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Abstract

The Arctic is undergoing rapid changes, with anthropogenic shifts in climate having impor-

tant and well-documented impacts on habitat. Populations of predators and their prey are

affected by changing climate and other anthropogenic factors, and these changing trophic

interactions could have profound effects on breeding populations of Arctic birds. Variable

abundance of lemmings (a primary prey of generalist Arctic predators) and increasing abun-

dance of light geese (Lesser Snow and Ross’ Geese; a secondary prey) could have nega-

tive consequences for numerous sympatric shorebirds (an incidental prey). Using 16 years

of predator-prey observations and 13-years of shorebird nest survival data at a site near a

goose colony we identify relationships among geese, lemmings, and their shared predators

and then relate predator indices to shorebird risk of nest predation. During two years, we

also placed time-lapse cameras and artificial shorebird nests at increasing distances from a

goose colony to document spatial trends in predators and their effect on risk of predation. In

the long-term data, yearly indices of light geese positively influenced indices of gulls and jae-

gers, and shorebird nest predation rate was negatively correlated with jaeger and fox indi-

ces. All three predator indices were highest near the goose colony and artificial nest

predation probability was negatively correlated with distance from goose colony, but these

effects were less apparent during the second year. Combined, these results highlight the

variation in predator-mediated interactions between geese and shorebirds and outline one

mechanism by which hyperabundant geese may be contributing to local or regional declines

in Arctic-nesting shorebird populations.
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Introduction

The Arctic is undergoing rapid changes with anthropogenic-driven shifts in climate having

important and well-documented impacts on habitat quality, quantity, and spatial distribution

(e.g., [1]). These changes could significantly influence populations of Arctic-breeding birds,

the most diverse and vertebrate taxa of the circumpolar Arctic [2]. Northward shifts in vegeta-

tion communities have already influenced the availability of nesting habitat for sub-arctic

breeding shorebirds [3], and advances in peak prey availability have created a mismatch with

the phenology of chick hatch [4], and lower growth and chick survival in some [5,6] but not all

cases [4,7,8]. While at large scales these changes have the potential to alter bird distribution,

phenology, and demography, at smaller spatial scales the trophic interactions among predators

and their prey may play a more dominant role in structuring communities [9,10]. These preda-

tor-prey interactions can have cascading effects on the populations of sympatric birds.

In northern regions, arctic foxes (Vulpes lagopus) and jaegers (Parasitic, Stercorarius parasi-
ticus and to a lesser extent, Long-tailed Jaeger, S. longicaudus) depredate shorebird nests “inci-

dentally” [11,12] lemmings (Dicrostonyx spp., Lemmus spp.) and the eggs and chicks of larger

birds such as geese are the primary or secondary prey, and shorebird nests may be depredated

opportunistically when they are encountered [13]. Nonetheless, these predators constitute the

primary cause of nest failure for shorebirds across the Arctic [12,14,15]. Thus, lemmings,

goose eggs, and goslings interact with shorebirds indirectly by influencing the abundance and

behaviour of their shared predators.

Predator populations may exhibit numerical responses (increases in abundance) to lem-

ming peaks [16,17] and more specifically, aggregative responses [17] to goose colonies, in both

cases resulting in higher incidental predation of nearby shorebird nests. Alternatively, preda-

tors may switch their search efforts between prey items (functional response; [18], or become

satiated during lemming peaks or within goose colonies, alleviating predation pressure on

shorebird nests [19,20]. Local or regional changes in the availability of lemmings and/or geese

could therefore dramatically affect the risk of predation and reproductive success of tundra-

nesting shorebirds.

In the last 30 years climate-induced changes in environmental conditions have resulted in

decreases in the frequency and amplitude of lemming peaks at some northern sites ([21–23]

but see Ehrich et al. in press). Five-fold decreases in peak magnitude have been reported in

Greenland [21]. By contrast, North American populations of Greater (Chen caerulescens atlan-
tica) and Lesser Snow (C. c. caerulescens), and Ross’ Geese (Chen rossii; hereafter collectively

referred to as ‘light geese’) have increased exponentially in abundance over the last 60 years

[24,25], in response to food subsidies on their wintering grounds [26]. Band-recoveries now

suggest that the adult midcontinent lesser snow goose population may be greater than 15 mil-

lion individuals, an estimate significantly higher than the ~2.5 million estimated in the early

1970s [27].

Decadal declines and increases in the abundances of lemmings and light geese, respectively,

could have negative consequences for numerous Arctic-breeding shorebirds whose popula-

tions have declined over this same period [28–30]. Although these declines could arise from a

multitude of factors across shorebirds’ large ranges, reproductive success for Arctic-breeding

shorebirds is low at some locations (e.g., [31,32]) and theoretical and empirical studies have

demonstrated that breeding failure has the potential to explain shorebirds’ negative population

trends [9,33].

Despite low biodiversity in comparison to lower latitudes, Arctic systems are governed by

complex trophic interactions among shorebirds, lemmings, and geese. Interactions mediated

through shared predators may vary regionally depending on guilds of predators and prey, or
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climate. The objectives of our study were therefore to identify the numerical and functional

responses of generalist predators to varying prey availability (i.e. lemming availability and

goose colony presence), and relate these responses to predation risk for shorebird nests in the

eastern Canadian Arctic. Using long-term field observations from a study site near a light

goose colony, we identify temporal trends in predator-prey indices over a 16-year period and

relate these trends to survival of shorebird nests. We then used 24-hour time-lapse cameras in

concert with artificial shorebird nests both placed in plots situated at increasing distances from

the goose colony to record spatial variation in predator indices and experimentally test for var-

iation in predation risk in relation to the presence of nesting light geese.

Materials and methods

Study sites and plots

We conducted research within three primary study sites and four plots in the eastern Canadian

Arctic. The first study site is situated within a Lesser Snow Goose colony in the East Bay Migra-

tory Bird Sanctuary (EBMBS) on Southampton Island, Nunavut (Fig 1). The populations of

geese within this colony and an adjacent colony to the southwest (the “Coral Harbour” colony)

have increased from 156,700 breeding birds in 1997 to 289,700 in 2014 ([25], J. Leafloor,

unpublished). The second site, the East Bay Mainland Shorebird Camp (hereafter East Bay

Fig 1. Map of study region. Study plots (a) Within, (b) Near, and (c) Far (East Bay Mainland) from a goose colony,

and (d) on Coats Island, Nunavut.

https://doi.org/10.1371/journal.pone.0221727.g001
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Mainland), is a long-term shorebird study site initiated in 1999 and is also situated within the

EBMBS ~10km from the goose colony. Although the site is not typically used for breeding by

light geese, family groups use the site extensively later in the season for foraging. The third

study site, the Coats Island Shorebird Camp, is situated on Coats Island approximately 135km

south of Southampton Island. Light geese do not breed regularly at this study site and lem-

mings are absent from the island [34].

To gauge spatial effects of light goose presence on predator indices and risk of predation we

established four 10-12ha plots at increasing distances from the goose colony by drawing coor-

dinates in a random-stratified fashion. The plots on Southampton Island were situated 0km

(Within: 2 plots), 3-4km (Near: 2 plots) and 8-10km (Far: 3 plots) from the goose colony and

predator indices and predation risk were compared to those from plots established on Coats

Island (3 plots). We conducted fieldwork at these three sites during the shorebird breeding sea-

son from early-June to late-July, in 2015–2016. We also recorded a subset of variables (see

below) at the East Bay Mainland site in 2000–2016.

Study design

Our main objectives were to determine whether indices of predator abundance and activity

responded to temporal and spatial variation in light goose and lemming abundance, and

whether these changes affected the predation rates of shorebird nests. To identify temporal

changes in the abundance and activity of predators and their prey, we generated group-specific

indices (see below) from daily observations (hereafter observational predator-prey indices) at

East Bay Mainland from 2000–2016 (We did not collect long-term observational indices at our

other study sites). We then used shorebird nest survival at East Bay Mainland from 2004–2016

to relate predator-prey abundance and activity indices to risk of predation.

To identify spatial trends in predator abundance and activity, in 2015 and 2016 we generated

predator indices using time-lapse cameras (hereafter camera predator indices) placed within

the four study plots established at increasing distances from the goose colony. Measuring the

spatial patterns in shorebird nest predation was challenging, in that too few shorebird nests

were found Within and Near the goose colony for statistical analyses; presumably because of

reduced nesting densities and nest survival in these heavily goose-affected areas. Therefore, in

2015 and 2016, we placed artificial nests within each of the four study plots to relate predation

risk to spatial variation in camera predator indices. The Animal Care Committee of Environ-

ment and Climate Change Canada approved our procedures, and permits were granted from

Federal and Territorial Governments (e.g., NUN-SCI-14-05, WL2016-053). No animals were

handled during this study and there were no ethical concerns regarding animal welfare. All

research was conducted on territorial land and within the East Bay Migratory Birds Sanctuary

under permit NUN-MBS-14-05 granted by Environment and Climate Change Canada.

Fieldwork

Predator-prey indices. Arctic Foxes and jaegers prey upon lemmings, and goose and

shorebird nests [11,12]. Glaucous (Larus hyperboreus) and Herring Gulls (Larus smithsonia-
nus) have been recorded depredating artificial shorebird nests (Young et al. In Review; [12])

and regularly depredate goose nests [11,35], but neither have been identified as major preda-

tors of real shorebird eggs at our sites, based on time lapse camera footage. Nevertheless, we

considered both species as potential predators because they can influence artificial shorebird

nest predation [Young et al. In Review) and might act as predators of shorebird chicks. Col-

lared Lemmings (Dicrostonix torquatus) on Southampton Island experience irregular cycles,

but are absent from Coats Island [34].
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We generated indices of abundance and activity for predator and prey, respectively, at East

Bay Mainland for foxes, jaegers, and lemmings from 2000–2016, and light geese and gulls from

2004–2016 by calculating the number of individuals seen per eight-hour person-day in the

field. Individual observers made an effort to avoid repeat counting of predators and prey, but

this repeat counting is difficult to avoid across observers. Observational indices are known to

be effective at approximating vertebrate abundance [36,37], and are excellent indices in our

study because they likely represent a combination of abundances and activity rates, while tak-

ing into account non-reproductive individuals. Such a combination is ideal in our study

because the impacts of predators on prey likely increase with both the abundance and the

activity of predators and prey.

From 2015–2016, we also generated camera predator indices using Plotwatcher ProTM

time-lapse cameras mounted on camouflaged stands placed at the south-eastern corner of

each of the study plots (Within, Near, Far, Coats Island). Each camera was positioned facing

northwest so as to capture the greatest field of view of the plot (and artificial nests) and then

programmed to take a picture every five seconds. This timing likely biases indices of foxes,

which spend more time intensively searching for nests in plots, high compared to indices of

gulls and jaegers, which move quickly in and out of frame of view, but remains constant

among study plots and years. At the end of the field season we reviewed all photographs manu-

ally and recorded the species, time, and date that individuals entered and left the field of view

of the camera. From 16-June to 20-July of each year we installed permanent cameras within

plots (Within: 2 cameras, Near: 2, Far: 3, Coats: 3) situated at increasing distances from the

goose colony. Similar to observational predator-prey indices, we generated camera predator

indices by calculating the number of predator species seen on camera per eight-hour camera-

day. We did not observe lemmings on cameras and, because of the relatively short distance

among study sites on Southampton Island, assume that lemming abundance was consistent

among them.

Shorebird species and nest monitoring. At the study plots on Southampton Island, we

monitored the nests of eight tundra-nesting shorebird species: American Golden-Plover (Plu-
vialis dominica), Black-bellied Plover (Pluvialis squatarola), Dunlin (Calidris alpina), Red

Phalarope (Phalaropus fulicarius), Ruddy Turnstone (Arenaria interpres), Semipalmated Plo-

ver (Charadrius semipalmatus), Semipalmated Sandpiper (Calidris pusilla), and White-

rumped Sandpiper (Calidris fuscicollis). For each species we used behavioural observations

and flushed incubating birds from nests while walking to find nests. We used a Global Posi-

tioning System (GPS) to mark the location of each nest (±3m) and placed a wooden tongue

depressor ~10m from the nest cup to facilitate subsequent monitoring for nest fate.

Upon discovery of nests, we placed two eggs in warm water and used their degree of flota-

tion to estimate their age and approximate hatch date (±4 days) following [38]. We then revis-

ited each nest weekly throughout the incubation period to document any predation events.

Three days prior to expected hatch we visited nests every day to ensure that the fate was docu-

mented. We considered nests to be depredated if eggs disappeared before the expected hatch

date. For the purposes of this analysis relating to predation, we excluded abandoned nests or

any for which we were unsure of their fate.

Artificial nest experiment. Artificial shorebird nests comprised four Japanese Quail

(Coturnix japonica) eggs supplied by CRO Quail Farms Inc., which were placed in a divot in

the ground. Quail eggs mimic the size and colouration of Calidris shorebird eggs. Survival of

artificial and real shorebird nests may differ because of the ability of shorebirds to conceal

nests or use distraction displays [39,40], but nevertheless, they have proven to be an effective

measure of relative predation risk in several Arctic predation risk experiments [14,39,41]. Our

intent with the experiment was therefore to identify relative temporal and spatial patterns of
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risk associated with fluctuations in predator-prey abundance and activity indices rather than

absolute levels of predation.

For the experiment, we placed artificial nests in a stratified-random design, with samples

evenly distributed among the six dominant habitat types (Dry Heath, Scrub Willow, Sedge

Meadow, Moss Carpet, Intertidal, Gravel Ridge; see [14] for descriptions) within the study

plots (Within, Near, Far, Coats Island). We marked the location of each artificial nest with a

handheld GPS unit and a tongue depressor stuck in the ground within 10m of the nest.

Each year, we deployed and monitored artificial nests during two trials each lasting nine

days. We considered artificial nests depredated if at least one egg was taken and successful if

the clutch remained intact over the nine-day experiment. Artificial nest experiments were con-

ducted from 28 June– 19 July in 2015, and 28 June– 17 July in 2016. This timing corresponds

with the mid- to late-incubation periods for shorebirds breeding at these sites.

Statistical analyses

Temporal trends in predator-prey indices and risk of predation. To identify temporal

trends in predator-prey abundance and activity indices at East Bay Mainland we regressed

each predator-prey index against time. We also used a general linear model to test for effects of

yearly goose indices on gull, jaeger, and fox indices using linear and quadratic fits as well as

lemming presence (high or low relative to long-term trends) and an interaction between both.

We related observational predator-prey abundance and activity indices to risk of predation

of real shorebird nests over the 13 years (2004–2016) of monitoring at East Bay Mainland that

we collected all predator-prey indices, using generalized mixed effects models with a binomial

distribution and a logit-link function. Due to the interrelated nature of predator-prey systems,

we hypothesised a priori that the relationships between predictors would be complex. Conse-

quently, we modeled unanticipated interactions through a best-subsets model building

approach using the R package MuMIn [42]. We considered yearly lemming abundance

(Lemm) as high or low, compared to the average (0.25) of long-term trends because of the rela-

tively large variation at the site. Observational abundance and activity indices for arctic fox

(Fox), jaeger (Jaeger), and gull (Gull) were included as continuous covariates, and the response

variable of shorebird nest predation varied between 0% (survived) and 100% (depredated). We

tested models that incorporated combinations of individual and additive effects of each preda-

tor/prey species as well as interactions between each predator species and lemming abundance.

To account for any unexplained non-predator-prey related indices that may co-vary with time

we also tested a model with a single variable of Year. We included shorebird species as a ran-

dom effect in each model, recognizing the consistent differences in nest survival among species

e.g., [31,43]. Following [44] we ranked models using Akaike’s information criterion (AIC) and

considered models within two AICc of the top model as informative. We also examined the

confidence intervals of predictor variables in the top model to determine whether they

included zero.

Spatial experiment using camera predator-prey indices. We used a general linear model

to determine the effect of distance from the goose colony on camera predator indices

(response) with plot distance (Within, Near, Far, Coats), predator species (fox, gull, or jaeger),

and year (2015 and 2016), and interactions between the three variables as predictors. For the

results from the artificial nest experiment we used a generalized linear mixed effects model

with a binomial distribution to identify the influence of plot distance from goose colony, year

(2015 and 2016), and an interaction between the two on the probability of predation of an arti-

ficial nest during the nine-day experiment. In this model we also included trial as a random

effect. All statistical analyses were performed in R Version 3.3.1 (R Core Team 2017).
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Results

Temporal experiment using observational predator-prey indices

Over the 17-year period at East Bay Mainland we logged 13,453 (mean ± s.d.: 962 ± 434 per

year) human observer hours and during 13 years monitored 839 (mean ± s.d.: 69.9 ± 19.1 per

year) shorebird nests. During this time period we found evidence of an irregular lemming

cycle with peaks occurring in 2001, 2008, and 2014 (mean number of years between

peaks = 6.5; Fig 2) and often no lemmings observed during low years. Over the 13–16 years

where all predator-prey observations were recorded individual predator-prey indices fluctu-

ated among years but no individual models described significant linear increases or decreases

(all p’s > 0.05; Fig 2). We found a positive quadratic effect of goose abundance on gull and jae-

ger indices, but little effect on foxes (F2, 30: 6.86, p< 0.01; Fig 3). Lemming presence (high or

low) had no effect on any predator indices (p> 0.05).

Over the 13 years, shorebird nest predation at East Bay Mainland was highest in 2016 (96%)

and lowest in 2007 (49%). The top models for predicting nest predation included lemming,

fox, jaeger, and gull indices, but no interactions between any variables (Table 1). Fox abun-

dance and activity indices were informative in the top models and positively influenced the

predation rate of shorebird nests (relative importance: 0.96; Table 2; Fig 4) while jaeger indices

were also relatively important (0.72).

Fig 2. Long-term trends in predator-prey indices at East Bay Mainland. Trends in light goose, gull, jaeger, arctic fox, and lemming

sightings per 8-hour person day at East Bay Mainland. Lemming numbers peaked in 2001, 2008 and 2014. In most other years, lemmings

were rarely recorded. Sighting indices have been scaled for the purposes of visualization.

https://doi.org/10.1371/journal.pone.0221727.g002
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Spatial experiment using camera predator-prey indices

During the two years of camera monitoring within the four study plots situated at increasing

distances from the goose colony, we recorded 413 independent predator sightings during

9,613 hours of camera monitoring. We also deployed 530 artificial nests. Overall camera pred-

ator indices varied significantly (F2, 12: 20.41, p < 0.001) with gull indices being the highest

Fig 3. Inter-annual effect of light geese on predator indices. Relationship between yearly observational index (sightings per 8-hour observer day)

of light geese, and gulls, jaegers, and arctic foxes for 13 years at East Bay Mainland.

https://doi.org/10.1371/journal.pone.0221727.g003

Table 1. Model selection.

Model K AICc ΔAICc wi

Lemm + Fox + Jaeger 5 88.59 0.00 0.65

Lemm + Fox + Jaeger + Gull 6 89.85 0.27 0.35

Null 2 98.46 9.87 0.00

Best subsets model selection (AIC < 2, plus null) results for the influence of predator-prey indices on probability of

predation of real shorebird nests.

https://doi.org/10.1371/journal.pone.0221727.t001
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(0.23 sightings per camera day), followed by fox (0.06) and jaeger indices (0.02). Camera pred-

ator indices were negatively related to distance from the goose colony (F1, 12: 13.31, p< 0.001),

but this effect varied by year (F1, 12: 5.24, p< 0.05; Fig 5A). The predation probability of artifi-

cial nests varied by year (F1, 522: 15.68, p< 0.001; Fig 5B) with it lower in 2016 compared to

2015 and was inversely related to distance from the goose colony (F1, 522: 77.22, p < 0.001),

during one year (F1, 522: 14.26, p< 0.001).

Discussion

In Arctic and sub-Arctic systems where food availability is seasonal and unpredictable, gener-

alist predators may exhibit functional and numerical responses, thereby affecting the survival

of multiple prey species. Recent rises in populations of light geese and alterations in cycles of

lemmings may therefore influence the cyclic dynamics of generalist predators and indirectly

influence the risk of predation and probability of survival of incidental prey such as shorebirds.

Over 13 years we found that gull and jaeger abundance and activity indices were positively

associated with yearly goose indices, regardless of lemming abundance and that during one of

two years of camera monitoring all predator indices were negatively related to distance from

goose colony. Long-term monitoring of shorebird nests indicated that predation probability

was positively related to fox and jaeger indices. In addition, artificial shorebird nest predation

probability, during the two year experiment, was negatively associated with distance from

Table 2. Parameter estimates for top models.

Variable B̂ SE P 95% CI

Lemm -0.99 0.65 0.13 -2.29, 0.30

Fox 13.38 5.93 0.03 1.59, 25.17

Jaeger 1.46 0.78 0.06 -0.08, 3.00

Gull -0.19 0.18 0.32 -0.55, 0.18

Parameter estimates for top logistic models best describing probability of predation of real shorebird nests.

https://doi.org/10.1371/journal.pone.0221727.t002

Fig 4. Shorebird nest survival probability. Effects of Arctic fox and Jaeger indices on the probability of predation of shorebird nests over

13 years.

https://doi.org/10.1371/journal.pone.0221727.g004
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goose colony. These results add to our understanding of variations in predator-prey relation-

ships among Arctic study sites and suggest that, in some areas, light goose presence has the
potential to indirectly affect the risk of predation for shorebirds by influencing the temporal

and spatial distribution, and activity of their shared predators.

Predator indices

Functional and numerical responses of generalist Arctic predators to their primary prey, lem-

mings, have been well-documented [11,13,45]. The strength of these relationships may vary by

site [46] and depend on the presence of allochthonous resources such as geese [10,23,47]. Over

a 17-year period, we found no systematic changes in indices of predators or prey at our East

Bay Mainland site, 10 km away from a goose colony. Yearly indices of geese did however posi-

tively influence indices of two potential nest predators, gulls and jaegers, while lemming abun-

dance had no measurable effect on the abundance of any predators in our time series. When

food is abundant, jaegers may have more nests, produce larger clutches, and experience ele-

vated breeding success [2,45]. Abundant goose eggs and goslings can also contribute to higher

growth of gull chicks [48], potentially bolstering some populations [49]. It is therefore possible

that at East Bay Mainland, during years when goose eggs and goslings are abundant in the

nearby colony, gulls and jaegers are experiencing higher overall reproductive success and/or

exhibiting elevated activity rates in response to the demands of their offspring.

We also found all predator indices were higher within and near the goose colony compared

to far from the colony, but this relationship varied between the two years and may be the result

of varying goose abundance and colony size. In 2015 goose, gull, jaeger, and fox indices at East

Bay Mainland were 2.96, 1.23, 1.58, and 2.00 times higher, respectively, than in 2016. This

trend is consistent with the long-term positive association between geese and predator indices.

Inter-annual fluctuations in the size of goose breeding populations are not uncommon [26,50]

and may reflect variations in breeding effort due variation in temperature, snow, and other

weather conditions on the breeding grounds [51]. The boundaries of breeding colonies can

also vary inter-annually [25,52]. These factors could have influenced the number and distribu-

tion of geese in 2015 vs. 2016, potentially influencing distribution of nest predators captured

in our camera indices.

Regardless of this inter-annual variation, generalist predator indices at the three sites on

Southampton Island in both years were substantially higher than on Coats Island where both

breeding light geese and lemmings are absent. Lamarre et al., [52] documented aggregative

responses of arctic fox and aerial predators to a goose colony on Bylot Island, Nunavut; this

effect was pronounced for foxes when lemmings were scarce. Parasitic jaeger activity can also

be elevated within light goose colonies during non-lemming peak years [11,35]. Although we

found no effect of lemming abundance on predator indices in our long-term data at East Bay

Mainland, over more years of monitoring, particularly within the goose colony, an influence

of lemmings on predator indices may still emerge, and show that lemming peaks could be con-

tributing to some of the variation in our predator indices.

Goose eggs and goslings can sustain elevated predator populations [48] in the absence of

abundant and regular lemming cycles and may therefore be responsible for the higher indices

on Southampton Island than on Coats Island where predators are limited to depredating

patchily distributed waterfowl and shorebird nests. Overall, these results highlight the

Fig 5. Relationship between distance from a goose colony and a) total of all predator indices, and b) probability that

artificial nests were depredated during the nine-day experiment in 2015 and 2016.

https://doi.org/10.1371/journal.pone.0221727.g005
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numerical and aggregative responses of generalist predators to an increasing goose colony and

the importance of goose colonies in buffering predators against lemming crashes [53].

Risk of predation

Functional and numerical responses of predators to preferred prey can influence the risk of

predation for incidental prey [13,54,55]. Across 13 years of nest monitoring on Southampton

Island, predation rates of real shorebird nests was positively correlated with our fox and jaeger

indices, but lemmings had no effect. Individually, foxes and jaegers increased nest predation

probability by ~5% per 0.1 index increase. During years when both predator indices are ele-

vated, predation rates of shorebird nests could reach 91%, an increase of ~42% from low pred-

ator years. Considering the average number of nests found per year at our sites is 70, this

equates to only 6 successful shorebird nests, excluding abandonment.

In a large-scale multi-year analysis across 14 shorebird species and 17 sites, Weiser et al.

[43] also reported no effect of arvicoline rodents on survival of shorebird nests. Furthermore,

this study found evidence of a non-linear fox-related decline in Western Sandpiper (Calidris
mauri) daily nest survival probability of 0.08 between maximum and minimum fox abun-

dances, further supporting our results and highlighting the variation in predator-prey relation-

ships among sites.

Over a shorter temporal period (two years) we also found a negative relationship between

distance from goose colony and predation rate of artificial shorebird nests that corresponded

to the spatial patterns in camera predator indices. This effect was most pronounced in 2015

when overall predation rate was higher than in 2016.

In a five-year study on Bylot Island, in the Canadian high arctic, [52] found a similar rela-

tionship between distance from goose colony and the probability of predation rate of artificial

nests, however, this effect was modulated by lemming abundance. At the same site, [17]

reported survival of artificial shorebird nests was positively related to lemming abundance, but

may be reduced in the areas with higher densities of goose nests that foxes are attracted to [13].

Although our artificial nest experiment was confined to two years, one with moderate num-

bers of lemmings and one without, our long-term data at one site indicated no effect of lem-

mings on probability of predation of real shorebird nests. It is possible that distance from

goose colony is interacting with lemming abundance at a smaller scale that we may not be

detecting in our long-term data at the site ~10km from the colony. However, [52] found effects

on artificial nest predation greater than ~10km away suggesting our scale may be adequate.

Overall, these studies support our results and further highlight that predator-prey relationships

may vary among sites and regions as indicated by the lower predation rate [elevated survival

probability) in the presence of nesting geese reported elsewhere [19,20].

Population-level consequences and sub-lethal effects

The spatio-temporal goose-related trends in predator indices we report have the potential to

drive nesting decisions, densities, and reproductive success of shorebirds that breed in north-

ern latitudes in response to their perceived predation risk [39]. When faced with locally ele-

vated predator abundances, birds may choose to nest and suffer elevated predation [15],

abandon, or forego nesting [56]. Goose-augmented predator communities have already been

implicated in the locally depressed densities of shorebirds around goose colonies [52,57,58]).

Goose-induced habitat alteration is also well-documented [50,57,59] and may decrease the

availability of vegetative concealment that influences nest survival for some species [14,15,60],

potentially compounding the effects of geese. Furthermore, non-consumptive effects of preda-

tors such as elevated stress, fewer or smaller eggs, and increased nest recesses in response to
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elevated perceived risk of predation have been reported in other species [61–63] and warrant

investigation in the context of Arctic-nesting shorebirds.

Conclusions

The opposing population trends of light geese and shorebirds, and significant overlap in range

and habitat use [64] suggest the potential for geese to be influencing the reproductive success

of sympatric shorebirds. We found evidence of complex interactions between geese and shore-

birds mediated by generalist predators. Light geese bolstered jaeger and to a much lesser extent

arctic fox populations, which negatively affected shorebird nest survival. Predator activity was

elevated around the goose colony, but exhibited inter-annual variation, which translated to

variation in survival of artificial nests. The resulting elevated risk of predation around the col-

ony could be influencing shorebird nesting strategies and ultimately reproductive success. The

potential for population-level consequences is further compounded by goose-induced habitat

alteration that can reduce vegetative concealment [57] perhaps increasing predation risk for

some shorebird species. Our study highlights the importance of identifying interactions

between geese and shorebirds, which may vary by site and prey abundance, and how the effect

of light goose colonies on shorebirds can extend further than any habitat-related effects close

to the colony.
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