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In the social sciences it is common practice to test specific theoretically motivated
research hypotheses using formal statistical procedures. Typically, students in these
disciplines are trained in such methods starting at an early stage in their academic
tenure. On the other hand, in psychophysical research, where parameter estimates
are generally obtained using a maximum-likelihood (ML) criterion and data do not
lend themselves well to the least-squares methods taught in introductory courses, it is
relatively uncommon to see formal model comparisons performed. Rather, it is common
practice to estimate the parameters of interest (e.g., detection thresholds) and their
standard errors individually across the different experimental conditions and to ‘eyeball’
whether the observed pattern of parameter estimates supports or contradicts some
proposed hypothesis. We believe that this is at least in part due to a lack of training in
the proper methodology as well as a lack of available software to perform such model
comparisons when ML estimators are used. We introduce here a relatively new toolbox
of Matlab routines called Palamedes which allows users to perform sophisticated
model comparisons. In Palamedes, we implement the model-comparison approach to
hypothesis testing. This approach allows researchers considerable flexibility in targeting
specific research hypotheses. We discuss in a non-technical manner how this method
can be used to perform statistical model comparisons when ML estimators are used.
With Palamedes we hope to make sophisticated statistical model comparisons available
to researchers who may not have the statistical background or the programming
skills to perform such model comparisons from scratch. Note that while Palamedes
is specifically geared toward psychophysical data, the core ideas behind the model-
comparison approach that our paper discusses generalize to any field in which statistical
hypotheses are tested.
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INTRODUCTION

In the social sciences, and perhaps especially in the field of
psychology, it is common practice to test specific theoretically
motivated research hypotheses using formal statistical model
comparisons when data allow a least-squares criterion to be
used. Indeed, students in these disciplines are trained in such
methods starting at an early stage in their academic tenure. On
the other hand, in psychophysical research, where parameter
estimates are generally obtained using a maximum-likelihood
(ML) criterion and data do not lend themselves well to least-
squares methods, it is relatively uncommon to see formal
model comparisons performed. Rather, it is common practice to
estimate the parameters of interest (e.g., detection thresholds)
as well as their standard errors individually across the different
experimental conditions and to ‘eyeball’ whether the observed
pattern of parameter estimates supports or contradicts some
proposed hypothesis. Another common strategy is to perform a
least-squares method (such as a t-test or an ANOVA) on the ML
parameter estimates.

We believe that the relative lack of formal, appropriate, and
optimal statistical tests in the area of psychophysical research is,
at least in part, due to a lack of training and familiarity with
performing such tests in the context of ML estimators as well as
a relative lack in available software to perform such tests. Here,
we explain, in non-technical terms and using example analyses,
a general purpose approach to test specific research hypotheses
involving psychometric functions (PFs). This ‘model-comparison
approach’ is extremely flexible and has been advanced previously
by Judd and McClelland (1989; also Judd et al., 2008) in the
context of least-squares methods. We also discuss how model
comparisons can be performed using our free Matlab toolbox
Palamedes which includes routines that are specifically designed
to allow researchers virtually unlimited flexibility in defining
various models of their data in order to target specific research
hypotheses. We hope to advance the practice of performing
formal statistical tests of research hypotheses.

THE MODEL-COMPARISON APPROACH

Judd et al. (2008) explain how the various standard statistical
tests that are generally taught to students of the social sciences
(and others) may all be considered to be statistical comparisons
of two alternative models of the data. They develop this ‘model-
comparison’ conceptualization of statistical inference testing in
the context of the least-squares criterion. The resulting unified
framework allows researchers great flexibility in tailoring their
statistical tests to target the specific research questions they wish
to address. This stands in contrast to what Judd et al. (2008)
term the ‘cookbook approach’ to statistical significance testing
that is generally adopted by statistics texts and in introductory
statistics courses. In the cookbook approach, students are taught a
multitude of tests, each appropriate to analyze data from a specific
experimental design and to answer specific research questions.
Many texts adopting the cookbook approach will include a
flowchart that, based on the research design, will guide the

student to the appropriate test to be performed. Many students
will, not surprisingly, consider the various tests discussed in a
text as having little to do with each other and will fail to discover
the common underlying logic. Moreover, researchers often find
themselves having collected data under a sensible research design
which is nevertheless not accommodated by a standard recipe in
a text that uses the cookbook approach.

THE MODEL COMPARISON APPROACH
APPLIED TO PSYCHOPHYSICAL
MODELS

The Psychometric Function
The PF relates some quantitative stimulus characteristic (e.g.,
contrast) to psychophysical performance (e.g., proportion correct
on a detection task). A common formulation of the PF is given by:

ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F(x;α, β),

in which x refers to stimulus intensity, ψ refers to a measure
of performance (e.g., proportion correct), and γ and 1−λ
correspond to the lower and upper asymptote, respectively. F is
usually some sigmoidal function such as the cumulative normal
distribution, Weibull function, or Logistic function. Parameters
γ and λ are generally considered to be nuisance parameters in
that they do not characterize the sensory mechanism underlying
performance. For example, in a ‘yes/no task,’ in which a single
stimulus is presented per trial and the observer must decide
whether or not it contains the target, γ corresponds to the false
alarm rate which characterizes the decision process. On the other
hand, in an mAFC (m Alternative Forced Choice) task in which
m stimuli are presented per trial and the observer decides which
contains the target, γ is determined by the task and is generally
assumed to equal 1/m. The parameter λ is commonly referred
to as the ‘lapse rate’ in that it corresponds to the probability of
a stimulus-independent negative response (e.g., ‘no’ in a yes/no
task or incorrect in an mAFC task). The sensory mechanism
underlying performance is characterized by function F. Function
F has two parameters: α and β. Parameter α determines the
location of F, while Parameter β determines the rate of change
of F. The interpretation of α and β in terms of the sensory
or perceptual process underlying performance depends on the
specific task. For example, in an mAFC contrast detection task,
α corresponds to the stimulus intensity at which the probability
correct detection reaches some criterion value, usually halfway
between the lower and upper asymptote of the psychometric
function. In this context α is a measure of the detectability of
the stimulus and is often referred to as the ‘threshold.’ However,
in appearance-based 2-Alternative Forced Choice (2AFC) tasks
(Kingdom and Prins, 2016, §3.3) such as the Vernier-alignment
task we use as our example below, α refers to the point-of-
subjective equality, or PSE. In this latter context, α is not a
measure of detectability of the Vernier offset but rather measures
a bias to respond left or right. In this task, the detectability of
the offset is quantified by parameter β (the higher the value of
β , the more detectable the offset is). In the remainder of this
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paper we will use the terms location and slope parameter for α
and β, respectively. These terms describe the function itself and
carry no implications with regards to the characteristics of the
underlying sensory or perceptual process. As such, these terms
have the distinct advantage of being appropriate to use regardless
of the nature of the task.

We will introduce the logic behind the model-comparison
approach first by way of a simple one-condition hypothetical
experiment. We will then extend the example to include a second
experimental condition.

A Simple One-Condition Example
Demonstrating the Model-Comparison
Approach
Imagine an experimental condition in which an observer is to
detect a Vernier offset. The task is a 2AFC task in which the
observer is to indicate whether the lower of two vertical lines
is offset to the left or to the right relative to the upper line.
Five different offsets are used and 50 trials are presented at each
offset. Figure 1A displays the hypothetical results from such
an experiment. Plotted is the proportion of trials on which the
observer reported perceiving the lower line to the left of the
upper line as a function of the actual Vernier offset. Figure 1B
shows four different models of these data. These models differ
as to the assumptions they make regarding the perceptual
process underlying performance. All models share a number of
assumptions also and we will start with these.

All four models in Figure 1B make the assumptions
of independence and stability. Briefly, this means that the
probability of a ‘left’ response is fully determined by the physical
Vernier offset. An example violation of the assumption of
independence occurs when an observer is less likely to respond
‘left’ on trial six because he responded ‘left’ on all of the previous
trials. An example violation of the assumption of stability
occurs when an observer over the course of the procedure
becomes careless and more likely to respond independently of
the stimulus. All models in Figure 1B also assume that the
true function describing the probability of a ‘left’ response as a
function of Vernier offset has the shape of the Logistic function.
Finally, all models assume that the probability that an observer
responds independently of the stimulus on any given trial (the
lapse rate) equals 0.02. While this assumption is certain to be not
exactly correct, data obtained in an experiment like this generally
contain very little information regarding the value of the lapse
parameter and for that reason, freeing it is problematic (Prins,
2012; Linares and López-Moliner, 2016). Note that in a task such
as this, the rate at which an observer lapses determines both the
lower and upper asymptote of the function. Thus, all models in
Figure 1B assume that γ = λ = 0.02.

Even though the models in Figure 1B share many
assumptions, they differ with respect to the assumptions
they make regarding the values of the location and slope
parameters of the PF. Models in the left column make no
assumptions regarding the value of the location parameter and
allow it to take on any value. We say that the location parameter
is a ‘free’ parameter. Models in the right column, on the other

hand, assume that the location parameter equals 0. We say that
the value for the location parameter is ‘fixed.’ In other words,
the models in the right column assume that the observer does
not favor either response (‘left’ or ‘right’) when the two lines are
physically aligned. Moving between the two rows places similar
restrictions on the slope parameter of the functions. In the two
models in the top row the slope parameter is a free parameter,
whereas the models in the bottom row fix the slope parameter
at the somewhat arbitrary value of 1. We refer to models here
by specifying how many location parameter values and slope
parameter values need to be estimated. For example, we will refer
to the model in the top left corner as ‘1 α 1 β .’

Thus, moving to the right in the model grid of Figure 1B
restricts the value of the location parameter, whereas moving
downward restricts the value of the slope parameter. As a result,
any model (‘model B’) in Figure 1B that is positioned to the
right and/or below another (‘model A’) can never match the
observed p(‘left’) better than this model and we say that model
B is ‘nested’ under model A. From the four models shown in
Figure 1B we can form five pairs of models in which one of
the models is nested under the other model. For any such pair,
we use the term ‘lesser model’ for the more restrictive model
and ‘fuller model’ for the less restrictive model. For each such
pair we can determine a statistical ‘p-value’ using a likelihood
ratio test [(e.g., Hoel et al., 1971) which is a classical Null
Hypothesis Statistical Test (NHST)]. The likelihood ratio test is
explained in some detail below. The Null Hypothesis that would
be tested states that the assumptions that the lesser model makes,
but the fuller model does not, are correct. The interpretation
of the p-value is identical for any NHST including the t-test,
ANOVA, chi-square goodness-of-fit test, etc. with which the
reader may be more familiar. Other criteria that are commonly
used to determine which of the models is the preferred model
are the information criteria and Bayesian methods (e.g., Akaike,
1974; Jaynes and Bretthorst, 2003; Kruschke, 2014; Kingdom and
Prins, 2016). A key advantage of the information criteria and
Bayesian methods is that they can compare any pair of models,
regardless of whether one is nested under the other. The core
ideas behind the model-comparison approach apply to any of the
above methods.

Different research questions require statistical comparisons
between different pairs of models. For example, in the
hypothetical experiment described here, we might wish to test
whether the data suggest the presence of a response bias. In
terms of the model’s parameters a bias would be indicated
by the location parameter deviating from a value of 0. Thus,
we would compare a model in which the location parameter
is assumed to equal 0 to a model that does not make that
assumption. The models to be compared should differ only in
their assumptions regarding the location parameter. If the models
in the comparison differ with regard to any other assumptions
and we find that the models differ significantly, we would not
be able to determine whether the significance arose because
the assumption that the location parameter equals 0 was false
or because one of the other assumptions that differed between
the models was false. What then should the models in the
comparison assume about the slope parameter? By the principle
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FIGURE 1 | (A) Results of a hypothetical experiment in which observers are tested in a Vernier-alignment task. Plotted are the proportions of responding ‘left’ for
each of the five Vernier alignments used. The observed proportions correct also define the saturated model which makes no assumptions as to how the probability
of a correct response depends on experimental condition or stimulus intensity. (B) Four different models of the results shown in (A). The models differ with respect to
their assumptions regarding two of the four parameters of a PF (location and slope). The text describes how to perform model comparisons between the models
labeled here as ‘fuller,’ ‘lesser,’ and ‘saturated’ (the latter shown in A).

of parsimony one should, generally speaking, select the most
restrictive assumptions that we can reasonably expect to be valid.
Another factor to consider is whether the data contain sufficient
information to estimate the slope parameter. In the present
context, it seems unreasonable to assume any specific value for
the slope parameter and the data are such that they support
estimation of a slope parameter. Thus, we will make the slope
parameter a free parameter in the two to-be-compared models.

Given the considerations above, the appropriate model
comparison here is that between the models labeled ‘fuller’ and
‘lesser’ in Figure 1B. Figure 2 represents these two models in
terms of the assumptions that they make. Again, it is imperative
that the two models that are compared differ only with regard
to the assumption (or assumptions) that is being tested. The line
connecting the models in Figure 2 is labeled with the assumption
that the lesser model makes, but the fuller model does not. That
assumption is that the location parameter equals zero (i.e., α = 0).
A model comparison between the two models, be it performed
by the likelihood ratio test, one of the information criteria, or a
Bayesian criterion, tests this assumption. Here, we will compare
the models using the likelihood ratio test. The likelihood ratio
test can be used to compare two models when one of the models
is nested under the other. The likelihood associated with each
of the models is equal to the probability with which the model
would produce results that are identical to those produced by
our observer. The likelihood associated with the fuller model
will always be greater than that associated with the lesser model
(remember that the fuller model can always match the lesser
model while the reverse is not true). The likelihood ratio is the
ratio of the likelihood associated with the lesser model to that
associated with the fuller model. Under the assumption that
the lesser model is true (the ‘Null Hypothesis’), the transformed
likelihood ratio [TLR =−2× loge(likelihood ratio)] is distributed
asymptotically as the χ2 distribution with degrees of freedom
equal to the difference in the number of free parameters between

the models1. Thus, the likelihood ratio test can be used to perform
a classical (‘Fisherian’) NHST to derive a statistical p-value.

When the model comparison is performed using the
likelihood ratio test, the resulting TLR equals 0.158. With 1 degree
of freedom (the fuller model has one more free parameter [the
location parameter] compared to the lesser model) the p-value
is 0.691. The difference between the fuller and lesser model was
the assumption that the location parameter was equal to zero,
thus it appears reasonable to conclude that this assumption is
valid. However, remember that the lesser model made additional
assumptions. These were the assumptions of independence and
stability, the assumption that the guess rate and the lapse rate
parameters were equal to 0.02 and that the shape of the function
was the logistic function. The model comparison performed
above is valid only insofar as these assumptions are valid. We can
test these assumptions (except the assumptions of independence
and stability) by performing a so-called Goodness-of-Fit test.

The model comparison to be performed for a Goodness-of-
Fit test is that between our lesser model from above and a model
that makes only the assumptions of independence and stability.
The latter model is called the saturated model. It is the fact that
the fuller model in the comparison is the saturated model that
makes this test a Goodness-of-Fit test2. Note that the saturated

1Note that we are referring here to the theoretical χ2 probability density function.
Readers should not confuse the likelihood ratio test with Pearson’s χ2 test
(unfortunately often referred to as ‘the χ2 test’) with which they may be more
familiar. The latter is based on Pearson’s χ2 statistic (unfortunately often referred
to as ‘χ2’) which happens to be distributed asymptotically as the χ2 probability
density function also. Other than sharing the χ2 probability density function as its
asymptotic distribution, Pearson’s χ2 statistic and Pearson’s χ2 test are not related
to the TLR, the likelihood ratio test, or our discussion.
2Similar to the confusion described in footnote 1, the term Goodness-of-Fit test is
often taken to be equivalent to a specific Goodness-of-Fit test: (Pearson’s) χ2 test
for Goodness-of-Fit. In fact, many Goodness-of-Fit tests exist, Pearson’s χ2 test is
simply one of them. Since we use a maximum-likelihood criterion during fitting
the appropriate test statistic here is the TLR (as it is in all our model comparisons)
and not Pearson’s χ2.
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FIGURE 2 | Schematic depiction of the model-comparison approach as applied to the research question described in the Section “A Simple One-Condition
Example Demonstrating the Model-Comparison Approach.” Each circle represents a model of the data shown in Figure 1. Models differ with respect to the
assumptions they make. The assumptions that each of the models make are listed in the circles that represent the models. The lines connecting pairs of models are
labeled with the assumptions that differ between the models. Under the model-comparison approach, specific assumptions are tested by comparing a model that
makes the assumption(s) to a model that does not make the assumption(s). For example, in order to test whether the location parameter of a PF equals zero (i.e.,
whether α = 0), we compare the top left (‘fuller’) model which does not make the assumption to the top right model which does make the assumption. Note that
otherwise the two models make the same assumptions. Model comparisons may also be performed between models that differ with respect to multiple
assumptions. For example, a Goodness-of-Fit test tests all of a model’s assumptions except the assumptions of independence and stability. The p-values resulting
from the three model comparisons shown here are given in this figure.

model makes no assumptions at all regarding how the probability
of the response ‘left’ varies as a function of stimulus intensity
or experimental condition. As such, it allows the probabilities
of all five stimulus intensities that were used to take on any
value independent of each other. Thus, the saturated model
simply corresponds to the observed proportions of ‘left’ responses
for the five stimulus intensities. Note that the assumptions of

independence and stability are needed in order to assign a single
value for p(‘left’) to all trials of a particular stimulus intensity.
Note also that all models in Figure 1B, as well as any other
model that makes the assumptions of independence, stability
and additional (restrictive) assumptions are nested under the
saturated model. Thus for all these we can perform a goodness-
of-fit test using a likelihood ratio test. The p-value for the
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goodness-of-fit of our lesser model was 0.815 indicating that the
assumptions that the lesser model makes but the saturated model
does not (i.e., all assumptions except those of independence and
stability) appear to be reasonable.

A Two-Condition Example
Imagine now that the researchers added a second condition
to the experiment in which the observer first adapts to a
vertical grating before performing the Vernier alignment trials.
Of interest to the researchers is whether Vernier acuity is affected
by the adaptation. The results of both conditions are shown in
Figure 3A. We can again apply a number of possible models to
these data. Figure 3B shows nine models that can be applied to
these data. These models differ as to the assumptions they make
regarding the perceptual process underlying performance. Again
some assumptions are shared by all nine models. All models make
the assumptions of independence and stability. All models also
assume again that the true function describing the probability
of a ‘left’ response as a function of Vernier offset has the shape
of the Logistic function. Finally, all models assume again that
the probability that an observer responds independently of the
stimulus on any given trial (the lapse rate) equals 0.02. As in
the models shown in Figure 1B, the nine models in Figure 3B
differ only with respect to the assumptions they make regarding
the values of the location and slope parameters. Models in the
left column make no assumptions regarding the value of either
of the location parameters and allow each to take on any value
independent of the value of the other. We say that the values are
‘unconstrained.’ Models in the middle column assume that the
two location parameters are equal to each other (‘constrained’). In
other words, according to these models the value of the location
parameter is not affected by the experimental manipulation.
However, these models make no assumption as to the specific
value of the shared location parameter. Models in the right
column further restrict the location parameters: they assume that
both are equal to 0. As we did in the one-condition example, we
say that the values for the location parameters are ‘fixed.’ Moving
between different rows places similar restrictions on the slope
parameters of the functions. Models in the top row allow both
slopes to take on any value independent of each other. Models
in the middle row assume that the slopes are equal in the two
conditions, and models in the bottom row assume a specific value
for both slopes (we again chose the arbitrary value of 1 here). We
refer to models here by specifying how many location parameter
values and slope parameter values need to be estimated. For
example, we will refer to the model in the top left corner as
‘2 α 2 β .’

Moving to the right in the model grid of Figure 3B increases
the restrictions on the values on the location parameters, whereas
moving downward increases the restrictions on the slopes.
Thus any model (‘model B’) positioned any combination of
rightward and downward steps (including only rightward or
only downward steps) relative to another (‘model A’) is nested
under that model. From the nine models shown in Figure 3B
we can find 27 pairs of models in which one of the models
is nested under the other model. Again, for any such pair
we can perform a model comparison and again that model

comparison would test whether the assumptions that the lesser
model makes but the fuller model does not are warranted. Which
two models should be compared in order to test whether the
adaptation affects Vernier acuity? A difference in Vernier acuity
between the two conditions would correspond to a difference
in the slope parameters. A higher value for the slope would
correspond to a higher acuity. Thus, a model that assumes
that adaptation does not affect Vernier acuity assumes that the
slope parameters in the two conditions are equal. A model that
assumes that Vernier acuity is affected by adaptation assumes
that the slope parameters are different between the conditions.
Thus, we would compare a model that allows different slopes
in the two experimental conditions to a model that constrains
the slopes to be identical between conditions. The models to
be compared should make identical assumptions regarding the
location parameters in the two conditions. This is for the same
reason as outlined above in the one-condition example: If the
models in the comparison differ with regard to the assumptions
they make regarding location parameters as well as slopes and
we find that the models differ significantly, we would not be
able to determine whether the significance should be attributed
to an effect on the location parameters, slope parameters or
both. What then should the models in the comparison assume
about the location parameters? Depending on the specifics of
the experiment it might be reasonable here to assume that
the location parameters in both conditions equal 0 (we have
already determined above that in the no-adaptation condition the
location parameter at least does not deviate significantly from
zero). Thus, given the specific research question posed in this
example and the considerations above, the appropriate model
comparison is that between the fuller model ‘0 α 2 β ’ and the
lesser model ‘0 α 1 β.’ In Figure 3B we have labeled these two
models as ‘Fuller’ and ‘Lesser.’ Figure 4 lists the assumptions
of both the fuller and the lesser model. The line connecting
the models is labeled with the assumption that the lesser model
makes but the fuller does not. When this model comparison is
performed using the likelihood ratio test the resulting p-value
is 0.016 indicating that the slope estimates differ ‘significantly’
between the two experimental conditions. Note that the p-value
is accurate only insofar the assumptions that both models make
(independence, stability, lapse rate equals 0.02, PSEs equal 0,
and the shape of the psychometric function is the Logistic) are
met. All but the first two of these assumptions can be tested
by performing a Goodness-of-Fit test of the fuller model. The
Goodness-of-Fit model comparison results in a p-value equal to
0.704 indicating that the assumptions that the fuller model makes
but the saturated model does not (i.e., all assumptions except
those of independence and stability) appear to be reasonable.

Comparison to Other Approaches
To recap, the essence of the model comparison approach
to statistical testing is that it conceives of statistical tests of
experimental effects as a comparison between two alternative
models of the data that differ in the assumptions that they make.
The nature of the assumptions of the two models determines
which research question is targeted. Contrast this to a cook book
approach involving a multitude of distinct tests each targeting a
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FIGURE 3 | (A) Results of a hypothetical experiment in which observers perform a Vernier-alignment task under two experimental conditions (solid versus open
symbols). Under each condition, five stimulus intensities are used. Plotted are the proportions of responding ‘left’ for each of the 10 combinations of experimental
condition and stimulus intensity. The proportions correct also define the saturated model which makes no assumptions as to how the probability of a correct
response depends on experimental condition or stimulus intensity. (B) Nine different models of the results shown in (A). The models differ with respect to their
assumptions regarding two of the four parameters of a PF (location and slope). The text describes model comparisons between the models labeled here as ‘fuller,’
‘lesser,’ and ‘saturated’ (the latter shown in A).

specific experimental effect. Perhaps there would be a ‘location
parameter test’ that determines whether the location parameters
in different conditions differ significantly. There would then
presumably also be a ‘slope test,’ and perhaps even a ‘location
and slope test.’ For each of these there might be different versions
depending on the assumptions that the test makes. For example,
there might be a ‘location test’ that assumes slopes are equal,
another ‘location test’ that does not assume that slopes are equal,
and a third ‘location test’ that assumes a fixed value for the slope
parameters. Note that the difference between the approaches
is one of conception only, the presumed ‘location test’ would
be formally identical to a model comparison between a model
that does not restrict the location parameters to a model that
restricts them to be identical. The model comparison approach is
of course much more flexible. Even in the simple two-condition
experiment, and only considering tests involving the location
and slope parameters, we have defined the nine different models
in Figure 3B from which 27 different pairs of models can be
identified in which one model is nested under the other.

Note that many more model comparisons may be conceived
of even in the simple two-condition experiment of our example.
For example, maybe we wish to test the effect on slope again
but we do not feel comfortable making the assumption that the
lapse rate equals 0.02. We then have the option to loosen the
assumption regarding the lapse rate that the fuller and lesser
model make. We could either estimate a single, common lapse
rate for the two conditions if we can assume that the lapse rates
are equal between the conditions or we could estimate a lapse

rate for each of the conditions individually if we do not want to
assume that the lapse rates in the two conditions are equal. We
may even be interested in whether the lapse rate is affected by
some experimental manipulation (e.g., van Driel et al., 2014). We
would then compare a model that allows different lapse rates for
the conditions to a model that constrains the lapse rates to be
equal between conditions.

The model-comparison approach generalizes to more
complex research designs and research questions. As an example,
Rolfs et al. (2018) compared a lesser model in which all sessions
in a perceptual learning experiment followed a three-parameter
single learning curve to a fuller model in which critical
conditions were allowed to deviate from the learning curve. In
other words, this model comparison tested whether perceptual
learning transferred to the critical conditions or not (see also
Kingdom and Prins, 2016, §9.3.4.2). As another example, Prins
(2008b) compared models in which performance in a texture
discrimination task was mediated by probability summation
among either two or three independent mechanisms. As a final
example, Prins (2008a) applied the model-comparison approach
to determine whether two variables interacted in their effect on
location parameters of PFs in a 2× 3 factorial research design.

Note that research questions rarely are concerned with the
absolute value of any parameter per se. Rather, research questions
concern themselves with relationships among parameter values
derived under different experimental conditions. Thus, the
common strategy to derive point and spread (e.g., standard
error or confidence interval) estimates on the parameters
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FIGURE 4 | Similar to Figure 2 but now applied to the two-condition experiment described in the Section “A Two-Condition Example.” Each circle represents a
model of the data shown in Figure 3A. The fuller model does not assume that the slopes are equal, while the lesser model does make this assumption. Note that
otherwise the models make the same assumptions.

of PFs in individual conditions is a somewhat peculiar and
indirect method to address research questions. Moreover,
the determination as to whether parameter estimates are
significantly different is often performed by eye-balling
parameter estimates and their SEs and often follows questionable
rules of thumb (such as, “if the SE bars do not overlap,

the parameter estimates differ significantly”) as opposed to
following a theoretically sound procedure. Finally, unlike the
model-comparison approach, the SE eye-balling approach
does not allow model comparisons between models that make
different assumptions regarding the value of multiple parameters
simultaneously.
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MODEL COMPARISONS IN PALAMEDES

Our software Palamedes was specifically designed to allow
users to test research hypotheses using the model-comparison
approach. One necessary ingredient to the model comparison
approach is the ability to define models in terms of the
assumptions that the model makes. These assumptions are
formalized by specifying the relationships among parameter
values across different experimental conditions. A second
necessary ingredient is the ability to compare statistically any two
(nested) models that a user might wish to compare. Together
these characteristics allow users to perform statistical tests of a
virtually unlimited range of research questions using a single
general routine.

Following the spirit of the model comparison approach,
Palamedes has just a single routine (PAL_PFLR_Model
Comparison.m) that performs model comparisons involving
fits of PFs to multiple conditions. Users can tailor the model
comparison to be performed by defining the fuller and lesser
models. Models are specified using the arguments of the routine.
Defining the models occurs by specifying the constraints on
each of the four parameters (location, slope, guess rate, and
lapse rate) for both the fuller and the lesser model. Palamedes
offers three methods in which to specify the constraints. These
methods differ with regard to ease of use, but also with regard to
flexibility offered. We will briefly discuss the three methods in
decreasing order of ease of use (but increasing flexibility). We will
use the model-comparison between the models labeled ‘fuller’
and ‘lesser’ in Figure 3B as an example throughout. The file
ModelComparisonSingleCondition.m in the PalamedesDemos
folder performs the example model comparison that we
performed in the Section “A Simple One-Condition Example
Demonstrating the Model-Comparison Approach.” The file
ModelComparisonTwoConditions.m in the PalamedesDemos
folder performs the example model comparison described in the
Section “A Two-Condition Example” using all three methods.

The easiest method by which to specify constraints on
parameters is using the verbal labels of ‘unconstrained,’
‘constrained,’ and ‘fixed.’ Each of the four parameters of a PF
(location, slope, guess rate, and lapse rate) can be independently
specified. In order to perform the test described in the Section “A
Two-Condition Example” we would set the location parameters,
guess rates, and lapse rates of both the fuller and the lesser
model to ‘fixed’ (and specify the values at which these parameters
should be fixed), we would set the slopes of the lesser
method to ‘constrained,’ and the slopes of the fuller model to
‘unconstrained.’

The second method by which to specify models is by
specifying constraints on parameters using ‘model matrices.’
Model matrices serve to reparameterize parameters into new
parameters that correspond to ‘effects.’ For example, a model
matrix can be used to reparameterize the two slopes of the
PFs into two new parameters, one corresponding to the sum of
the slope values, the other to the difference between the slope
values. Note that any combination of slope values [e.g., a slope
of 3 in condition 1 and a slope of 1 in condition 2) can be
recoded without loss of information in terms of their sum (4)

and their difference (2)]. Instead of estimating the slopes directly,
Palamedes estimates the values of the parameters defined by the
model matrix. Each row of the matrix defines a parameter as
some linear combination of the original parameters by specifying
the coefficients with which the parameters should be weighted to
create the linear sum. For example, in order to create a parameter
corresponding to the sum of the slopes we include a row in
the matrix that consists of two 1’s. The new parameter would
then be defined as θ1 = 1× β1 + 1× β2, the sum of the slope
values. If we include a second row [1 −1], this defines a new
parameter θ2 = 1× β1 + (−1)× β2, the difference between the
slope values. In order to allow different slopes in each condition,
we instruct Palamedes to estimate both the sum and the difference
of the slopes by passing it the matrix [1 1; 1 −1]. If we wish to
constrain the slopes to be equal in the conditions, we instruct
Palamedes to estimate only one parameter which corresponds to
the sum of the slopes by passing the array [1 1]. Note that the new
θ parameters exist behind the scenes only, Palamedes will report
the estimated parameters in terms of β1 and β2.

The advantage of using model matrices rather than the verbal
labels above in order to specify models is that it allows model
specifications that are not possible using the verbal label. For
example, it allows one to specify that only the PSE in condition
2 should be estimated while the PSE in condition 1 should be
fixed (by passing the model matrix [0 1]). Especially when there
are more than two conditions does the use of model matrices
afford much greater flexibility compared to the use of the verbal
labels. A model comparison that compares a model in which the
location parameters from, say, six conditions are ‘unconstrained’
to a model in which the location parameters are ‘constrained’
merely tests whether there are significant differences among
the six location parameters, not where these differences may
lie (i.e., it would test an ‘omnibus’ hypothesis). Model matrices
allow researchers to target more specific research questions. For
example, if the six location parameters arose from a 2× 3 factorial
design, model matrices can be used to test hypotheses associated
with the main effects and their interaction (comparable to the
hypotheses tested by a Factorial ANOVA; for an example of this
see Prins, 2008a). If the six conditions differed with respect to
the value of a quantitative independent variable (for example,
adaptation duration), contrasts allow one to perform a trend
analysis (e.g., Kingdom and Prins, 2016, §9.3.4.1.1).

A detailed exposition on how to create model matrices in
order to target specific research questions is well beyond the
scope of this article. A reader familiar with the use of contrasts,
for example in the context of analysis of variance (ANOVA) or
the General Linear Model (GLM), may have recognized θ2 as
a ‘contrast.’ Indeed, much about creating model matrices using
contrasts can be learned from texts that discuss ANOVA or GLM
(e.g., Judd et al., 2008; Baguley, 2012). Elsewhere, we (Kingdom
and Prins, 2016, Box 9.4) discuss some guiding principles that will
aid in the creation of sensible contrast matrices. The Palamedes
routine PAL_Contrasts.m can be used to generate so-called
polynomial, periodic, and Helmert contrasts.

The third and most flexible method by which to specify model
constraints on parameters is by supplying a custom-written
function that defines a reparameterization of the parameter
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in question. For example, reparameterizing the slopes into
parameters that correspond to the sum and difference between
them (as performed above using the model matrix [1 1; 1 −1])
can also be accomplished using this function:

function beta = reparameterizeSlopes(theta)
beta(1) = theta(1)+theta(2);
beta(2) = theta(1)-theta(2);

Note that, somewhat counter-intuitively perhaps, the function
takes the ‘new parameters’ (the thetas) as input and returns the
parameters that directly correspond to one of the PF’s parameters
(here: the betas, the slopes of the PF). We would also specify our
guesses for values of theta that will be used as the starting point of
the iterative fitting procedure and we specify which, if any, of the
thetas should be fixed and which should be estimated. Specifying
both thetas to be free parameters is equivalent to using the verbal
label ‘unconstrained’ or using the model matrix [1 1; 1 −1].
Specifying that theta(1) should be estimated while fixing theta(2)
(at 0), would be equivalent to using the verbal label ‘constrained’
or using the model matrix [1 1].

Note that the size of the input and output arguments need
not be equal. To give a simple example, we might fix the location
parameters at a value of 0 (as in the example model comparison
given above) using the function:

function alpha = reparameterizeFixed(theta)
alpha(1) = theta;
alpha(2) = theta;

in which theta is a scalar. We would also specify that theta
should be fixed and that the value to be used is 0. To give
another example, one can use this method to implement the
assumption that location parameters in a series of, say, 10
consecutive experimental sessions follow a learning curve defined
as an exponential decay function by using the reparameterization:

function alphas = reparameterizeLocations(thetas)
session = 1:10;
alphas = thetas(1)+ thetas(2)∗exp(-thetas(3)∗(session-1));

If we use this function to specify location parameters,
Palamedes will constrain these parameters to follow an
exponential decay function with three parameters: thetas(1) will
correspond to the lower asymptote of the function, thetas(2)
will correspond to the difference between the (modeled) value
of the first location parameter and the lower asymptote and
thetas(3) will determine the learning rate. Rolfs et al. (2018)
utilize Palamedes using a more elaborate reparameterization
in order to test whether the location parameters in some
sessions deviate significantly from their learning curve (see
also Kingdom and Prins [2016, §9.3.4.2]). The demo program
PAL_PFLR_LearningCurve_Demo.m in the PalamedesDemos
folder performs a very similar model comparison. This model
comparison compares a model in which all location parameters
follow an exponential decay function to a model in which
the critical location parameters are allowed to deviate from
an exponential decay function fitted to the remaining location
parameters.

Using this third method of specifying models in Palamedes
is clearly the most flexible of the three. Any model that can
be specified using model matrices can also be specified using
this third method (while the reverse is not the case). This third
method also has the advantage that Palamedes will return the
fitted model not only in terms of the PF parameters (locations,
slopes, guess, and lapse rates) but also in terms of the new
parameters (i.e., the theta parameters) allowing one to compare
the values of the new parameters directly. For example, one
could compare the learning rates of two observers directly by
comparing their estimated thetas(3) in the example above.

Palamedes allows one to use any combination of the
three methods to specify constraints on parameters in a
single call of a routine. For example, in a single call to
PAL_PFLR_ModelComparison.m one can specify the location
parameters of the lesser model to be fixed parameters using
the verbal label ‘fixed’ while using the empty matrix ([]) to
specify that the location parameters of the fuller model are
also fixed. An example call to PAL_PFLR_ModelComparison.m
that mixes all three of the above methods is given in
ModelComparisonTwoConditions.m.

The function PAL_PFLR_ModelComparison returns the TLR.
If the lesser model is correct, the TLR is asymptotically
distributed as χ2 with degrees of freedom equal to the difference
in the number of free parameters between the two models to
be compared. PAL_PFLR_ModelComparison also returns the
appropriate number of degrees of freedom for the test. Thus,
the user can utilize standard χ2 tables or, for example, Matlab’s
chi2cdf function to determine a p-value. However, since the
theoretical χ2 distribution may not be appropriate for low N
experiments, PAL_PFLR_ModelComparison can also be used to
generate an empirical sampling distribution from which a p-value
can be derived. Especially in the case of low N experiments it is
advisable to compare the p-value derived from the theoretical χ2

distribution to that derived from Monte Carlo simulations. As an
example, we performed our model comparison between the fuller
and lesser model discussed in the Section “A Two-Condition
Example” again using an empirical sampling distribution based
on 10,000 Monte Carlo simulations. Figure 5 shows the
empirical sampling distribution and the appropriately scaled χ2

distribution with 1 degree of freedom. It is clear that the two
sampling distributions correspond quite closely for this example.
Similarly, the p-value derived from the empirical sampling
distribution equaled 0.015, which corresponds closely to the
p-value derived from the χ2 distribution (p = 0.016). The code
that was used to generate the results shown in Figure 5 and
produce the figure in included in the PalamedesDemos folder
(EmpiricalSamplingDistribution.m).

SOME WORDS OF CAUTION

P-values and the NHST
The usefulness of p-values and the NHST in science has been
the subject of continuous debate (e.g., Cohen, 1994; Ioannidis,
2005). Recently, the editors of the journal Basic and Applied
Social Psychology (BASP) even went so far as to announce that
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FIGURE 5 | The histogram displays an empirical sampling distribution for the
transformed likelihood ratio (TLR) for our example model comparison between
the fuller and lesser model described in the Section “A Two-Condition
Example.” The distribution is based on 10,000 Monte Carlo simulations. The
curve corresponds to the theoretical χ2 distribution with 1 degree of
freedom1.

“From now on, BASP is banning the NHSTP (Null Hypothesis
Significance Testing Procedure)” (Trafimow and Marks, 2015,
p. 1). The issue is complex and contentious and we do not address
it here further. Whether a p-value is useful or not, it is clear
that misunderstandings of what the p-value represents and what
conclusions might be drawn from it are widespread. Numerous
papers have been written on the topic (e.g., Cohen, 1994; Kline,
2004 [Chapter 3]; Gelman, 2013). We urge readers to ensure
that they understand what a p-value is, what conclusions can be
drawn based on a p-value and perhaps most importantly, what
conclusions cannot be drawn from a p-value.

An alternative strategy to compare two or more alternative
models is to use one of the information criteria (e.g., Akaike’s
Information Criterion; Akaike, 1974). Briefly, the information
criteria trade off the complexity of the model and the resulting
fit as quantified using the likelihood. The fuller of two nested
model will always have a greater likelihood compared to the
lesser model but is also less parsimonious (it requires more
parameters to be estimated). The information criteria provide
a measure as to whether increasing the complexity of the
model is warranted by the improved likelihood of the model.
The information criteria are easily calculated from the log
likelihood and the number of free parameters of each of the
models that are to be compared. Palamedes includes the function
PAL_PFML_FitMultiple that can fit individual models and
returns the model’s Log Likelihood value as well as the number of
free parameters that were estimated. Model specification occurs
in the same manner as that for PAL_PFLR_ModelComparison.
In the example programs ModelComparisonSingleCondition.m
and ModelComparisonTwoConditions.m the fuller, lesser, and
saturated models are compared using Akaike’s Information
Criterion and we reach the same general conclusions as we did
above. For example, the fuller model in the Section “A Two-
Condition Example” is again preferred over both the lesser model
and the saturated model. An important advantage of the use of
the information criteria approach to model comparison is that it
allows one to compare models that are not nested.

Overspecification of Models
A common error researchers make when creating models is
to attempt to estimate too many parameters. A very common
example of this in psychophysics is allowing the lapse rate to
vary in the model when the data contain virtually no information
regarding its value. This practice has negative consequences for
the interpretation of the fit (Prins, 2012). Moreover, estimation
of psychophysical models occurs using an iterative search for
the values of the free parameters that maximize the model’s
likelihood. When models are overspecified, a maximum in the
likelihood function may not exist in which case the search
procedure will fail to converge. When this happens, Palamedes
will issue a warning. We are often approached by Palamedes users
enquiring why a particular model fit failed. Almost without fail,
the researcher was trying to fit more parameters than their data
could support. There are two guiding principles here. One is to
refrain from estimating parameters in a model that the data do
not contain much information on. The second is to keep in mind
that even though a model that includes more parameters than
another model will always show a closer correspondence to the
data, it does not necessarily follow that it is a better model. The
idea behind modeling is not merely to have the model match
the data as close as possible. If that were one’s goal, one should
just fit the saturated model. The saturated model corresponds
perfectly to the observed proportions correct, but is also entirely
uninteresting from a theoretical perspective. Good models are
models that describe the data well while using as few parameters
as possible.

In this regard, another significant advantage of the flexibility
of the model comparison approach is that it allows one to
reduce the number of parameters of a model greatly. Imagine for
example an experiment with several conditions. The researchers
are interested in the effect of the experimental variable(s) on
the location of the PF. They also feel it is safe to assume that
the experimental variable does not affect the slope of the PF.
The flexibility of the model-comparison approach allows them
to test for specific effects on the location parameters while
implementing the assumption that slopes are not affected by
constraining the estimated slopes to be equal in all conditions.
Trials from all conditions then contribute to the estimation
of the single, shared slope value. Note that this is similar in
many ways to the assumption of homoscedasticity in many least-
squares procedures (e.g., t-test, ANOVA). Homoscedasticity is
the assumption that the error variance is equal in all conditions.
There the assumption allows one to use all data collected in the
experiment to estimate a single error term. Note also that in the
model-comparison approach we do not need to create and name
a special, specific test to test this assumption. We simply use the
general model-comparison approach to compare a model that
makes the assumption that all slopes are equal to a model that
does not make this assumption.

High df Tests
One should interpret results of model comparisons in which the
models differ with respect to a large number of assumptions
cautiously. For example, the model comparison between the
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model labeled ‘lesser’ in Figures 3B, 4 and the saturated model
(i.e., the goodness-of-fit test of the lesser model) resulted in
a p-value that would suggest an acceptable fit of the lesser
model (p = 0.2571). However, the model comparison between
the models labeled ‘fuller’ and ‘lesser’ led us to reject one of
the assumptions of the lesser model (namely that the slope
parameters in the two conditions are equal). Thus there is a
discrepancy here. On the one hand, we reject the assumption that
the slopes are equal when we compare the fuller and lesser model
but are unable to do so when we compare the lesser model to the
saturated model in a goodness-of-fit test. The problem is that in
the latter the assumption that the slopes are equal is one of many
assumptions that are tested simultaneously and this has the effect
of diluting the effect of a single false assumption, making it harder
to detect this false assumption.

The model-comparison approach allows researchers to target
very specific research questions thereby preventing diluting
of effects. To give just one example, imagine an experiment
consisting of four conditions that differ with respect to the
duration for which the stimulus is presented. Let’s say that we
expect that the location parameter increases with the duration
of the stimulus in a linear fashion. We can, of course, compare
a model in which the location parameters are constrained to
be equal in the four conditions to a model in which they
are allowed to differ. However, this would not be the optimal
manner in which to test our hypothesis. Since we expect our
location parameter to vary in a specific (i.e., linear) manner
with duration we should compare a fuller model in which we
allow the thresholds to vary according to our expectation (rather
than allow any variation) to a lesser model in which they are
not allowed to vary. A so-called trend analysis allows us to
specify a model in which the location parameters are allowed
to vary, but only following a linear function of duration. To
do this, we would use polynomial contrasts to reparameterize
the four location parameters into four new parameters: one
corresponds to the intercept term (the average of the four
parameters, the second allows a linear trend, the third allows
a quadratic trend, and the fourth requires a cubic trend). In
effect, this reparametrization allows us to constrain the location
parameters to adhere to polynomial functions of differing degree.
In this example, the fuller model would use a model matrix
that includes an intercept term and a linear trend allowing
location parameters to follow a first-degree polynomial (i.e.,
straight line): [1 1 1 1; −3 −1 1 3]. The lesser model would
specify the constraint on the location parameters using a model
matrix containing only the intercept term: [1 1 1 1] (or,
equivalently, using the verbal label ‘constrained’). The distinct
advantage of this approach is that the fuller and lesser model
differ with respect to only one parameter (that defining the
linear trend) and we say that the comparison is a one degree
of freedom comparison. A fuller model that simply would
allow any variation among location parameters would have four
parameters and a comparison with our one parameter lesser
model would be a three degree of freedom comparison. In
case the location parameters indeed do vary as a function of
duration in a more or less linear fashion, the one degree of
freedom test would be much more likely to result in a significant

model comparison. An example trend analysis is performed
by the demo program PAL_PFLR_FourGroup_Demo.m in the
PalamedesDemo folder.

Post Hoc Mining and Family-Wise Type I
Error Rate
We have seen that the model comparison approach allows
many different model comparisons even in the case of simple
experiments. In our discussion of our example two-condition
experiment in the Section “A Two-Condition Example” we
showed that there are 27 nested model comparisons possible
that address the location and slope parameters only. The
number of possible model comparisons will grow exponentially
when additional parameters (lower asymptote, upper asymptote)
are compared. Researchers are cautioned to exercise restraint
when performing model comparisons. Firstly, as our statistics
instructors have impressed upon us, one should decide on the
hypotheses to be tested before we inspect our data or even
conduct our experiment. As we have argued above, the selection
models to be compared should be guided primarily by our
research question and by whether our data contain sufficient
information to allow estimation of parameters that are not
considered in the research question. If, on the other hand, we
allow our model comparison to be guided by the results of our
experiment (e.g., we select model comparisons because the data
suggest there may be an effect), the resulting p-value is effectively
meaningless. Also, if we do decide to perform several model
comparisons, we should be concerned with the family-wise type
I error rate, even if we selected our models a priori. A simple
procedure to prevent inflation of the family-wise type I error
rate that is easily implemented is the Bonferroni correction (e.g.,
Hayes, 1994) in which the p-value resulting from a comparison
is multiplied by the number of model comparisons that are
performed (equivalently, one may divide the criterion p-value by
the number of comparisons that are performed).

OTHER FUNCTIONALITY OF PALAMEDES

While this paper describes the model comparison approach as it
can be applied using Palamedes to define and test assumptions
regarding the effects of independent variables on the parameters
of PFs, Palamedes can do much more. A full description of all
of Palamedes’ capabilities is well beyond the scope of this article.
Instead, we will list here in general terms what other functionality
Palamedes provides. A much more elaborate description may be
found on www.palamedestoolbox.org or in Kingdom and Prins
(2016). Note also that new functionality is added to Palamedes
on a regular basis.

Adaptive Methods
Adaptive methods serve to increase the efficiency of
psychophysical testing. Palamedes implements the up/down
methods (e.g., García-Pérez, 1998), various running-fit
procedures (e.g., the Best PEST, Pentland, 1980; Watson
and Pelli, 1983), and the psi-method (Kontsevich and Tyler,
1999) and some variations on it (Prins, 2013).

Frontiers in Psychology | www.frontiersin.org 12 July 2018 | Volume 9 | Article 1250

www.palamedestoolbox.org
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01250 July 20, 2018 Time: 18:19 # 13

Prins and Kingdom Model Comparisons Using the Palamedes Toolbox

Signal Detection Theory and Summation
Measures
Palamedes provides routines for computing the Signal Detection
Theory (SDT) measure d’ (“d-prime”), for a variety of
psychophysical tasks, e.g., Yes/No, mAFC, Same-Different,
Match-to-Sample and Oddity. Unique to Palamedes is that it
is able to fit any SDT model to a PF of proportion correct
versus stimulus intensity, allowing the user to estimate the
power function exponent of the transducer function that relates
stimulus intensity to d’, as well as determine a goodness-of-fit
of the SDT model. Another unique feature of the toolbox is the
ability to model the detection of multiple stimuli according to
either a probability or additive summation SDT model, as well
as fit summation PFs with either model to determine the relative
goodness-of-fit (Kingdom et al., 2015).

Maximum-Likelihood Difference Scaling
(MLDS)
Maximum-Likelihood Difference Scaling (MLDS) (Maloney and
Yang, 2003) is a relatively new method for determining sensory
scales, that is scales that relate perceived to physical stimulus
magnitude. The method involves observers making judgments
about perceived differences between pairs of stimuli drawn
from across the stimulus range. Palamedes has a battery of
MLDS routines, including routines for generating the appropriate
stimulus combinations as well as for converting the data into
perceptual scales. The MLDS software can also be applied to
modeling data from the method of paired comparisons, in which
observers judge on each trial which of two stimuli has the greater
perceived magnitude.

COMPARISON TO SIMILAR SOFTWARE
PACKAGES

With regard to the fitting of PFs, Palamedes allows one to fit
individual functions with the freedom to fix or estimate any of the
four parameters of the PF. Individual functions can be fit using
either a maximum-likelihood or Bayesian criterion. Palamedes
allows one to estimate the standard errors of the parameter
estimates, using bootstrap analysis (e.g., Efron and Tibshirani,
1994) when a maximum-likelihood criterion is used or as the
standard deviation of the posterior distribution when a Bayesian
criterion is used. Palamedes allows one to fit multiple conditions
simultaneously while providing the user great flexibility to
constrain parameters across various conditions allowing the
specification of very specific models. Furthermore, Palamedes
gives users the opportunity to statistically compare models using
the likelihood ratio test. Since the likelihood ratio test relies on
the asymptotic distribution of the test statistic as χ2, Palamedes
also offers the possibility of creating an empirical sampling
distribution using Monte Carlo simulations.

Knoblauch and Maloney (2012) describe how to perform fits
of PFs to multiple conditions simultaneously and perform
statistical model comparisons using R’s glm routine in
conjunction with the psyphy package (Knoblauch, 2014).

While the glm routine offers considerably more options
compared to Palamedes (e.g., it may be used to fit PFs to the
data of multiple observers simultaneously, an option currently
not offered by Palamedes) it assumes a significantly more
sophisticated background in statistics than Palamedes does.

Another R package that can fit PFs using a maximum-
likelihood criterion is quickpsy by Linares and López-Moliner
(2016). Quickpsy also offers the possibility to perform pairwise
statistical comparison of parameter values across conditions.
Essentially, for each pair of conditions, quickpsy can perform a
statistical comparison between what we have referred to here as
model ‘2 α 2 β ’ and model ‘1 α 2 β ’ and between model ‘2 α 2 β ’
and model ‘2 α 1 β .’

Another tool to fit PFs is psignifit (Schütt et al., 2016) written
for Matlab and Python. This software uses a Bayesian method to
estimate PF parameter values for single conditions. As is the norm
in Bayesian fitting, reliability of parameter estimates in psignifit is
assessed using so-called credible intervals.

CONCLUDING REMARKS

We have provided an introduction to the model-comparison
approach. While we have geared our discussion to testing
research hypotheses in psychophysical studies, the model-
comparison approach we describe generalizes to any field in
which models are compared. We have also discussed in general
terms how such tests may be implemented using our free
Palamedes Toolbox. As described above, Palamedes allows model
specification using three methods that vary in their ease of
use and their flexibility. This approach makes it possible for
researchers without much modeling experience to begin creating
relatively simple models of their data. More seasoned researchers
can use Palamedes’ flexibility to implement more complex
models.

All user-end routines in the Palamedes toolbox provide
extensive help on their use (type ‘help’ followed by the name of
the function in the Matlab command window). Included in the
Palamedes Toolbox are also many demonstration programs that
perform a complete analysis and will report the results in the form
of text or a figure. Additional specific information on the use of
Palamedes may also be found on the Palamedes website3 or in
Kingdom and Prins (2016).
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