where individuals do not migrate from 
one region to another. Topology (c) leads to a level of infection that overcomes the level of the empty topology for only a weak 
coupling strength, whereas topology (d) seems to permanently overcome the level of the empty topology.

Fig. 10. Four remarkable topologies. (a) Empty topology, which corresponds to the situation where individuals do not migrate from 
one region to another. (b) Topology that minimizes the level of infection. (c) Topology that leads to a level of infection greater 
than the level of the empty topology for only a weak coupling strength. (d) Topology that permanently overcomes the level of the 
empty topology.

6 regions of Portugal to the region Alentejo. On the other hand, it can be helpful to authorize parsimonious 
migrations between regions that have a satisfying control of the epidemic.
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7. Discussion

One of the factors associated with the spread of the pandemic is the mobility of populations. It was 
based on this evidence that, in the first phase of the pandemic response, a generalized containment of the 
population was implemented in a big number of countries. As a result of this restriction in the mobility, 
it was possible to obtain a decrease in the number of infected. In the numerical simulations considered in 
this work, for the complex network problem (17), it is assumed that only susceptible (S) and asymptomatic 
infected (A) are circulating among the 6 identified regions of mainland Portugal. Starting from the number 
of active infected people (I) for the empty topology, in which it is assumed that there are no flows between 
regions, the results of the simulations indicate that there are more topologies that increase the number of 
active infected people than those that cause this number to decrease. Hence, this result reinforces the need 
to reduce circulation between regions as one of the tools to reduce the spread of the virus and decrease 
the number of active infected people. Still, it is interesting to note that there are other topologies (around 
1 out of 3) in which the number of active infected individuals decreases with the movement of people 
between regions. This finding can be seen in Fig. 8, where the average number of active infected individuals 
for the 1000 tested topologies is shown. According to the topology that minimizes the number of active 
infected individuals, whose representation is shown in Fig. 10 b), it is possible to verify that the strategy of 
preventing the flow to the regions of Alentejo (4) and Algarve (5) contributes to reduce the number of active 
infected. This scenario was to be expected as those regions have a much lower number of cases than the rest 
of Portugal. Bidirectional circulation between Norte (1) and Centro (2) regions leads to a reduction in the 
number of active infected people (if one compares with the empty topology), but the movement between 
Pinhal Litoral region (6) and Lisboa e Vale do Tejo region (3) should only be done in the direction to prevent 
circulation from the region where there are less infected (6) to the region (3) that has a high number of 
active cases. In Fig. 10 c) it is possible to verify that the existence of this connection in the direction (6) to 
(3) increases the number of active cases. The topologies involving the regions of Alentejo (4) and Algarve (5) 
increase the number of cases. One extreme example of such topology can be found in Fig. 10 d). In this case, 
the direction of the flows presents a topology that converges to the Alentejo (4) and it is expected that this 
will translate into an increase in the number of infected (even in the case where the connection strength is 
small, as shown in Fig. 10 c) and Fig. 9 at right), as it is the region where the number of cases is lesser. The 
way the epidemic evolves is different between the different regions of a country, but also between countries. 
These specific characteristics of context (cultural, demographic, economic, . . . ) seen in the number of active 
infected individuals (which is not uniform across regions), can be modeled by pseudo-periodic piecewise 
functions, as proved in this work. Accordingly, the application of such methodology to identify flows between 
regions or countries is a tool with enormous potential in the current pandemic context, and can be applied 
in the management of outbreaks (in regional terms) but also to manage the opening/closing of borders.

8. Conclusion and future work

The way the epidemic evolves is different between the different regions of a country, but also between 
countries. These specific characteristics of context (cultural, demographic, economic, . . . ) seen in the number 
of active infected individuals, which is not uniform across regions, can be modeled by pseudo-periodic 
piecewise functions, as proved in this work. Accordingly, the application of such methodology to identify 
flows between regions or countries is a tool with enormous potential in the current pandemic context, and 
can be applied in the management of outbreaks (in regional terms) but also to manage the opening/closing 
of borders. In the implemented simulations, the intensities of the flows (σS and σA) are assumed to be equal. 
Still, and as future work, it would be useful, in terms of epidemiological management, to be able to model the 
intensity of flows by class (Asymptomatic, Susceptible, Active Infected, Recovered, and Protected) between 
regions.
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