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Abstract: The administration of Everolimus (EVE), a mTOR inhibitor used in transplantation and
cancer, is often associated with adverse effects including pulmonary fibrosis. Although the underlying
mechanism is not fully clarified, this condition could be in part caused by epithelial to mesenchymal
transition (EMT) of airway cells. To improve our knowledge, primary bronchial epithelial cells
(BE63/3) were treated with EVE (5 and 100 nM) for 24 h. EMT markers («-SMA, vimentin, fibronectin)
were measured by RT-PCR. Transepithelial resistance was measured by Millicell-ERS ohmmeter.
mRNA and microRNA profiling were performed by Illumina and Agilent kit, respectively. Only high
dose EVE increased EMT markers and reduced the transepithelial resistance of BE63 /3. Bioinformatics
showed 125 de-regulated genes that, according to enrichment analysis, were implicated in collagen
synthesis/metabolism. Connective tissue growth factor (CTGF) was one of the higher up-regulated
mRNA. Five nM EVE was ineffective on the pro-fibrotic machinery. Additionally, 3 miRNAs resulted
hyper-expressed after 100 nM EVE and able to regulate 31 of the genes selected by the transcriptomic
analysis (including CTGF). RT-PCR and western blot for MMP12 and CTGF validated high-throughput
results. Our results revealed a complex biological network implicated in EVE-related pulmonary
fibrosis and underlined new potential disease biomarkers and therapeutic targets.

Keywords: epithelial to mesenchymal transition; mTOR inhibitor; pulmonary fibrosis; transcriptomics;
miRNome; everolimus

1. Introduction

Everolimus (EVE), marketed as Certican, is a pharmacological agent widely used in the
anti-rejection therapy of solid organ transplantation and in the treatment of certain tumors (e.g.,
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in advanced renal cell carcinoma, subependymal giant cell astrocytoma associated with tuberous
sclerosis, pancreatic neuroendocrine tumors, breast cancer) [1]. Similar to Sirolimus and Tamsilorimus,
it exerts its immunosuppressive activity by inhibiting mammalian target of rapamycin (mTOR),
a phosphoinositide 3-kinase-related protein that controls cell cycle, protein synthesis, angiogenesis
and autophagy [2]. These important multi-factorial biological/cellular effects allow this drug to
avoid/minimize the onset of acute rejection episodes and to slow down the progression of chronic
allograft lesions [3,4].

However, some authors have reported a high rate of discontinuation secondary to side effects
after the introduction of this drug [5-7]. Among them, pneumonitis or interstitial lung disease with
a range of pulmonary histopathologic changes (including alveolar hemorrhage, pulmonary alveolar
proteinosis, focal fibrosis, bronchiolitis obliterans organizing pneumonia) have been largely reported
in clinical records and they have been associated with worsened patients’ clinical outcomes and drug
discontinuation [8-16]. The incidence of this complications is 2-11%, frequently reported between 1
and 51 months after the beginning of mTOR inhibitor therapy [17-19].

The pathogenic mechanism underlying lung toxicity is multi-factorial and epithelial to
mesenchymal transition (EMT) of airway cells seems to have a pivotal role [20-23]. Our group
has recently demonstrated that high doses of EVE are associated with a reprogramming of gene
expression in several epithelial cell lines (airway, renal epithelial proximal tubular and hepatic cells)
with a consequent loss of their phenotype (junctions and apical-basal polarity) and the acquisition
of mesenchymal traits increasing the motility and enabling the development of an invasive and
pro-fibrotic phenotype [24-26].

High dosage of EVE eliminating negative crosstalk from mTORC1/S6K, leads to activation of
mTORC2 that enhances AKT phosphorylation at Ser473 and stimulates PI3K-AKT signaling that
induces renal fibrosis [26-30].

The pro-fibrotic attitude of EVE has also been confirmed in vivo in renal transplant patients
through the estimation of an arbitrary pulmonary fibrosis index score in renal transplant patients
chronically treated with this drug. In this patients’ subset, high blood trough level of EVE was
associated with a high rate of pulmonary signs of fibrosis [24].

However, although the aforementioned studies and the large clinical evidences, the complete
biological machinery involved in this condition has not been completely clarified.

Therefore, we employed, for the first time, a highthroughput approach combining a transcriptomic
with a miRNome analysis to study the capability of EVE to induce pro-fibrotic changes in primary
bronchial epithelial cells.

All together our results could represent a step forward in the comprehension of the mTOR-I
associated biological machinery and in the identification of new targets for therapeutic interventions.

2. Results

2.1. High Dosage Everolimus (EVE) Induced Epithelial to Mesenchymal Transition (EMT) of BE63/3
(Primary Bronchial Epithelial Cells)

To confirm our previous results obtained in immortalized bronchial and pulmonary cell lines [24],
we decided to measure by Real Time-PCR the expression level of alpha smooth muscle actin (x-SMA),
vimentin (VIM), and fibronectin (FN) in BE63/3 treated for 24 h with 2 different dosages of EVE (5 and
100 nM) chosen according to literature evidences [31-34] and previous experiments performed by our
research group in different cell lines [24-26].

Only high dose of EVE (100 nM), similarly to TGF-f3 (20 ng/mL), increased the mRNA level of the
EMT-related markers (Figure 1A-C). Moreover E-cadherin resulted downregulated although it did not
reach a statistically significant level (Figure S1). Contrarily, 5 nM EVE was ineffective (Figure 1A-C).

Additionally, high dosage of EVE was also able to reduce the transepithelial resistance (TER)
evaluated by a Millicell-ERS ohmmeter indicating dysfunctional tight junctions (Figure 1D).



Int. ]. Mol. Sci. 2018, 19, 1250 30f22

A i B
20 4 35
18 4
8 3.0
7 16 §
o 2 2s
Q 14 4 3 &
= —
o 12 4 e
‘Ef- : I X 20
& 1.0 s
3 | g
g os | i 15
2 >
& os & 10 I
7] < 1
= 04 | 13
05
02
00 —— 00 e
CTR EVE 5nM EVE 100nM TGF-B CTR EVE 5nM EVE 100nM TGF-B
Is D 110
°
o
€
20 4 * S 100 I
* —
18 4 5]
ES
€ 16 4
5 ]
2 O 90
w
i c
§ 14 B
212 A I 2
v
i o
1.0 4 -
g l 5 %
£ os 4 o
3 3
E 0.6 4 .‘:
0.4 4 % 70
£
0.2 1
[
CTR EVES5nM  EVE 100nM TGF-B 60 e

CTR EVE5nM EVE 100nM  TGF-B

Figure 1. Gene expression of epithelial to mesenchymal transition (EMT) related markers. Relative
(A) alpha smooth muscle actin (x-SMA), (B) fibronectin (FN) and (C) vimentin (VIM) expression
evaluated by Real-time PCR in BE 63/3 cells treated or untreated with Everolimus (EVE) (5 and
100 nM) or TGF-f (20 ng/mL); expression values were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). Mean & S.D. (error bars) of three separate experiments performed in
triplicate. * p < 0.05, ** p < 0.01 vs. control (CTR). (D) Histogram represents transepithelial resistance as
percentage change with respect to control cells. * p < 0.05 vs. CTR.

2.2. Transcriptomic Analysis Revealed That High Dosage of EVE Up-Regulated Genes Involved in Collagen
Synthesis and Metabolism

Gene expression profiling evaluated by transcriptomic analysis revealed that in vitro treatment
of BE63/3 cells with 100 nM EVE for 24 h deregulated 147 probe sets (corresponding to 125 genes):
60/147 probe sets (47 genes) resulted up-regulated while 87/147 probe sets (corresponding to 78 genes)
were down-regulated (>1.5-fold change) in EVE-treated cells compared with control (CTR) (Table 1).
According to enrichment analysis, selected genes belonged to 44 pathways (Table 2) and 5 of them
were involved in collagen synthesis/metabolism and regulation of stress fiber assembly. Interestingly,
connective tissue growth factor (CTGF) was a representative gene in all these pro-fibrotic pathways.

Instead, low dosage EVE (5 nM) was able to change the expression level of only 33 probe sets
(24 genes): 25/33 probe sets (20 genes) were hyper-expressed and 4 probe sets (4 genes) down-regulated
after treatment (Table 3). None of the selected pathways was associated with the pro-fibrotic cellular
machinery (Table 4).

Principal component analysis (PCA) and volcano plot showed the degree of separation of
untreated versus treated cells at both EVE dosages (Figure 2).
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Table 1. List of the differentially expressed probe sets after treatment with 100 nM EVE.

Probe ID CEZL‘;e Regulation Symbol GEeI::elﬁj Definition
4760626 2.275 Up MMP12 4321 matrix metallopeptidase 12 (macrophage elastase), mRNA.
4780209 2.218 Up MMP12 4321 matrix metallopeptidase 12 (macrophage elastase) mRNA.
670041 1.925 Up AKAP12 9590 ‘il:iiar:tsgl(im‘anchor protein (gravin) 12, transcript
6770746 1.903 Up LOC728715 728715 similar to hCG38149 (LOC728715), mRNA.
4640086 1.814 Up FOXQ1 94234 forkhead box Q1, mRNA.
2810246 1.808 Up LBH 81606 1151311){];11:1 I:II:]C}; }.1eart development homolog (mouse)
6330270 1.804 Up GPC4 2239 glypican 4, mRNA.
6620201 1.789 Up KLHL24 54800 kelch-like 24 (Drosophila), mRNA.
5690687 1.783 Up CTGF 1490 connective tissue growth factor, mRNA.
5420577 1775 Up CLCA4 22802 E:Iﬁrl;d;fr‘ggg:: caleum activated,
2640292 1.769 Up CTGF 1490 connective tissue growth factor, nRNA.
1070477 1.753 Up ALDHI1A1 216 aldehyde dehydrogenase 1 family, member A1, mRNA.
3130301 1.729 Up PIM1 5292 pim-1 oncogene, mRNA.
6620008 1.705 up KAL1 3730 Kallmann syndrome 1 sequence, mRNA.
4040576 1.704 up IL6 3569 interleukin 6 (interferon, beta 2), mRNA.
1820315 1.677 up C4orf26 152816 chromosome 4 open reading frame 26 (C4orf26), mRNA.
1990142 1.671 up C200rf114 92747 (Cg%r;‘f’i’f)‘e ri%ﬁf:fl reading frame 114
1940647 1.668 up HBP1 26959 HMG-box transcription factor 1, mRNA.
2640324 1.665 up SLC46A3 283537 solute carrier family 46, member 3, mRNA.
3800241 1.651 up CDH6 1004 cadherin 6, type 2, K-cadherin (fetal kidney), mRNA.
6110736 1.646 up IRS2 8660 insulin receptor substrate 2, mRNA.
4610056 1.641 up FLRT2 23768 fibronectin leucine rich transmembrane protein 2, mRNA.
6420687 1.638 up PLUNC 51297 Ee;lre::i;il;[ngaargi :1;1’512;11 E};;?elium carcinoma associated,
6420465 1.625 up GABARAPLI1 23710 GABA(A) receptor-associated protein like 1, mRNA.
4780128 1.625 up ATF3 467 activating transcription factor 3, transcript variant 4, mRNA.
160242 1.622 up C13orfl5 28984 chromosome 13 open reading frame 15 (C130rf15), mRNA.
2650709 1.620 up CDH11 1009 cadherin 11, type 2, OB-cadherin (osteoblast), mRNA.
2230767 1.615 up LOC387825 387825 misc_RNA (LOC387825), miscRNA.
6860228 1.610 up Cborf41 153222 chromosome 5 open reading frame 41 (C50rf41), mRNA.
6510754 1.609 up ALDH1A1 216 aldehyde dehydrogenase 1 family, member A1, mRNA.
1980255 1.605 up RNF39 80352 ring finger protein 39, transcript variant 2, mRNA.
6840491 1.604 up Cborf41 153222 chromosome 5 open reading frame 41 (C50rf41), mRNA.
4280228 1.595 up IVNS1ABP 10625 influenza virus NS1A binding protein, mRNA.
5080021 1.593 up BIRC3 330 ':;;‘ior‘l’; ai;ﬁfnftef’e;f;ﬁf:aiﬂing 3,
st ame o crmar o QUhemerso e 2t b phreiec
7160239 1.580 up FOSB 2354 EEL rgl‘zgg ‘I’z}f]‘\’f;fcoma viral oncogene
380689 1578 up TSC22D1 8848 iiﬁffﬁi?ii?ﬁ‘?“ﬁﬁ“ﬁﬁm L
3060095 1.574 up COL12A1 1303 collagen, type XII, alpha 1, transcript variant short, mRNA.
1410209 1571 up SGK1 6446 ff:;lzr/l i‘fﬁ;’:ﬁﬁ;ﬁimd kinase 1,
2190553 1.556 up FZD6 8323 frizzled homolog 6 (Drosophila), mRNA.
4570075 1.544 up KIAA1641 57730 KIAA1641, transcript variant 7, mRNA.
5090626 1.540 up FAP 2191 fibroblast activation protein, alpha, mRNA.
6620538 1.540 up UBL3 5412 ubiquitin-like 3, mRNA.
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Table 1. Cont.

Probe ID CEZL‘;e Regulation Symbol GEeI::eI?D Definition
5960398 1.537 up NT5E 4907 5'-nucleotidase, ecto (CD73), mRNA.
5570731 1.533 up C8orf4 56892 chromosome 8 open reading frame 4 (C8orf4), mRNA.
830639 1.531 up LOC653778 653778 fﬁ%g;;;g;“ﬁgg:er family 25, member 37
3290187 1.529 up PCMTD1 115294 ggﬁ?ﬁtﬁ;‘;jﬁf’igf%BESTPS;Tth?\}rg‘fthyhra“Sferase
3440670 1517 up LOC402251 402251 (sirg)léirotz(; gil)lfan?;{olgz .translation elongation factor 1 alpha 2
630315 1.514 up DHRS9 10170 giizf;%gtev‘;ﬁz :‘i‘?‘ﬁ;}f&sm family) member 9,
1410161 1.513 up KLHL5 51088 kelch-like 5 (Drosophila), transcript variant 3, mRNA.
4150575 1.513 up LETMD1 25875 LETM1 domain containing 1, transcript variant 2, mRNA.
7210497 1.513 up NUAK1 9891 NUAK family, SNF1-like kinase, 1, mRNA.
1240440 1.511 up TXNIP 10628 thioredoxin interacting protein, mRNA.
4760747 1.509 up TPST1 8460 tyrosylprotein sulfotransferase 1, mRNA.
2360220 1.508 up MATR3 9782 matrin 3, transcript variant 1, mRNA.
3800431 1.508 up RCOR3 55758 REST corepressor 3, nRNA.
4390450 1.504 up SGK 6446 serum/ glucocorticoid regulated kinase, mRNA.
2450465 1.503 up CYBRD1 79901 cytochrome b reductase 1, mRNA.
6110053 1.501 up ZNF32 7580 zinc finger protein 32, transcript variant 2, mRNA.
4570398 1.501 up F2R 2149 coagulation factor II (thrombin) receptor, mnRNA.
3800050 —1.503 down ADCY3 109 adenylate cyclase 3, mRNA.
5900008 —1.504 down KLK11 11012 kallikrein-related peptidase 11, transcript variant 2, mRNA.
5080605 —1.504 down SNRPA1 6627 small nuclear ribonucleoprotein polypeptide A’, mRNA.
4560541 —1.521 down MLKL 197259 mixed lineage kinase domain-like, mRNA.
520682 —1.523 down CPA4 51200 carboxypeptidase A4, mRNA.
4010296 _1507 down RNASET 6035 fj:ﬁ;xffi;z IEIgI‘ase A family, 1 (pancreatic), transcript
6350161 —1.530 down LCP1 3936 lymphocyte cytosolic protein 1 (L-plastin), mRNA.
4730605 —1.532 down AURKA 6790 aurora kinase A, transcript variant 5, mRNA.
6840075 —1.532 down NP 4860 nucleoside phosphorylase, mRNA.
6770187 —1.533 down SPRR2A 6700 small proline-rich protein 2A, mRNA.
870131 1533 down HSPAS5 3309 }71§1t Sg;crilz% kA]?a protein 5 (glucose-regulated protein,
1570193 —1.535 down ARHGDIB 397 Rho GDP dissociation inhibitor (GDI) beta, mRNA.
2450167 —1.537 down RPL29 6159 ribosomal protein .29, mRNA.
7510709 —1.540 down CEP55 55165 centrosomal protein 55 kDa, mRNA.
2350465 —1.544 down RPL29 6159 ribosomal protein .29, mRNA.
160097 —1.546 down MELK 9833 maternal embryonic leucine zipper kinase, mRNA.
3930703 —1.547 down WDR4 10785 WD repeat domain 4, transcript variant 2, mRNA.
1170066 1554 down SULT?B1 6820 ‘slgifi(;:taisrfre&{asf.amily, cytosolic, 2B, member 1, transcript
2070520 —1.556 down CDCA7 83879 cell division cycle associated 7, transcript variant 1, mRNA.
6550048 —1.559 down DHCR7 1717 7-dehydrocholesterol reductase, mRNA.
5310634 —1.566 down FASN 2194 fatty acid synthase, mRNA.
6560494 —1.566 down ARTN 9048 artemin, transcript variant 2, mRNA.
5860348 —1.568 down SC4MOL 6307 sterol-C4-methyl oxidase-like, transcript variant 2, mRNA.
570112 1570  down HMGCS1 3157 f’si‘ﬁiﬁ‘;‘{&ﬁgﬁgﬁ%L‘ﬁ:gfgﬁ;ﬁm‘* A synthase 1
5690274 1571 down MCM6 4175 minichromosome maintenance complex

component 6, mRNA.
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Table 1. Cont.

Fold . Entrez .
Probe ID Change Regulation Symbol Gene ID Definition
_ S, fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase,

940487 1573 down FUts 2525 Lewis blood group), transcript variant 4, mRNA.
5810154 _1.580 down ALOXI15B 247 arat.:hldonate 15-lipoxygenase, type B, transcript

variant b, mRNA.

870546 —1.581 down MAD2L1 4085 MAD?2 mitotic arrest deficient-like 1 (yeast), mRNA.
6020139 —1.588 down KLK7 5650 kallikrein-related peptidase 7, transcript variant 1, mRNA.
4250156 —1.589 down EBP 10682 emopamil binding protein (sterol isomerase), mRNA.

10341 _1.599 down SHMT? 6472 serine hydrf)xymgthyltransferase 2 (_mltochondnal), nuclear
gene encoding mitochondrial protein, mRNA.
5360678 —1.602 down DHCR7 1717 7-dehydrocholesterol reductase, transcript variant 1, mRNA.

6580059 1610 down ucp? 7351 uncoupling prote1n'2 (mlt.ochondrlial, protop carrier),

nuclear gene encoding mitochondrial protein, mRNA.
5090278 —1.610 down GPX2 2877 glutathione peroxidase 2 (gastrointestinal), mRNA.
- similar to keratin associated protein 2-4
— 728285
3940673 1.617 down LOC728285 728285 (LOC728285), mRNA.
retinoic acid receptor responder
2650564 —1.623 down RARRES3 5920 (tazarotene induced) 3, mRNA.

360367 —1.625 down PCDH7 5099 protocadherin 7, transcript variant a, mRNA.

7560364 —1.635 down LOC729779 729779 misc_RNA (LOC729779), miscRNA.

780528 —1.635 down CKS2 1164 CDC28 protein kinase regulatory subunit 2, mRNA.
5960224 1636 down PTTG3P 26255 p1tu1tar¥ tumor-transforming 3 (pseudogene),

non-coding RNA.
4730196 —1.653 down TK1 7083 thymidine kinase 1, soluble, mRNA.

1510296 —1.656 down ASNS 440 asparagine synthetase, transcript variant 1, mRNA.
1190142 —1.657 down EMILIN2 84034 elastin microfibril interfacer 2, mRNA.

1170170 —1.662 down STC2 8614 stanniocalcin 2, mRNA.

2140128 —1.670 down SCD 6319 stearoyl-CoA desaturase (delta-9-desaturase), mRNA.
5360070 —1.674 down CCNB2 9133 cyclin B2, mRNA.

3990619 —1.675 down TOP2A 7153 topoisomerase (DNA) II alpha 170 kDa, mRNA.

3780047 —1.679 down GBP6 163351 guanylate binding protein family, member 6, mRNA.
2000148 1683 down IFIT1 3434 mterfer.on-md.uced protein with tetratricopeptide repeats 1,

transcript variant 2, mRNA.
B . protein regulator of cytokinesis 1,
2070494 1.700 down PRC1 9055 transcript variant 2, mRNA.
10414 —1.704 down PTTG1 9232 pituitary tumor-transforming 1, mRNA.

2940110 1720 down UHRF1 29128 ublqmt’m—hke.wﬁh PHD and ring finger domains 1,

transcript variant 1, mRNA.

1510291 —1.733 down PTTG1 9232 pituitary tumor-transforming 1, mRNA.

phosphoenolpyruvate carboxykinase 2 (mitochondrial),

1780446 —1.739 down PCK2 5106 nuclear gene encoding mitochondrial protein, transcript

variant 1, mRNA.

1660521 —1.745 down SPRR2D 6703 small proline-rich protein 2D, mRNA.

R similar to U2 small nuclear ribonucleoprotein A (U2
-1 L0C652595
730689 1.763 down LOC652595 652595 SsnRNP-A) (LOC652595), mRNA.
5090754 —1.766 down KIAA0101 9768 KIAAO0101, transcript variant 1, mRNA.
5080139 —1.789 down PRSS3 5646 protease, serine, 3 (mesotrypsin), mRNA.

3800452 —1.805 down EMP3 2014 epithelial membrane protein 3, mRNA.

1230047 —1.810 down CBS 875 cystathionine-beta-synthase, mRNA.

6370615 1858 down TCM]I 7051 transglutamma@ 1 (K polypeptide epidermal type I,

protein-glutamine-gamma-glutamyltransferase), mRNA.
5310471  —1.894 down UBE2C 11065 ~ Ubiquitin-conjugating enzyme E2C,

transcript variant 6, mRNA.
7380719 —1.897 down IGFBP6 3489 insulin-like growth factor binding protein 6, mRNA.
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Table 1. Cont.

Probe ID Cfl(a,ildge Regulation Symbol GEeI::eIi) Definition
940327 —1.907 down KLK13 26085 kallikrein-related peptidase 13, mRNA.
520195 —1.914 down TMEM?79 84283 transmembrane protein 79, mRNA.
4040398 1954  down MAL 4118 g‘ji’sf;fgfv‘frfgﬁrgﬁ&fotei“'
1990630 —1.979 down TRIB3 57761 tribbles homolog 3 (Drosophila), mRNA.
430446 —1.996 down KRT81 3887 keratin 81, mRNA.
4260368  —2.022 down UBE2C 11065 E‘;ﬂéﬁ;i‘;ﬁ:ﬁfgﬁ Raae E2C,
290767 —2.038 down KRTDAP 388533 keratinocyte differentiation-associated protein, mRNA.
19 208 down GRS 260 bt variant 2, mRNA.
620102 —2.046 down MALL 7851 mal, T-cell differentiation protein-like, mRNA.
5870653 —2.050 down LOC651397 651397 misc_RNA (LOC651397), miscRNA.
4050398 —2.071 down KLK12 43849 kallikrein-related peptidase 12, transcript variant 1, mRNA.
7330753 —2.102 down ACAT2 39 acetyl-Coenzyme A acetyltransferase 2, mRNA.
4900458 0147 down KRT14 3861 llzeol’:tt);ne i;% fﬁlp;iliiIeArfnolysis bullosa simplex, Dowling-Meara,
540546 —2.283 down KRT4 3851 keratin 4, mRNA.
1500010 —2.322 down CDC20 991 cell division cycle 20 homolog (S. cerevisiae), mRNA.
6550356  —2.430 down SPRR2C 6702 fg‘;li féf;giﬁf protein 2C (pseudogene),
4850674  —2.452 down PSATI 29968 Egiigﬁ;if:;f;‘?;“ﬂ;ﬁj{erase L
5890400 —2.577 down SPRR2E 6704 small proline-rich protein 2E, mRNA.
240086 —2.608 down PHGDH 26227 phosphoglycerate dehydrogenase, mRNA.
7650441 —2.696 down FGFBP1 9982 fibroblast growth factor binding protein 1, mRNA.
5810546 —2.894 down SPRR2E 6704 small proline-rich protein 2E, mRNA.
7330184 —2.933 down SPRR1A 6698 small proline-rich protein 1A, mRNA.
2230035 —2.936 down KRT13 3860 keratin 13, transcript variant 2, mRNA.
4610131 —3.284 down SPRR3 6707 small proline-rich protein 3, transcript variant 1, mRNA.

In red up-regulated and in green down-regulated genes in BE63/3 cells treated with 100 nM EVE compared to CTR.

Table 2. List of pathways differentially regulated after 100 nM EVE.

Pathways Adj. p Value Associated Genes
ALOX15B, CTGF, FOXQ1, FZD6, KLK7, KRT14, RNASE1,
Epidermis development 1.24 x 10 SPRR1A, SPRR2A, SPRR2D, SPRR2E, SPRR3, TGM]1,

TMEM?79, TXNIP
SPRR1A, SPRR2A, SPRR2D, SPRR2E, SPRR3,

.. . —6
Keratinization 5.22 x 10 TGM1, TMEM?79
CDC20, FGFR3, MAD2L1, PTTG1, PTTG3P, RGCC,
. . P —5 ’ ’ ’ ’ ’ ’
Negative regulation of cell division 2.58 x 10 TXNIP, UBE2C
CDC20, FGFR3, MAD2L1, PTTG1, PTTG3P,
. . . PR -5 ’ ’ s ’ ol
Negative regulation of mitotic nuclear division 2.81 x 10 RGCC, UBE2C
Keratinocyte differentiation 3.05 x 10-5 ALOX15B, SPRR1A, SPRR2A, SPRR2D, SPRR2E, SPRR3,

TGM1, TMEM?79, TXNIP

L-serine metabolic process 3.54 x 1072 CBS, PHGDH, PSAT1, SHMT2

ALOX15B, RNASE1, SPRR1A, SPRR2A, SPRR2D,
SPRR2E, SPRR3, TGM1, TMEM79, TXNIP

L-serine biosynthetic process 9.75 x 107> PHGDH, PSAT1, SHMT?2

Epidermal cell differentiation 9.21 x 107°
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Table 2. Cont.

Pathways Adj. p Value Associated Genes
. . . CDC20, FGFR3, MAD2L1, PTTG1, PTTG3P
—4 ’ ’ ’ ’ ’
Negative regulation of nuclear division 1.10 x 10 RGCC, UBE2C
. _ ALOX15B, FOXQ1, FZD6, SPRR1A, SPRR2A, SPRR2D,
4 , ’ , " , )
Skin development 18210 SPRR2E, SPRR3, TGM1, TMEM79, TXNIP
Peptide cross-linking 2.05 x 107* SPRR1A, SPRR2A, SPRR2D, SPRR2E, SPRR3, TGM1
Serine family amino acid biosynthetic process 3.55 x 1074 CBS, PHGDH, PSAT1, SHMT?2
Regulation of collagen metabolic process 5.84 x 1074 CTGF, F2R, FAP, IL6, RGCC

Regulation of multicellular organismal

. 6.51 x 1074 CTGF, F2R, FAP, IL6, RGCC
metabolic process

Steroid biosynthesis 6.77 x 1074 CYP24A1, DHCR7, EBP, MSMO1

Chromosome separation 0.00192 CDC20, MAD2L1, PTTG1, PTTG3P, TOP2A, UBE2C
Negative regulation of mitotic sister 0.00199 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
chromatid separation

Collagen metabolic process 0.00200 COL12A1, CTGF, F2R, FAP, IL6, MMP12, RGCC
Negative regulation of mitotic sister 0.00231 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
chromatid segregation

Multicellular organismal macromolecule 0.00248 COL12A1, CTGF, F2R, FAP, IL6, MMP12, RGCC
metabolic process

Negative regulation of sister chromatid segregation 0.00267 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
Negative regulation of chromosome segregation 0.00267 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C

AURKA, CDC20, FGFR3, MAD2L1, PTTG1, PTTG3P,

Regulation of nuclear division 0.00302 RGCC, UBE2C

Multicellular organismal metabolic process 0.00456 COL12A1, CTGF, F2R, FAP, IL6, MMP12, RGCC
Regulation of collagen biosynthetic process 0.00457 CTGF, F2R, IL6, RGCC

Mitotic sister chromatid separation 0.00664 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
Regulation of mitotic sister chromatid segregation 0.00834 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C

Sister chromatid segregation 0.00851 7C'é-))]§ 22/(4)/ lCJ%[;ZZ MAD2LI, PTTGI, PTTG3P,
Glycine, serine and threonine metabolism 0.00873 CBS, PHGDH, PSAT1, SHMT?2

Collagen biosynthetic process 0.00873 CTGF, F2R, IL6, RGCC

Oocyte meiosis 0.01153 ADCY3, AURKA, CCNB2, CDC20, MAD2L1, PTTG1
Regulation of sister chromatid segregation 0.01277 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
Negative regulation of chromosome organization 0.01396 ARTN, CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
PERK-mediated unfolded protein response 0.01404 ASNS, ATF3, HSPA5

Regulation of stress fiber assembly 0.01630 CTGF, RGCC, RNASE1

FoxO signaling pathway 0.01634 CCNB2, GABARAPLI, IL6, IRS2, PCK2, SGK1
Anaphase-promoting complex-dependent

proteasomal ubiquitin-dependent protein 0.01664 AURKA, CDC20, MAD2L1, PTTG1, UBE2C
catabolic process

Alpha-amino acid biosynthetic process 0.01664 ASNS, CBS, PHGDH, PSAT1, SHMT?2

Positive regulation of collagen biosynthetic process 0.02234 CTGF, F2R, RGCC

Regulation of systemic arterial blood pressure by

. h . . 0.02412 CPA4, F2R, MMP12
circulatory renin-angiotensin
Positive Iregulatlon of multicellular organismal 0.02412 CTGE, F2R, RGCC
metabolic process
Secondary alcohol biosynthetic process 0.02578 DHCR7, EBP, HMGCS1, MSMO1
Regulation of chromosome segregation 0.02590 CDC20, MAD2L1, PTTG1, PTTG3P, UBE2C
Negative regulation of proteasomal 0.03145 CDC20, MAD2L1, UBE2C

ubiquitin-dependent protein catabolic process

In red up-regulated and in green down-regulated genes in BE63/3 cells treated with 100 nM EVE compared to CTR.
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Table 3. List of probe sets differentially expressed after treatment with 5 nM EVE.

Probe ID Cf\g:i;e Regulation Symbol Cfer:ereeIZD Definition
2230035 7.508 up KRT13 3860 keratin 13, transcript variant 2, mRNA.
6510754 3.841 up ALDHIA1 216 aldehyde dehydrogenase 1 family, member A1, mRNA.
1070477 3.395 up ALDH1A1 216 aldehyde dehydrogenase 1 family, member A1, mRNA.
540546 2.749 up KRT4 3851 keratin 4, mRNA.
1990142 2.644 up C200rf114 92747 chromosome 20 open reading frame 114, mRNA.
5900368 2.385 up MSMB 4477 microseminoprotein, beta-, transcript variant PSP94, mRNA.
4610131 2.358 up SPRR3 6707 small proline-rich protein 3, transcript variant 1, mRNA.
3190110 2.194 up MSMB 4477 microseminoprotein, beta-, transcript variant PSP94, mRNA.
630315 2151 up DHRS9 10170 S;?iziﬁ%ir:fa{iel 2 feductase (SDR family) member 9, transcript
5420577 2.149 up CLCA4 22802 chloride channel, calcium activated, family member 4, mRNA.
5560369 2.107 up ALDH3A1 218 aldehyde dehydrogenase 3 family, memberAl, mRNA.
4150598 1.990 up MSMB 4477 microseminoprotein, beta-, transcript variant PSP57, mRNA.
1820414 1.897 up ATP12A 479 31?;25;61};;{3 I;;;f‘ig‘ﬁ“g nongastric,
3520709 1.888 up ADH7 131 :};‘I’;‘;’Lile;gj;gg‘:‘fﬁﬁéfass IV), mu or
7160468 1.807 up DHRS9 10170 3;22?1:?:5?;112?\? 2 r.eductase (SDR family) member 9, transcript
5310646 1795 up AKR1B10 57016 ?;f;i:ﬁ;iﬁﬁ:;ﬁ;ﬁg 1, member B10
4250092 1.749 up C100rf99 387695 chromosome 10 open reading frame 99, mRNA.
110372 1.748 up CSTA 1475 cystatin A (stefin A), mRNA.
3710671 1.712 up KRT15 3866 keratin 15, mRNA.
1770603 1705 up TCN1 6947 gi‘ii;’?ﬁ:ﬁ‘; (r‘;m“ B12 binding protein,
6100537 1.655 up FAM3D 131177 family with sequence similarity 3, member D, mRNA.
4540400 1.623 up CYP4B1 1580 ff;g;?;‘;“:;fr?t ;af;}g\]‘; f“bfamﬂy B, polypeptide 1,
2900050 1.611 up GSTA1 2938 glutathione S-transferase alpha 1, mRNA.
1510170 1.565 up NLRP2 55655 NLR family, pyrin domain containing 2, mRNA.
5820400 1.526 up CYP4B1 1580 cytochrome P450, family 4, subfamily B, polypeptide 1, mRNA.
130561 1.525 up GSTA4 2941 glutathione S-transferase A4, mRNA.
3850246 1.513 up HOPX 84525 HOP homeobox, transcript variant 3, mRNA.
7200612 —1.522 down LOC730417 730417 hypothetical protein LOC730417, mRNA.
1510296 —1.556 down ASNS 440 asparagine synthetase, transcript variant 1, mRNA.
3290390 —1.563 down LOC729841 729841 misc_RNA, miscRNA.
7380193 —1.574 down ARPC3 10094 actin related protein 2/3 complex, subunit 3, 21 kDa, mRNA.
130717 —-1.610 down ARPCI1B 10095 actin related protein 2/3 complex, subunit 1B, 41 kDa, mRNA.
430446 —1.689 down KRT81 3887 keratin 81, mRNA.

In red up-regulated and in green down-regulated genes in BE63/3 cells treated with 5 nM EVE compared to CTR.

Table 4. List of pathways differentially regulated after treatment with 5 nM EVE.

PATHWAYS Adj. p Value Associated Genes Found
Retinol metabolism 8.58 x 107° ADH7, ALDH1A1, DHRS9
Metabolism of xenobiotics by cytochrome P450 1.48 x 1075 ADH7, ALDH3A1, GSTA1, GSTA4
Drug metabolism 1.37 x 1075 ADH7, ALDH3A1, GSTA1, GSTA4
Retinoid metabolic process 141 x 1075 ADH7, AKR1B10, ALDH1A1, DHRS9
Chemical carcinogenesis 1.96 x 105 ADH7, ALDH3A1, GSTA1, GSTA4
Cellular aldehyde metabolic process 2.60 x 107> ADH7, AKR1B10, ALDH1A1, ALDH3A1
Primary alcohol metabolic process 330 x 107° ADH7, AKR1B10, ALDH1A1, DHRS9
Retinol metabolic process 1.99 x 107° ADH7, ALDH1A1, DHRS9

In red up-regulated genes in BE63/3 cells treated with 5 nM EVE compared to CTR.
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Figure 2. Principal Component Analysis (PCA) and Volcano Plot discriminating BE63/3 CTR from
EVE treated cells. PCA plots were built using the expression level of all differentially expressed
genes obtained from mRNA expression profiling after treatment with (A) 5 nM and (C) 100 nM EVE.
Volcano Plot based on fold change (Log2) and p value (—Log10) of all genes identified in BE63/3 after
treatment with (B) 5 nM and (D) 100 nM EVE. In both graphs red circles indicate the genes that showed
statistically significant change.

2.3. MiRNome Analysis Identified Specific MicroRNAs Deregulated by EVE

To gain insights into the mechanism leading to EMT induced by EVE and to discover possible
regulatory miRNAs of this effect, we performed a miRNome analysis by miRNA Complete Labeling
and Hybridization kit. Statistical analysis identified three miRNAs up-regulated after high dosage
(100 nM) (Table 5) and four after treatment with EVE at low dosage (5 nM) (Table 6). Among these,
miR-8485 was the most up-regulated miRNA (more than 4-fold changes in both treatments).

Table 5. List of microRNAs differentially regulated after treatment with 100 nM EVE.

Systematic Name Regulation Fold Change
hsa-miR-8485 up 5.372
hsa-miR-937-5p up 1.787

hsa-miR-5194 up 1.694
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Table 6. List of microRNAs differentially regulated after treatment with 5 nM EVE.

Systematic Name Regulation Fold Change
hsa-miR-8485 up 9.183
hsa-miR-4730 up 2.900
hsa-miR-5194 up 2.732

hsa-miR-6716-3p up 2.561

By matching mRNA and miRNA expression data, we found that 31 genes were specific target of
the three identified miRNAs (Table 7).

Table 7. miRNA /mRNA pairs matched on the basis of mRNA and miRNA profiling results.

Cell Fold mRNA

Treatments miRNA Change Target Gene Name
miR-8485 9.183 CYP4B1 cytochrome P450, family 4, subfamily B, polypeptide 1
EVE 5nM
miR-5194 2.732 ARPC3 actin related protein 2/3 complex, subunit 3, 21 kDa
CYP24A1 cytochrome P450, family 24, subfamily A, polypeptide 1
KAL1 Kallmann syndrome 1 sequence
UBL3 ubiquitin-like 3
IRS2 insulin receptor substrate 2
CTGF connective tissue growth factor
LBH limb bud and heart development
FLRT2 fibronectin leucine rich transmembrane protein 2

CDH6 cadherin 6, type 2, K-cadherin (fetal kidney)
CYBRD1 cytochrome b reductase 1
LETMD1 LETM1 domain containing 1

miR-8485 5.372 FGFR3 fibroblast growth factor receptor 3

CPA4 carboxypeptidase A4
AURKA aurora kinase A
CBS cystathionine-beta-synthase

MAD2L1 MAD2 mitotic arrest deficient-like 1 (yeast)
ADCY3 adenylate cyclase 3
TMEM?79  transmembrane protein 79
IFIT1 interferon-induced protein with tetratricopeptide repeats 1
PTTG1 pituitary tumor-transforming 1
PCDH7 protocadherin 7

CDH6 cadherin 6, type 2, K-cadherin (fetal kidney)
miR-937-5p  1.787 KIAA0101  KIAA0101
EMILIN2 elastin microfibril interfacer 2

KLHL24 kelch-like family member 24

EVE 100 nM

FAP fibroblast activation protein, alpha
LBH limb bud and heart development
PIM1 pim-1 oncogene
FLRT2 fibronectin leucine rich transmembrane protein 2

LETMD1 LETM1 domain containing 1
FGFR3 fibroblast growth factor receptor 3
miR-5194 1.694 KIAA0101  KIAA0101
RARRES3  retinoic acid receptor responder (tazarotene induced) 3

ARTN artemin
IGFBP6 insulin-like growth factor binding protein 6
LCP1 lymphocyte cytosolic protein 1 (L-plastin)
MALL small integral membrane protein 5
SCD LSM14B, SCD6 homolog B (S. cerevisiae)
IFIT1 interferon-induced protein with tetratricopeptide repeats 1

In red up-regulated and in green down-regulated genes in BE63/3 cells treated with EVE (5 or 100 nM) compared
to CTR.

2.4. Gene Expression and Protein Analysis for Matrix Metalloproteinase 12 (MMP12) and Connective Tissue
Growth Factor (CTGF) Validated High-Throughput Results

In order to validate microarray results, we measured by Real-Time PCR the level of mRNA
expression of MMP12 and CTGF. Both transcripts were up-regulated after treatment with 100 nM EVE.
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Contrarily 5 nM EVE had no effect (Figure 3A,B). In addition, western blot analysis of CTGF confirmed
gene expression results at protein level (Figure 3C,D).
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Figure 3. Gene expression of MMP12 and connective tissue growth factor (CTGF). mRNA level of
(A) MMP12 and (B) CTGF evaluated by real-time PCR in BE63/3 cells treated or not with EVE (5 and
100 nM). Data were normalized to GAPDH expression. Mean =+ SD (error bars) of two separate
experiments performed in triplicate. ** p < 0.001, * p < 0.05 vs. CTR. (C) Representative western blotting
experiments for CTGF. (D) Histogram represents the mean =+ SD of CTGF protein level. GAPDH was
included as loading control. ** p < 0.001 vs. CTR.

2.5. Validation of Transcriptomic Results in an Additional Primary Cell Line (BE121/3)

To confirm transcriptomic results, we decided to measure the expression level of 8 selected genes
(involved in EMT) up-regulated after high dosage EVE in a new primary bronchial epithelial cell line.
As showed in Figure 4, results were in line with those obtained in BE63/3 (Figure 4).
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Figure 4. Gene expression in BE121/3. mRNA level of (A) CDH6, (B) COL12A1, (C) CTGF, (D) FAP,
(E) KAL1, (F) LBH, (G) MMP12, (H) PIM1 evaluated by real-time PCR in BE121/3 cells treated or not
with EVE (5 and 100 nM). Data were normalized to GAPDH expression. Mean =+ SD (error bars) of two
separate experiments performed in triplicate. ** p < 0.001, * p < 0.05 vs. CTR.

2.6. High Dosage EVE Up-Regulated CTGF and Collagen1 in Fibroblasts and Hepatic Stellate Cells

To validate the pro-fibrotic effect of high dosage EVE we measured the expression level of
collagenl and CTGF in NIH/3T3 (mouse embryo fibroblast cell line) treated with EVE.

Interestingly, also in fibroblasts high dosage EVE up-regulated the protein levels of collagenl and
CTGF (Figure 5).

Also, in hepatic stellate cells high dosage EVE induced the up-regulation of CTGF and collagen1
(Figure S2).
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Figure 5. Protein levels of collagen1 and CTGF in NIH/3T3 cells. (A) Representative western blotting
experiments for collagenl and CTGF. Histograms represent the mean + SD of (B) collagenl and
(C) CTGEF protein levels. GAPDH was included as loading control. ** p < 0.001, * p < 0.05 vs. CTR.

3. Discussion

Pulmonary fibrosis is a potential serious adverse effect following administration of mTOR-I in
patients undergoing solid organ transplantation or receiving anti-cancer therapies. It is generally
accepted that pulmonary disease is related to mTOR-I therapy, whether the following conditions
are present: (1). The symptoms of pulmonary disease occur after initiation of mTOR-I therapy;
(2). Infection, other pulmonary diseases or toxicity associated with other drugs are excluded;
(3). mTOR-I minimization or discontinuation lead to resolution of the symptoms. In fact, the
dose-dependent effect was proved by the observation of this disease particularly in patients receiving
high doses of mMTOR-L

Pulmonary manifestations in these patients are numerous and include several clinical /histological
phenotypes (e.g., focal pulmonary fibrosis, bronchiolitis obliterans with organizing pneumonia) [8,9,35,36].

This multi-factorial and heterogeneous clinical condition is often responsible for drug
discontinuation and it requires long and expensive clinical evaluations and treatments (e.g., antibiotics,
corticosteroids, immunosuppressive drugs) [14] with the involvement of a multidisciplinary team of
experts (e.g., pulmonologists, infectivologists, nephrologists).

The etiopathogenic mechanism of pulmonary toxicity associated with mTOR-I therapy is not
known and several in vivo and in vitro studies have tried to define the underlying mechanisms. It has
been proposed a T cell-mediated autoimmune response induced when pulmonary cryptic antigens are
exposed, leading to lymphocytic alveolitis and interstitial pneumonitis [15]. Other possible pathogenic
mechanisms could be a delayed-type hypersensitivity reaction [9] or pulmonary inflammation as a
direct effect of mTOR-I to stimulate cells of the innate immune system to produce proinflammatory
cytokines [37,38].

Additionally, Ussavarungsi et al. have reported that sirolimus may induce granulomatous
interstitial inflammation and proposed a mechanism of T-cell mediated hypersensitivity reaction
triggered by circulating antigens or immune complexes in the lungs [39].
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Moreover, several authors have emphasized the pathogenetic role of the EMT of bronchial
epithelial cells in these important Everolimus (EVE)-related adverse events [20-23].

To obtain more insights, we decided to employ, for the first time, innovative high throughput
technologies, to identify new elements involved in the biological/cellular reprogramming induced by
high dose of mTOR-I and leading to fibrosis.

In vitro experiments using classical bio-molecular strategies, confirmed, in primary bronchial
epithelial cell lines, our previous results demonstrating the ability of high dosages EVE to induce
EMT. In particular, 100 nM EVE caused the up-regulation of EMT-related genes (x-SMA, VIM, FN) and
reduced the trans-epithelial resistance to the same levels induced by TGF-f3. Then, high doses of this
drug significantly changed the expression level of 125 genes (47 up- and 78 down-regulated).

Several of the selected genes were target of miR-8485, the top significant and up-regulated
microRNA (miRNA) by EVE 100 nM. Other 2 miRNAs were identified after the same treatment:
miR-937-5p and miR-5194. Except for miR-8485, at our knowledge, none of them has been previously
associated with fibrosis or supposed to be regulatory of genes implicated in this process. It's
unquestionable that further studies are warranted to confirm the involvement of these miRNAs
in EVE induced EMT since all identified miRNAs were up-regulated demonstrating their possible
role as enhancer of fibrotic machinery. This could be in line with recent findings suggesting that
miRNA-mediated down-regulation is not a one-way process and some miRNAs could up-regulate
gene expression in specific cell types and conditions with distinct transcripts and proteins [40,41]. It is
noteworthy that these miRNAs are up-regulated also after treatment with 5 nM EVE. Many reasons
could be responsible of this effect. In particular, the expression of these miRNAs could be regulated by
several factors and networks (some of them also unrelated to mTOR-I treatment). Additional studies
are needed to clarify the role of miRNA in EVE-mediated pro-fibrotic effect.

Moreover, analyzing the results of the transcriptomic analysis and the hypothetic targets
of miR-8485, we found that connective tissue growth factor (CTGF), a protein secreted into the
extracellular environment where it interacts with distinct cell surface receptors, growth factors and
extra-cellular matrix [42,43] was one of the top scored genes. Gene expression by RT-PCR and protein
analysis by western blotting confirmed the result obtained by microarray.

It is well known that CTGF modulates the activities of TGF- or vascular endothelial growth factor
(VEGF), with consequent pro-fibrotic and angiogenetic effects [44—47]. However, the overexpression of
CTGEF in fibroblast of mice caused tissue fibrosis in vivo [48] without involving the canonical TGF-f
pathway. This is in line with several reports that demonstrated a mTOR-I dose-related induction of
CTGEF at gene and protein levels in vitro and in vivo [49-52].

Moreover, Xu et al. have demonstrated that rapamycin, an analogue of EVE, exerted a profibrotic
effect in lung epithelial cells as well as in lung fibroblasts via up-regulation of CTGF expression
and PI3K/AKT pathway [50,51]. Similarly, Mikaelian et al. using a combination of RNAi and
pharmacological approaches showed that inhibition of mTOR triggers EMT in mammalian epithelial
cells by a mechanism TGF-f3 independent [53]. In the transplant context it has been described a
synergistic fibrotic effect of sirolimus with cyclosporine in kidney also mediated by the up-regulation
of CTGF [54,55].

Another interested gene up-regulated by EVE, selected by microarray and validated by RT-PCR,
was metalloproteinase 12 (MMP12), a member of the zinc-dependent endopeptidases family able to
proteolyze all components of the extracellular matrix [56,57] by degrading collagen, other extracellular
filaments, cytokines, growth factors and their receptors. MMP12 has a pivotal role in TGF-f3 mediated
pulmonary fibrosis [58,59].

Interestingly, other identified genes by transcriptomic analysis and target of miR-8485 (Table 7)
were Kallmann syndrome-1 gene (KALI, fold change: 1.705), Limb-bud and heart (LBH, fold change:
1.808) and insulin receptor substrates 2 (IRS2, fold change: 1.646) that resulted up-regulated after
100 nM EVE treatment and Protocadherin 7 (PCDH?7, fold change: —1.625) down-regulated by similar
treatment. All of them have been described in literature as directly or indirectly involved in the EMT.



Int. ]. Mol. Sci. 2018, 19, 1250 16 of 22

KAL1, codes for anosmin-1, a cell adhesion protein in extracellular matrix induced by TGF-f [60,61].
IRS2 expression appears to repress the expression of E-cadherin [62], marker of epithelial cells
deregulated during EMT.

LBH is a transcription cofactor with both transcriptional activator and corepressor functions.
LBH is a direct Wnt/ 3-catenin target gene and is induced by TGF-3 [63,64]. Wnt/ 3-catenin signaling
activation occurs in cells during EMT [65] and treated with mTOR-L

Protocadherin 7 is an integral membrane protein having a role in cell-cell recognition and
adhesion. Down-regulation of PCDH7 gene was correlated with E-cadherin inhibition [66].

All these findings, although speculatively interesting, need to be validated in vivo. Our study
is an hypothesis generating study that should be considered a starting point for bio-molecular study
involving transplanted patients or animal models.

Nevertheless, after 21 days in culture, most of the cells were not ciliated and we cannot exclude
that differentiation state may have affected the response to EVE (Figure S3).

However, our results suggested that high concentrations of EVE, through the activation of a
multi-factorial biological / cellular machinery, may lead to pulmonary fibrosis and underlined potential
pathogenetic, diagnostic biomarkers and targets for future pharmacological interventions to introduce
in the “day by day” clinical practice. Finally, at a clinical point of view, we confirm that, whenever
possible, the dose of EVE should be the minimized in patients with early signs of lung toxicity.

4. Materials and Methods

4.1. Cell Culture Treatment

Primary wild-type bronchial epithelial cells (BE63/3 and BE121/3) were obtained from “Servizio
Colture Primarie” of the Italian Cystic Fibrosis Research Foundation (ICFRF) and cultured following
the supplier instructions [67]. The protocols to isolate, culture, store, and study bronchial epithelial
cells from patients undergoing lung transplant was approved by the Ethical Committee of Gaslini
Institute (ethical approval number IGG:192 date of approval: 9/24/2010) under the supervision of
the Italian Ministry of Health. Cells were grown on rat tail collagen-coated tissue culture plates in
serum-free LHC9/RPMI 1640 medium at 37 °C and 5% CO,.

After 4-5 passages, cells were seeded on Transwell porous inserts. After 24 h from seeding,
the medium was switched to DMEM/F12 supplemented with 2% Ultroser G, 2 mM L-glutammine,
100 U/mL penicillin, 100 pug/mL streptomycin.

Exchange of culture medium is repeated every day on both sides of permeable supports up
to 5 days. Then the apical culture medium was removed, and the medium was added only in the
basolateral side (air-liquid interface) favoring a differentiation of the epithelium (Figure S3). After 11
days the epithelium was treated with EVE (5 nM and 100 nM) and TGF-3 (20 ng/mL), an EMT inducer,
for 24 h. “The timing of cell culture for gene expression and western blot experiments (17 days) was
based on clear instructions supplied by the “Servizio Colture Primarie” of the ICFRF in order to reach
the differentiation of epithelium”. Although the in vitro model cannot completely represent the in vivo
pharmacokinetic/effect of this drug, we can postulate that 5 nM EVE corresponds to a trough level
of approximately 5 ng/mL (drug level frequently reached in the immunosuppressive maintenance
therapy of solid organ transplantation), while 100 nM may correspond to very high dosages (trough
level more than 50 ng/mL) that patients could reach in anticancer therapy.

NIH/3T3 fibroblasts, purchased from American Type Culture Collection (Manassas, VA, USA)
were maintained at 37 °C in DMEM supplemented with 10% FCS, 100 U/mL penicillin, 100 pg/mL
streptomycin, and 2 mM L-glutamine. Cells were treated with or without 5 and 100 nM Everolimus for
24 h.
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4.2. RNA Extraction and Gene Expression Profiling

Trizol reagent (Invitrogen) was used to extract total RNA and then, yield and purity were checked
using a Nanodrop spectrophotometer.

Gene expression data were produced using the HumanHT-12 v3 Expression BeadChip
(Release 38, Illumina, San Diego, CA, USA). Five hundred ng total RNA from BE63/3 was used
to synthesize biotin-labeled cRNA using the Illumina®TotalPrep™ RNA amplification kit (Applied
Biosystems, Foster City, CA, USA). Quality of labelled cRNA was assessed by NanoDrop® ND-100
spectrophotometer and the Agilent 2100 Bioanalyzer. Then, 750 ng biotinylated cRNA was used for
hybridization to illumina microarrays that were then scanned with the HiScanSQ.

4.3. Pathway Analysis

The Ingenuity Pathway Analysis software (IPA, Ingenuity System, Redwood City, CA, USA)
was used to assess biological relationships among differentially regulated genes. The reference gene
selection was performed by own software written in Java program language. The canonical pathways
generated by IPA are the most significant for the uploaded data set. Fischer’s exact test with false
discovery rate (FDR) option was used to calculate the significance of the canonical pathway.

4.4. MicroRNA Expression Profiling

Fluorescently-labeled miRNAs were generated using the miRNA Complete Labeling and
Hybridization kit (Agilent Technologies, Santa Clara, CA, USA), with a sample input of 100 ng of total
RNA from BE63/3 and hybridized for 20 h at 55 °C on the Agilent 8 x 60 K Human miRNA Microarray
slide (Agilent Technologies), based on miRBase database (Release 21.0). Following hybridization,
the slides were washed and scanned using the High-Resolution Microarray C Scanner (Agilent
Technologies). The image files were processed using the Agilent Feature Extraction software (v10.7.3):
the microarray grid was correctly placed; inlier pixels were identified, and outlier pixels were rejected.

4.5. Real-Time PCR

Five hundred ng total RNA from each sample was reverse transcribed into cDNA using the
High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Real-time PCR amplification
reactions were performed in duplicate via SYBR Green chemistry on CFX-connect (Bio-Rad, Hercules,
CA, USA) and SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad). Primers for a-SMA,
VIM, EN, MMP12, CTGFE, CDH6, COL12A1, FAP, KAL1, LBH, PIM1 and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) were obtained from Qiagen (QuantiTect Primer Assay, Hilden, Germany).

The comparative C; method (AAC;) was used to quantify gene expression and the relative
quantification was calculated as 2~22Ct, Melting curve analysis was employed to exclude non-specific
amplification products.

4.6. Western Blot

Equal amounts of proteins were resolved in 10% SDS-PAGE and electrotransferred to nitrocellulose
membranes. Non-specific binding was blocked for 1 h at room temperature with non-fat milk
(5%) in TBST buffer (50 mM Tris-HCI, pH 7.4, 150 mM NaCl, 0.1% Tween 20). Membranes were
exposed to primary antibodies directed against GAPDH (Santa Cruz sc-25778), CTGF (NovusBio,
Littleton, CO, USA) and collagenl (ORIGENE TA309096) (overnight at 4 °C) and incubated
with a secondary peroxidase-conjugated antibody for 1 h at room temperature. The signal was
detected with SuperSignals West Pico Chemiluminescent substrate solution (Pierce) according to the
manufacturer’s instructions.
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4.7. Transepithelial Resistance (TER)

Millicell-ERS ohmmeter with electrodes (Millipore) was used to measure TER (alternating current
applied between the electrodes: +20 pA and frequency: 12.5 Hz). The resistance of the monolayer
multiplied by the effective surface area was used to obtain the electrical resistance of the monolayer
(Q cm?). Once stable resistances were obtained, different culture media (control, EVE 5 nM, EVE
100 nM, TGEF-f 20 ng/mL) were tested. After the addition of test solutions, measurements were taken
at 24 h.

4.8. Statistical Analysis

For transcriptomics statistical analyses were carried out by Genespring GX 11.0 software (Agilent
Technologies). Gene probe sets were filtered based on the FDR method of Benjamini-Hochberg
and fold-change. Only genes that were significantly (adjusted-p value < 0.05 and fold-change > 1.5)
modulated were considered for further analysis.

In the miRNome analysis, after normalization (Quantile method), unpaired ¢-test (p-value cut-off:
0.05 and fold-change cut-off: 2.0, after Benjamini-Hochberg multiple testing correction) was employed
to identify most differentially expressed probes.

For the statistical analysis of RT-PCR and western-blot, differences between control and treated
cell were compared using Student’s {-test. A p-value < 0.05 was set as statistically significant.

Supplementary Materials: Supplementary materials can be found at http:/ /www.mdpi.com/1422-0067/19/4/
1250/s1.
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