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Background: Prediction of tumor consistency before surgery is of vital importance to

determine individualized therapeutic schemes for patients with acromegaly. The present

study was performed to noninvasively predict tumor consistency based on magnetic

resonance imaging and radiomics analysis.

Methods: In total, 158 patients with acromegaly were randomized into the primary

cohort (n = 100) and validation cohort (n = 58). The consistency of the tumor was

classified as soft or firm according to the neurosurgeon’s evaluation. The critical radiomics

features were determined using the elastic net feature selection algorithm, and the

radiomics signature was constructed. The most valuable clinical characteristics were

then selected based on the multivariable logistic regression analysis. Next, a radiomics

model was developed using the radiomics signature and clinical characteristics, and

30 patients with acromegaly were recruited for multicenter validation of the radiomics

model. The model’s performance was evaluated based on the receiver operating

characteristic (ROC) curve, area under the ROC curve (AUC), accuracy, and other

associated classification measures. Its calibration, discriminating capacity, and clinical

usefulness were also evaluated.

Results: The radiomics signature established according to four radiomics

features screened in the primary cohort exhibited excellent discriminatory capacity

in the validation cohort. The radiomics model, which incorporated both the

radiomics signature and Knosp grade, displayed favorable discriminatory capacity

and calibration, and the AUC was 0.83 (95% confidence interval, 0.81–0.85)

and 0.81 (95% confidence interval, 0.78–0.83) in the primary and validation

cohorts, respectively. Furthermore, compared with the clinical characteristics,

the as-constructed radiomics model is more effective in prediction of the tumor
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consistency in patients with acromegaly. Moreover, the multicenter validation and

decision curve analysis suggested that the radiomics model was clinically useful.

Conclusions: This radiomics model can assist neurosurgeons in predicting tumor

consistency in patients with acromegaly before surgery and facilitates the determination

of individualized therapeutic schemes.

Keywords: acromegaly, tumor consistency, magnetic resonance imaging, radiomics, ROC

INTRODUCTION

Pituitary adenoma (PA), one of the most frequently seen
benign pituitary gland neoplasms, constitutes about 10–25%
of all primary intracranial tumors (1, 2); moreover, the
prevalence of PA is showing an increasing trend (3). Acromegaly
[overproduction of growth hormone (GH) by the PA in
adult patients] is associated with numerous complications (4).
Typically, the increased GH level will induce cardiovascular
and cerebrovascular diseases, and acromegaly will increase
the mortality by ≥2-fold compared with that among normal
individuals (5, 6).

The Clinical Practice Guideline recommends surgical
resection through the transsphenoidal approach, particularly
the endoscopic transsphenoidal procedure, as the preferred
first-line treatment for acromegaly (7, 8). Nonetheless, tumor
consistency remains a major factor that affects the surgical
resection rate because of the complicated anatomic structure
in the sella region and the limited operative field of view,
which is particularly true for macroadenomas (frequently seen
among patients with acromegaly) (9, 10). Soft tumors can
be easily curetted by means of suctioning. However, about
5–15% PAs are of the firm type (11); these tumors are more
difficult to excise, and a two-stage operation is usually needed.
Therefore, for firm PAs, surgeons may need to develop a more
detailed strategy for the transsphenoidal procedure or directly
choose craniotomy to avoid complications such as damage to
the normal gland (which may lead to hypopituitarism) and
interruption of the arachnoid membrane (which may result in
cerebrospinal fluid fistulas and major cerebrovascular lesions).
It is of vital importance to develop a noninvasive preoperative

technique to enable precise prediction of the tumor consistency
and thus to achieve a successful operative outcome and to

establish an individualized therapeutic scheme, such as drug
treatment (12).

A few studies have been performed to predict the consistency

of PA through magnetic resonance (MR) imaging (11, 13).
However, this technique is not always successful, and previous

studies have been limited by low predictive accuracy, small

sample sizes, lack of validation, and complicated imaging
sequences. Radiomics has recently emerged as a potent approach

for noninvasive high-throughput mining of tumor characteristics
(14, 15). Neuro-oncologic radiomics studies can potentially
mine hidden data that cannot be mined through a single-
parameter approach; such studies can also enhance the accuracy
of diagnosis, prognosis, and prediction in patients with brain
tumors (16–19). Nonetheless, no report has focused on radiomics

signatures to predict the tumor consistency of PA, particularly in
patients with acromegaly.

Therefore, the hypothesis of the present study was that the
high-dimensional radiomics characteristics acquired, based on
conventional MR imaging sequences, can enhance the accuracy
of preoperative prediction of the tumor consistency. Efforts
were made to validate the constructed MR radiomics model
through a completely independent multicenter validation set,
thus offering robustness among different image acquisition
protocols. Consequently, the current study aimed to construct a
radiomics model that incorporates both the radiomics signature
and clinical characteristics for preoperative prediction of the
tumor consistency in patients with acromegaly.

MATERIALS AND METHODS

Patients
From July 2012 to June 2018, 158 patients with acromegaly were
included in the current analysis. The following four diagnostic
criteria for acromegaly were used: clinical features of acromegaly
in an adult patient (8), detection of a PA by pituitaryMR imaging,
meeting of the endocrine diagnostic criteria for acromegaly (8)
[elevated insulin-like growth factor 1 level (20), randomGH level
of >1 ng/ml, and nadir GH level of >0.4 ng/ml after the oral
glucose tolerance test], and confirmation of PA by postoperative
pathological analysis.

The patients’ data and personal information were anonymized
before analysis. All patients were then randomized into the
primary cohort (n = 100), which was used for model
construction, and the validation cohort (n = 58), which was
used for model internal validation. Finally, 30 patients with
acromegaly were enrolled to prospectively validate the model,
including 15 from Peking Union Medical College Hospital, 10
from Sichuan Provincial People’s Hospital, and 5 from the Second
Affiliated Hospital of Nanchang University. The Ethical Review
Committee of Peking Union Medical College Hospital approved
the study protocol.

The inclusion criteria for this study was as follows: the
presence of acromegaly and performance of initial neurosurgery
for PA removal; greatest tumor diameter of >2 cm or grade
III to IV tumor (21); high-quality preoperative pituitary MR
imaging and surgical video; no history of medical treatment,
radiotherapy, or surgery for PA; and complete clinical and
surgical data.

The following preoperative clinical features were collected:
age, sex, insulin-like growth factor 1 level, random GH level,
nadir GH level and GH inhibition ratio after a glucose load,
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FIGURE 1 | Flow chart of the present study. (I) Original MR image acquisition and ROI segmentation. (II) Radiomics features were extracted from the ROIs, including

first-order features, textural features, wavelet features, and shape features. (III) Feature selection and model training. (IV) Performance testing of the model (ROC

analysis, calibration curve analysis, decision curve analysis, and multicenter prospective validation). Soft and firm consistency were classified according to the

neurosurgeon’s evaluation: a tumor that could be suctioned out using an aspirator was considered soft, while a tumor that could not be suctioned out was

considered firm.

tumor volume, and bilateral Knosp classification (21). After
surgery, the tumor consistency was classified as soft or firm
according to the classification method described by Bahuleyan
et al. (22); specifically, a tumor that could be suctioned
out using an aspirator was considered soft, while a tumor
that could not be suctioned out was considered firm. A
high-quality surgical video was viewed by two neurosurgical
experts with >10 years of related experience to determine the
tumor consistency. A flow chart of this study is presented
in Figure 1.

MR Imaging Protocol and Image
Acquisition
All patients underwent pituitary MR imaging before surgery.
The precise MR imaging protocol included T2-weighted imaging
(T2WI), T1-weighted imaging (T1WI), and contrast-enhanced
T1WI. MR imaging was performed in the head-first supine
position using a 3.0-Tmagnetic resonance system (DiscoveryMR
750, GE Healthcare, Chicago, IL, USA). Specifically, the T2WI
sequence acquisition parameters were as follows: repetition
time/echo time of 4,200/103ms, field of view of 200 × 200mm,
flip angle of 90◦, acquisition matrix of 320 × 224, slice
thickness of 4mm, and spacing between slices (center to
center of each slice) of 5mm. Additionally, the T1WI sequence
acquisition parameters were as follows: repetition time/echo time

of 400/9ms, field of view of 200 × 200mm, flip angle of 90◦,
acquisition matrix of 288 × 192, slice thickness of 3mm, and
spacing between slices of 3.5mm. The contrast-enhanced T1WI
sequence acquisition parameters were the same as the T1WI
sequence parameters. Contrast-enhanced T1WI was carried
out immediately after rapid injection of a gadolinium-DTPA
contrast agent (0.1 mmol/kg Gadovist; Bayer AG, Leverkusen,
Germany). T2WI, T1WI, and contrast-enhanced T1WI in the
coronal plane were utilized, and all images were collected
based on the picture archiving and communication system of
the hospital.

Tumor Masking and Feature Extraction
A neuroradiologist with 7 years of experience in studying
acromegaly was responsible for drawing the related regions
of interest (ROIs) that delineated the tumor in each patient
with acromegaly on the aforementioned MR images through
ITK-SNAP software (University of Pennsylvania, www.itksnap.
org). The as-drawn ROIs were confirmed manually by another
expert neuroradiologist with 12 years of related experience in
investigating acromegaly, and this neuroradiologist was blind
to the operation records. Any disagreement between the two
neuroradiologists was settled by mutual negotiation between
them. The radiomics features were then collected based on
these ROIs.
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In total, 1,561 quantitative features were collected for every
sequence using PyRadiomics (https://github.com/Radiomics/
pyradiomics) (23). All radiomics features were normalized to a
value of 0 to 1 and classified into four groups: first-order features
(n = 180), shape and size features (n = 13), textural features
(n = 680), and wavelet features (n = 688). The textural features
included the gray-level co-occurrence matrix (GLCM), gray-level
run-length matrix, and the gray-level size-zone matrix.

Selection of Radiomics Features
High-dimensional information may be associated with a high
level of redundant irrelevant information. This may result
in overfitting, thus seriously reducing the learning algorithm
performance. Therefore, it was necessary to carry out a feature
selection process.

Features were selected by a three-stage process based on
the results acquired from the primary cohort. Differences in
the features between soft and firm cases in the primary cohort
were examined by univariate analysis through the Wilcoxon
rank sum test. The elastic net approach (24), which combined
the least absolute shrinkage and selection operator algorithm
with ridge regression, was adopted to select features with the
highest representativeness. The final features were confirmed
using the recursive feature elimination algorithm through
7-fold cross-validation.

Establishment and Validation of the
Radiomics Signature
The radiomics signature was established based on the radiomics
features selected from the primary cohort through the support
vector machine method. At the same time, differences in
the signature distribution between soft and firm tumors were
compared between the two cohorts using a violin plot. A receiver
operating characteristic (ROC) (25) curve was drawn to display
the predictive value of the as-selected radiomics signature.

Construction and Validation of the Clinical
and Radiomics Model
The Akaike information criterion (AIC) (26) was used to screen
the clinical features, among which the most valuable ones
were further screened through multivariable logistic regression
analysis. To establish an individualized model for predicting
the tumor consistency for both clinicians and patients, the
constructed radiomics signature was used in combination with
the selected clinical features, which were further screened
according to the AIC, to produce a fusion radiomics model. A
nomogram was obtained from the radiomics model.

ROC analyses and calculation of the associated classification
measures [including the area under the curve (AUC), accuracy,
sensitivity, specificity, positive predictive value, and negative
predictive value] were performed to compare the discriminability

TABLE 1 | Characteristics of patients in the primary and validation cohorts.

Characteristic Whole cohort (n = 163) Primary cohort (n = 100) Validation cohort (n = 58) P-value

Age (year) 37 (30–48) 37 (31–48) 38 (29–48) 0.418

Gender

Female 95 (60.1%) 60 (60%) 35 (60.3%) 0.996

Male 63 (39.9) 40 (40%) 23 (30.7%)

GH level (ng/ml) 16.4 (8.5–38.3) 16.0 (8.3–39.2) 19.7 (8.9–34.1) 0.976

Nadir GH level (ng/ml) 11.2 (4.9–27.1) 10.9 (4.7–31.4) 12.2 (5.3–24.1) 0.885

IGF-1 level (ng/ml) 817.04 ± 285.42 808.84 ± 290.06 831.17 ± 279.15 0.637

GH inhibition ratio* (%) 31.0 (16.0–44.5) 30.7 (15.5–45.5) 31.4 (15.9–43.2) 0.885

Tumor volume 2.9 (1.0–7.4) 3.0 (1.1–7.3) 2.2 (1.0–2.2) 0.717

Knosp classification**

Grade 0 5 (3.2%) 3 2 0.999

Grade 1 6 (3.8%) 4 2

Grade 2 42 (26.6%) 27 15

Grade 3 50 (%) 31 19

Grade 4 55 (%) 35 20

Consistency

Soft 100 (63.3%) 62 38 0.658

Firm 58 (36.7) 38 20

Categorical variables are presented as number (percentage). Continuous variables with a normal distribution are presented as mean ± standard deviation; otherwise, median and

quartile are shown. The chi-square test or Fisher’s exact test, as appropriate, was used to compare the differences in categorical variables, while the independent-samples t-test was

used to compare the differences in continuous variables. The following preoperative data were obtained: age, sex, GH level, nadir GH level, GH inhibition ratio, insulin-like growth factor

1 level, tumor volume, and bilateral Knosp classification. An oral glucose tolerance test (OGTT) was carried out with 75 g of oral glucose and subsequent measurements of the glucose

and GH levels every 30min for 2 h. The nadir GH level is the lowest GH level in the OGTT. *The GH inhibition rate is the percentage of GH decrease after the OGTT [GH inhibition rate =

(0 h GH level–nadir GH level)/0 h GH level]. ** In 1993, Knosp et al. (21) proposed a classification system for predicting the invasion of the cavernous sinus by a pituitary adenoma. The

Knosp classification system was used to grade the tumors from 0 to 4 according to the transverse range of tumors related to the internal carotid artery on coronal MR images. The

more lateral the pituitary adenoma grows and surrounds the internal carotid artery, the higher the grade.
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TABLE 2 | Univariate analysis of clinical characteristics of patients and acromegaly in the primary cohort and validation cohort.

Characteristic Primary cohort (n = 100) P-value Validation cohort (n = 58) P-value

Soft Firm Soft Firm

Age (year) 41.7 ± 11.0 36.0 ± 11.7 0.015 40.0 ± 12.1 36.1 ± 9.3 0.221

Gender

Male 38 22 0.737 24 11 0.546

Female 24 16 14 9

GH level (ng/ml) 13.8 (8.3–34.7) 18.8 (8.0–77.0) 0.196 20.8 (8.7–29.6) 16.3 (9.0–55.3) 0.545

Nadir GH level (ng/ml) 9.0 (4.5–26.5) 14.8 (6.1–54.8) 0.18 11.6 (5.0–23.5) 15.0 (7.0–31.1) 0.288

IGF-1 level (ng/ml) 804.2 ± 302.7 816.5 ± 271.9 0.839 801.5 ± 261.4 887.6 309.1 0.268

GH inhibition ratio (%) 33.2 ± 19.4 29.3 ± 22.4 0.357 33.4 19.9 26.4 17.6 0.195

Tumor volume 2.2 (0.8–5.5) 6.1 (1.7–10.5) 0.001 1.4 (0.7–5.2) 6.4 (3.0–10.9) 0.001

Knosp classification

Grade 0 3 0 0.009 2 0 0.028

Grade 1 4 0 2 0

Grade 2 20 7 13 2

Grade 3 21 10 13 6

Grade 4 14 21 8 12

TABLE 3 | The four key radiomic features detail information.

Class Feature name Feature type Sequence Soft Firm P-value

Lbp filter gldm_DependenceVariance Texture T1WI 0.4876 ± 0.0196 0.5976 ± 0.0198 0.0003

Square filter glcm_Imc2 Texture CET1 0.6226 ± 0.0223 0.4534 ± 0.0272 <0.0001

Original glcm_Imc2 Texture CET1 0.6524 ± 0.0229 0.4700 ± 0.0277 <0.0001

LLH wavelet filter glcm_Imc2 Wavelet CET1 0.7864 ± 0.0251 0.6280 ± 0.0356 0.0003

Lbp, local binary pattern; gldm, gray level dependence matrix; glcm, gray-level co-occurrence matrix; T1WI, T1-weighted imaging; CE-T1, contrast-enhanced T1-weighted imaging.

of the clinical and radiomics model in the two cohorts.
Calibration curves were then drawn and used in combination
with the Hosmer–Lemeshow test to assess the similarities
between the predicted and measured tumor consistency
probabilities (27).

Clinical Application and Multicenter
Validation
The clinical usefulness of the radiomics model was assessed
by means of a decision curve analysis, in which the net
benefits were quantified under different threshold probabilities
(28). Following construction of the radiomics model, the 30
patients with acromegaly from three hospitals were enrolled for
multicenter validation of the model. The prediction accuracy
was then evaluated through ROC analyses and associated
classification measures.

Statistical Analysis
Differences with a two-sided p-value of < 0.05 were deemed
statistically significant. The statistical software R, version 3.4.1
(R Foundation for Statistical Computing, Vienna, Austria) was
used by an experienced statistician to carry out the statistical
analysis. The combined model was created using the “rms”

package, the calibration plot was examined through the “hdnom”
packages, and the decision curve analysis was conducted by the
function “dca.R.”

RESULTS

Clinical Characteristics
The clinical characteristics of all 158 patients with acromegaly
(100 from the primary cohort and 58 from the validation cohort)
enrolled in this study are shown in Table 1. In total, 38.0%
(38/100) and 34.5% (20/58) patients in the primary cohort
and validation cohort, respectively, developed firm tumors.
No significant interclass differences were detected in age, sex,
random GH level, nadir GH level and GH inhibition ratio
following a glucose load, insulin-like growth factor 1 level, tumor
volume, or Knosp classification between the two cohorts (p =

0.418–0.999). These results justify the use of these two sets as
a primary cohort and validation cohort. Significant interclass
differences in the tumor volume and Knosp classification
were found in both cohorts, which might be ascribed to the
correlations of these parameters with tumor consistency. Patient
age was different between the soft and firm groups in the primary
cohort only (Table 2).
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FIGURE 2 | The four radiomics features showed significant differences between the soft and firm tumor groups. (A) Lbp filter gldm_DependenceVariance. (B) Square

filter glcm_Imc2. (C) Original glcm_Imc2. (D) LLH wavelet filter glcm_Imc2.

Feature Screening and Establishment of
the Radiomics Signature
In total, 4,683 radiomics features were calculated in this study.
Among these, the four key features were screened through the
elastic net feature selection algorithm. The detailed information
is presented in Table 3. The four selected radiomics features
were statistically different between the two tumor consistencies
(Figure 2). Additionally, differences in the radiomics signature
distribution were statistically significant between the soft and
firm tumors in both cohorts, as revealed by the violin plot (p <

0.01) (Figure 3).
The radiomics signature based on the four selected radiomics

features was then established according to the support vector
machine model. The results suggested that the constructed
radiomics signature had favorable performance in predicting
tumor consistency, with an AUC of 0.84 [95% confidence interval
(CI), 0.81–0.86] and 0.76 (95% CI, 0.73–0.79) in the primary and
validation cohorts, respectively. The ROC curves derived from
the two cohorts are shown in Figure 4A. All predictive indicators
acquired based on the radiomics signature are shown in Table 4.

Performance of the Clinical
Radiomics Model
Using the AIC, age and the Knosp classification were chosen
as the discriminatory factors to establish the clinical model.
The AUCs were 0.72 (95% CI, 0.69–0.76) and 0.72 (95% CI,
0.69–0.75) in the primary and validation cohorts, respectively
(Figure 4B). Additionally, the Knosp classification and radiomics
signature were screened among various clinical features based

FIGURE 3 | Violin plot comparing the distribution of the radiomics signatures

of soft and firm tumors in the primary and validation cohorts. This plot is a

combination of a boxplot and kernel density estimate. The signature

distributions of each cohort were compared using independent-samples

t-tests.

on the AIC to establish the fusion radiomics model. The AUCs
were 0.83 (95% CI, 0.81–0.85) and 0.81 (95% CI, 0.78–0.83) in
the primary and validation cohorts, respectively, whereas the
accuracy was 80.0 and 78.0% in the two cohorts, respectively
(Figure 4C). Bar plots showing the prediction accuracy of the
radiomics model for the two cohorts are shown in Figures 4D,E.
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FIGURE 4 | The performance of (A–C) ROC curves for the three models and (D,E) bar plots for the radiomics model in the primary and validation cohorts. The

performance of the models was assessed using the AUC. (A) Radiomics signature. (B) Clinical model. (C) Radiomics model. (D) Primary cohort. (E) Validation cohort.

TABLE 4 | Performance of radiomics signature, clinical features and radiomic model.

Model Performance ACC (%) AUC SN (%) SP (%) PPV (%) NPV (%)

Radiomics signature Primary cohort 81.00 0.84 76.30 82.30 72.50 85.00

Validation cohort 75.90 0.76 65.00 81.60 65.00 81.60

Clinical features Primary cohort 68.00 0.72 39.50 85.50 62.50 69.70

Validation cohort 67.20 0.72 40.00 81.60 53.30 72.10

Nomogram Primary cohort 80.00 0.83 92.10 72.60 67.30 93.80

Validation cohort 78.00 0.81 85.00 70.40 58.60 89.70

ACC, accuracy; AUC, area under curve; SEN, sensitivity; SPE, specificity.

Details of the predictive indicators for the clinical radiomics
model are presented in Table 4. A nomogram was obtained
based on the radiomics model (Figure 5). Additionally, the
results of the DeLong test suggested that the performance of
the radiomics model was superior to that of any independent
clinical feature (p = 0.03). A calibration curve was also plotted
based on the radiomics model to examine the tumor consistency
and suggested excellent agreement between the observed and
predicted results in both the primary cohort (p = 0.59)
(Figure 6A) and validation cohort (p = 0.68) (Figure 6B). No
statistical significance was detected by the Hosmer–Lemeshow
test, suggesting the absence of a distinct departure from the
perfect fit.

The radiomics model also achieved favorable discriminability
and excellent calibration; it could more accurately predict the
tumor consistency in patients with acromegaly than the use of
clinical features only could.

Clinical Usefulness of the Constructed
Radiomics Model
The decision curve analysis of the radiomics model is

presented in Figures 7A,B. The radiomics model clearly

provided a net benefit over the two schemes, with a threshold
probability of >0 and >12% for the primary and validation

cohorts, respectively, suggesting the clinical usefulness of
the radiomics model. The decision curve attained better

performance for the constructed radiomics model with regard to

clinical application.
Notably, the radiomics model performed well in the

multicenter prospective validation for prediction of the tumor
consistency, with an AUC and accuracy of 0.89 and 86.7%,

respectively (Figure 8). These findings revealed the ability of the

radiomics model to classify the tumor consistency in patients
with acromegaly.
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FIGURE 5 | Nomogram derived from the radiomics model applied to the

primary cohort. The radiomics model was incorporated with the Knosp grade

and radiomics signature. This nomogram is used according to the patient’s

Knosp grade and radiomics signature value. The position of each variable is

found on the corresponding axis (lines 2 and 3), and a vertical line is then

drawn to the points axis (the first line) to obtain the corresponding score. As an

example, one patient in this study with a Knosp grade of 3 had a score of

45.6, and his radiomics signature value was 0.28, which means a score of

13.0. Next, according to the sum of all scores, the position on the total points

axis is identified, and a vertical line is drawn from the position to the last line to

determine the tumor consistency possibilities. The above-mentioned patient’s

total risk score was 58.6, which corresponds to a 2.4% probability of a firm

tumor. That is to say, using our nomogram, this patient’s tumor consistency

was predicted to be soft before surgery. Later, this patient’s clinical and

surgical data indicated that the tumor was indeed soft. Thus, the model

accurately predicted this patient’s tumor consistency.

DISCUSSION

According to the guidelines, the initial cure rate of
transsphenoidal surgery for macroadenomas is 40–50% when
performed by experienced pituitary surgeons (8). In patients with
acromegaly, a small residual tumor will postoperatively induce
persistent GH hypersecretion (29). Therefore, determination
of the tumor consistency before surgery is important to plan
the surgical approach, avoid the need for a multistage surgical
procedure, avoid the development of persistent acromegaly,
and improve the surgical cure rate (30). Nonetheless, whether
the tumor consistency can be predicted using MR imaging
techniques remains unclear.

Several studies have been performed in an effort to predict the
PA consistency using MR imaging techniques (11, 13, 22, 31–39);
however, the ability of MR pituitary images to predict the PA
consistency is controversial (22). In some studies, the apparent
diffusion coefficient was not markedly correlated with the
PA consistency on diffusion-weighted imaging (35), enhanced
reconstructed diffusion-weighted imaging (36), or line-scan
diffusion-weighted imaging sequences (37). Bahuleyan et al. (22)
suggested that the MR imaging signal intensity alone could not

accurately predict the consistency of pituitary macroadenomas.
Some other scholars have indicated that contrast-enhanced fast
imaging employing steady-state acquisition (11), dynamic MR
imaging acquisition (31), and MR elastography (32) sequences
can potentially offer preoperative information regarding the
PA consistency. In addition, Smith et al. (34) demonstrated a
statistically significant difference in the T2WI intensity ratio
of adenoma to cerebellar peduncle between soft and firm PAs.
On this account, neurosurgeons can effectively prepare for
surgical procedures. Moreover, our findings suggest numerous
limitations of those studies, such as poor prediction accuracy,
small sample sizes, lack of internal, and multicenter validation,
and complicated imaging sequences (Table 5). As a result, the
development of a highly effective and widely applicable method
for preoperative prediction is urgently needed.

As an emerging study field, radiomics can possibly depict the
intratumoral heterogeneity based on quantitative and classified
high-throughput data (40). Radiomics is a new area of study
in which quantitative and high-throughput data are extracted,
processed, and analyzed to explore their relationships with
valuable information (15, 41). The radiomics process first
converts radiographic images into mineable data in four steps:
image acquisition and reconstruction, segmentation of the
ROI, feature extraction and quantification, and establishment
of predictive and prognostic models. Novel image-based
computational models have played increasingly important roles
in accurate diagnosis and treatment guidance in the field of
neuro-oncology thanks to the development of clinical imaging
data (42). As suggested in numerous studies, radiomics analysis
can be quite effective. Compared with soft PAs, firm PAs
contain large amounts of collagen and are more homogeneously
enhanced after injection of a gadolinium-DTPA contrast agent
(39). The collagen content is the main factor affecting the texture
of PAs and has an impact on the performance of MR imaging
(13). Therefore, the use of radiomics technology to predict
the tumor consistency in patients with acromegaly has a good
theoretical basis and is promising.

A radiomics signature comprising four selected features
(three texture features and one wavelet feature) was constructed
in the present study. Importantly, the constructed radiomics
signature was found to be able to successfully classify both
soft and firm tumors in patients with acromegaly. Recent
studies have indicated that textural features can serve as
imaging markers to predict the PA subtype (43) and the glioma
stage (44, 45). Textural features have also been depicted as
patterns or spatial distributions of voxel intensity, and they
can be computed from the GLCM (46). The voxel intensity
values in the volume of interest are required to determine
the representative texture matrix (47), and such a step can
reduce the image noise and normalize the intensities among
all patients. Thus, it is possible to directly compare all of the
computed textural features among different patients. Table 3
suggests that the most relevant imaging feature is the GLCM.
The GLCM, which is a type of texture-analysis method, can
calculate the frequency of occurrence of pixel pairs with specific
values at a specified spatial relationship in an image (16) as
supported by several recent studies (16, 48). The GLCM can
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FIGURE 6 | Calibration curve analysis for the radiomics model. (A) Primary cohort. (B) Validation cohort. Calibration curves depict the calibration of each model in

terms of the agreement between the predicted and actual probability of the firm tumor rate. The Y axis represents the actual rate. The X axis represents the predicted

probability. The diagonal black line represents perfect prediction by an ideal model. The blue and green line represents the performance of the radiomics model, of

which a closer fit to the diagonal black line represents a better prediction.

FIGURE 7 | Decision curve analysis for the radiomics model. (A) Primary cohort. (B) Validation cohort. The Y axis measures the net benefit. The blue line represents

the radiomics model. The green line represents the assumption that all patients had a firm tumor. The black line represents the assumption that no patients had a firm

tumor.

characterize the tumor heterogeneity; therefore, to distinguish
between a soft and firm tumor, it is important to obtain the
statistical measures and to create the radiomics signature based
on the GLCM. The radiomics model constructed in this study
incorporated both the radiomics signature and the selected
clinical features, with an AUC of 0.83 (95% CI, 0.81–0.85)
and 0.81 (95% CI, 0.78–0.83) in the primary and validation
cohorts, respectively. More importantly, this radiomics model
displayed good calibration and discrimination. Additionally,
this model was convenient to use and could accurately predict
the tumor consistency in a multicenter prospective validation
before surgery.

To our knowledge, the current study is the first to evaluate
the consistency of pituitary macroadenomas by means of a
radiomics approach. Our study has certain advantages over
retrospective studies (Table 5). First, the large sample size in

this study provided reliable results. Second, because patients
with acromegaly may benefit from preoperative treatment with
somatostatin analogs (49, 50), and because somatostatin analogs
may induce histological, fibrous, and consistency changes in PAs
(51), we only selected patients without a history of preoperative
treatment to ensure the accuracy of the predicted results.
Third, the preoperative prediction model constructed based on
radiomics features incorporated both clinical and quantitative
imaging features that were not susceptible to any degradation;
moreover, the model was of high effectiveness and extensive
application. Finally, the patients were divided into independent
primary and validation cohorts for internal validation, and
multicenter prospective validation was also conducted thereafter.

This study also had some limitations. First, although this was
a multicenter study, we only conducted a holistic prospective
validation because some centers provided fewer patients. More
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prospective datasets are needed for independent center validation
and verification of the robustness and repeatability of this
radiomics model. Second, different classification methods are
used for PA consistency in clinical application, including two

FIGURE 8 | ROC curve for the performance of the radiomics model in the

multicenter prospective validation.

groups (11, 22, 34, 39), three groups (13, 32, 35, 37, 38), and
other methods (33, 51). We chose to divide the tumors into two
groups, but different classification methods may lead to different
models and prediction results. Third, although most recent
studies (32, 34, 35, 37–39) used only clinical data (surgical records
and videos) to differentiate and classify the PA consistency,
the cellular type, fibrous characteristics, and reticulin content
have a significant relationship with consistency and can help
to determine the consistency of PAs (11, 13, 30, 31, 35, 38,
39). Therefore, clinical data and pathological data should be
combined in further experiments to provide a more reliable basis
for the classification of tumor consistency. Finally, radiomicsmay
serve as a complementary tool to transcriptomics, genomics, and
proteomics, all of whichmay be used in combination to construct
a more accurate model for prediction.

In summary, the findings of this study suggest that a
radiomics model constructed based on a radiomics signature
combined with clinical features can improve the accuracy of
predicting the tumor consistency in patients with acromegaly.
The as-constructed multiparametric radiomics model was
further validated internally and externally, showing robustness.
Moreover, the radiomics model performed better than any
single model and achieved results superior to those in previous
studies. Most importantly, it can serve as an effective noninvasive
approach to distinguish the tumor consistency and determine
individualized therapeutic schemes for patients with acromegaly.

TABLE 5 | Summary of the method and outcome of previous PA consistency prediction studies.

References Year Patient

number

MRI imaging

sequence

Indicator Clinical data

combined

Internal

validation

Multicenter

validation

Prospective

validation

Outcome

Romano et al.

(31)

2017 21 DCE-T1WI SIR No No No No AUC = 0.949

Hughes et al.

(32)

2016 10 MRE Signal intensities No No No No Difference#

Ma et al. (33) 2016 48 CE T1-SE SIR of tumor to normal frontal

white matter

No No No No Difference#

Wei et al. (13) 2015 38 T2WI

ADC imaging

Signal intensity No No No No AUC:

0.52–0.79

Smith et al. (34) 2015 36 T2WI SIR of adenoma to cerebellar

peduncle

No No No No Difference#

Yamamoto et al.

(11)

2014 29 CE 3D-FIESTA Intratumoral hyperintense

dots

No No No No Difference#

Alimohamadi

et al. (35)

2014 30 DWI ADC value No No No No Inscrutability

Mahmoud et al.

(36)

2011 24 CE-

reconstruction

DWI

ADC value No No No No Inscrutability

Suzuki et al. (37) 2007 19 Line-scan DWI ADC value No No No No Inscrutability

Bahuleyan et al.

(22)

2006 80 T2WI Homogeneously hypointense No No No No Inscrutability

Pierallini et al.

(38)

2006 22 DWI and ADC

imaging

SIR of tumor to white matter

and ADC values

No No No No Difference#

Iuchi et al. (39) 1998 26 T2WI Signal intensities and

homogeneous enhancement

No No No No Difference#

Difference# means the imaging indicator differed between different tumor consistency groups. DCE, dynamic contrast enhanced; T1WI, T1-weighted imaging; T2WI, T2-weighted

imaging; MRE, Magnetic resonance elastography; T1-SE, T1-spin echo; ADC, Apparent diffusion coefficient; CE, contrast enhanced; SIR, Signal Intensity Ratio.
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