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Abstract

Motivation: Complex diseases involve perturbation in multiple pathways and a major challenge in clinical genomics
is characterizing pathway perturbations in individual samples. This can lead to patient-specific identification of the
underlying mechanism of disease thereby improving diagnosis and personalizing treatment. Existing methods rely
on external databases to quantify pathway activity scores. This ignores the data dependencies and that pathways
are incomplete or condition-specific.

Results: ssNPA is a new approach for subtyping samples based on deregulation of their gene networks. ssNPA
learns a causal graph directly from control data. Sample-specific network neighborhood deregulation is quantified
via the error incurred in predicting the expression of each gene from its Markov blanket. We evaluate the perform-
ance of ssNPA on liver development single-cell RNA-seq data, where the correct cell timing is recovered; and two
TCGA datasets, where ssNPA patient clusters have significant survival differences. In all analyses ssNPA consistent-
ly outperforms alternative methods, highlighting the advantage of network-based approaches.
Availability and implementation: http://www.benoslab.pitt.edu/Software/ssnpa/.
Contact: benos@pitt.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression profiling by RNA-sequencing has become routine
tool in biomedical research. Similarly, on the clinical side, RNA-seq
has now been introduced as a cost-effective diagnostic tool
(Cummings et al., 2017; Kremer et al., 2017). Moreover, recent
technological advances have made the assessment of gene expression
at single-cell level (scRNA-seq) feasible, opening new avenues to de-
velopmental biology and the study of dynamic networks (Chen
et al., 2018; Villani et al., 2017; Zhao et al., 2018). Consequently,
the number of large RNA-seq datasets keeps growing with hundreds
or thousands of samples representing a single clinical or cellular con-
dition. As a result, the scientific questions have shifted away from
simple differential expression to characterizing the molecular het-
erogeneity of disease phenotypes. One simple way to characterize
sample heterogeneity is via clustering and/or dimensionality reduc-
tion. This approach will often reveal distinct sample groups within
the population but ignores the fact that genes are organized in regu-
latory networks. On the other end of the spectrum, there has been
considerable development in methods that quantify pathway activa-
tion on a single sample level [ssGSEA (Barbie et al., 2009), PLAGE
(Tomfohr et al., 2005), GSVA (Hanzelmann et al., 2013), Pathifier
(Drier et al., 2013)]. However, these methods rely heavily on

existing pathway information (e.g. from KEGG, BioCarta, The
Nature Pathway Interaction Database), which may be incomplete,
not well annotated or irrelevant to the studied phenotype or condi-
tion. A related method, N-of-1-pathways (Gardeux et al., 2014; Li
et al., 2017a), predicts deregulated pathways from a single patient
but requires multiple measurements for each patient (e.g. matched
cancer-control), which are not usually available; and not applicable
to scRNA-seq data. Other methods (e.g. Mohammadi et al., 2018)
quantify a sample-to-sample similarity aiming to identify similarities
and differences between cell functions.

In this article, we present a different approach for assessing,
qualitatively and quantitatively, how the gene network of a set of
control samples is perturbed in a newly presented (query) sample.
Our approach, Single Sample Network Perturbation Assessment
(ssNPA), uses causal modeling to first learn the gene expression
interaction network from a set of reference samples; and for each
query sample the method assesses the part(s) of the ‘reference sample
network’ which are deregulated. The rationale behind this is that in
many diseases an observed phenotype may be due to changes in dif-
ferent parts of the ‘healthy’ gene network.

Causal graphs have been used in the past to learn gene networks
from expression data (Friedman, 2004; Sachs, 2005; Sedgewick
et al., 2016) or gene features that are highly predictive of certain
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phenotypes (Huang et al., 2015; Raghu et al., 2018a,b,c; Sedgewick
et al., 2019). ssNPA learns a causal graph from expression data and
for every gene it builds a predictive model based on its Markov blan-
ket. Applying the model to a new sample produces a vector of resid-
uals which quantifies the network level gene dysregulation. These
vectors can also be used to cluster samples into groups and assess
their group characteristics (e.g. developmental time, survival, mo-
lecular mechanisms of phenotype, etc.) or to assign an individual pa-
tient to a disease subcluster. We use this property to evaluate ssNPA
on existing datasets. Specifically, we show that ssNPA separates
well the mouse liver developmental trajectory and cell types in a
scRNA-seq dataset (Yang et al., 2017). We also use RNA-seq data
from The Cancer Genome Atlas (TCGA) (lung and breast cancer
datasets) (Cancer Genome Atlas Network, 2012; Cancer Genome
Atlas Research Network, 2012) to demonstrate that ssNPA-identi-
fied subtypes have better accuracy than alternative approaches with
respect to patient survival and molecular subtype.

2 Materials and methods

Datasets. A murine liver cell development scRNA-seq dataset (Yang
et al., 2017) was obtained from GEO (GSE90047). The dataset con-
sists of gene expression measurements in 447 cells over the course of
embryonic days E10.5–E17.5. Cells were first sorted with
fluorescence-activated cell sorting (FACS) according to the cell sur-
face markers Delta-like (DLK) to identify hepatocytes and epithelial
cell adhesion molecule (EpCAM) to identify cholangiocytes.
scRNA-seq counts were used as input to ssNPA.

The Cancer Genome Atlas (TCGA) RNA-seq data from breast
invasive carcinoma (BRCA) and lung adenocarcinoma (LUAD) were
downloaded from the Broad Firehose (Broad Institute Cancer
Genome Analysis group, https://gdac.broadinstitute.org). The
BRCA dataset consists of RNA-seq normalized gene counts for
1100 cancer samples and 112 normal samples (Cancer Genome
Atlas Network, 2012). The LUAD dataset consists of RNA-seq nor-
malized gene counts of 517 cancer samples and 59 normal samples
(Cancer Genome Atlas Research Network, 2012).

Data preprocessing. Lowly expressed genes were filtered out
with the filterByExpr function (edgeR v. 3.26.8)(Robinson et al.,
2010), and the RNA-seq counts were transformed to log2 counts
per million through mean-variance modeling by the voom function
(Limma v. 3.40.06) (Ritchie et al., 2015). For speed and accuracy,
we selected the top 3000 most variant genes for each dataset for in-
put to ssNPA.

Sample clustering. In order to better evaluate the efficiency of
the various methods for single sample subtyping, we performed sam-
ple clustering using Seurat (Butler et al., 2018), and we examined
various external characteristics of the clusters. Samples were clus-
tered in their feature space. First, the samples are projected into
principal component space. The number of principal components to
retain in the projection is determined heuristically by identifying the
elbow of the scree plot. Then clustering is performed with a graph-
based clustering that constructs the shared nearest neighbor graph
and then optimizes the modularity function (Waltman and van Eck,
2013). Finally, the clusters are visualized with a nonlinear dimen-
sionality reduction (t-SNE) (van der Maaten and Hinton, 2008).

Method comparison. ssNPA methods were compared to
Pathifier (Drier et al., 2013) and single sample gene set enrichment
analysis (ssGSEA) (Barbie et al., 2009). All methods were tested on
the same input data and reference sample selections. For Pathifier,
we provided gene lists for all KEGG pathways provided by
KEGGRest in R (Tenenbaum, 2016) for the appropriate organism,
and used the R implementation of Pathifier with the quantify_path-
ways_deregulation() function and default parameters. For ssGSEA,
we used the gene sets from the C2 collection of the Molecular
Signatures Database (Subramanian et al., 2005) version 7.0 for the
TCGA datasets and version 5.2 with mouse identifiers downloaded
from http://bioinf.wehi.edu.au/software/MSigDB/index.html for the
murine liver cell development scRNA-seq dataset. We applied the
implementation of ssGSEA provided within the GSVA() function of

the GSVA R package with default parameters. For fairness, we use
10 principal components for clustering with each method.

3 Results

3.1 Description of ssNPA and ssNPA-LR algorithms
ssNPA learns the global gene expression network as a directed
(causal) graph from a set of reference samples using the Fast Greedy
Equivalent Search (FGES) algorithm (Ramsey et al., 2017). FGES
calculates a directed acyclic graph (DAG) over all data by maximiz-
ing the Bayesian Information Criterium (BIC) score of the data given
the model (network). The BIC score is given by the formula:

BIC ¼ �2 � L Dð Þ þ PD � df � lnn (1)

where L Dð Þ ¼ lnPðDjh;MÞ is the maximum log-likelihood of the
data (D) given the structural model (M) and its parameters (h); PD is
a penalty value (‘penalty discount’) that controls sparsity (PD ¼ 1 in
the standard BIC definition); df is the degrees of freedom; and n is
the sample size. This score is decomposable and the total BIC of the
graph is the sum of the BIC of its nodes and their parents. FGES
starts with an empty graph then adds single edges while the BIC
score increases. Next, the algorithm removes single edges while the
BIC score increases.

For DAGs, the Markov blanket of a gene Gi (MB(Gi)) consists of
the parents, children and spouses of Gi in the graph. If the graph
contains also undirected edges then the Markov blanket includes
also nodes on those edges, if they could potentially be part of the
Markov blanket in the directed graph. Once the graph has been
learned from the reference (control) samples, then ssNPA uses the
Markov blanket around each gene, Gi, to build a predictor of its ex-
pression. This is because in this type of directed graph every variable
Gi is independent of any variable that does not belong to the
MB(Gi), conditioned on the MB(Gi). Therefore, a highly predictive
regression model can be learned for the expression of each gene:

Gi ¼ b0;i þ
X

Gk2MBðGiÞ
bk;i �Gk þ e (2)

Then for each new sample this model can be used to calculate
the deviation of the expression of Gi in this sample compared to the
reference samples. We are only interested in the magnitude of the de-
viation, so we calculate the squared regression residual:

Gi � b0;i þ
^X

Gk2MBðGiÞ
bk;i �Gk

� �2

(3)

where Gi is the observed gene expression value of gene i in the query
sample. Thus, the new sample can be represented as a vector of devi-
ations of expression of every gene from the reference samples. Given
that genes are connected through the network of interactions, in this
way, we assess both the topology and the magnitude of network per-
turbations. The idea behind this approach is that diseases are usually
defined by symptoms, but the underlying molecular mechanisms
may differ from patient to patient. In other words, a group of
patients may have perturbations in subnetwork A, another in sub-
network B, etc. (Fig. 1). Identifying which part of the reference net-
work is perturbed in each patient can provide insights on the
mechanisms of disease and can be used to identify new
subphenotypes.

For comparison purposes, we also implemented ssNPA-LR, in
which causal learning is substituted by lasso regression, resulting in
an undirected graph. ssNPA and ssNPA-LR analysis procedures
have the following steps:

1. Reference samples. For disease data, we used the controls as ref-

erence sample set. For the liver scRNA-seq, we tested each devel-

opmental stage (as determined by external cell markers)

individually and all together as potential reference groups.

2. Gene network learning (ssNPA). A directed graph is learned

from expression data from the reference group (FGES algorithm)
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(Ramsey et al., 2017). For this work, we scan over a number of

PD values in the range [4, 12], and we choose a PD for each

dataset that balances grouping the reference samples together

while not overfitting. The Markov blanket around every gene in

this network is used for predicting its expression on any given

sample with a linear model, and the deviation from the observed

value is a measure of network perturbation.

3. Feature selection (ssNPA-LR). In this case, we used the glmnet

package in R (v. 2.0.18) to learn a lasso regression prediction

model for every gene across the reference samples (Friedman

et al., 2010). We chose each sparsity parameter (k) with 10-fold

cross-validation, selecting the value of k corresponding to min-

imum mean cross-validated error.

3.2 ssNPA correctly identifies embryonic stage and cell

type in murine liver cells from single-cell RNA-seq data
We used a recently published liver development scRNA-seq dataset
to test ssNPA and compare it to other methods. This dataset is com-
posed of multiple types of liver cells samples at a series of develop-
mental timepoints. The early hepatoblast cell differentiates into two
lineages (hepatoblasts and cholangiocytes). In this dataset, the time
point and cell-identity are experimentally controlled and thus can
serve as the ground truth. We hypothesize that information regard-
ing the cell-type and developmental stage is reflected in the gene ex-
pression data and leveraging information about gene regulatory
network deregulation can improve separation according to these
classes. To quantitatively compare the clustering performances of all
methods, we used the normalized mutual information (NMI) and
adjusted Rand index (ARI) to assess how well the cluster assign-
ments match true cell-type and developmental stage classes.

When gene expression data used directly for clustering
(Waltman, 2013), we identified five clusters (NMI ¼ 0.50,
Supplementary Fig. S1A). These clusters separated well the extreme
developmental time points: cells measured at day E10.5 and hepato-
cytes from day E17.5 (Fig. 2A). However, all of the differentiated
cholangiocytes were grouped together in a single cluster and al-
though they were somewhat stratified within the cluster, their em-
bryonic stage was not distinguishable. The remaining clusters
contained a mix of intermediate timepoints (days) and hence they
did not accurately represent the developmental trajectory.

By contrast, the eight identified clusters based on the network
perturbation features of ssNPA (Supplementary Fig. S1B) separated
well all stages (NMI ¼ 0.62, Fig. 2B). In particular, hepatoblasts
from days E10.5 and E11.5 as well as mature cholangiocytes and
E17.5 hepatocytes were separated into four distinct clusters.
Because the E15.5 cells were used as the reference set, these cells

were well-separated into two clusters, one comprised of the hepato-
blasts and another comprised of the cholangiocytes. Since there was
not an obvious reference set of samples in this dataset, we examined
the utility of each group as a potential reference. We additionally
evaluated a range of PD (penalty discount) parameter values for
FGES [4, 12]. We found the late intermediate stages (E14.5 or
E15.5) to show better performance than the extremes when they
were used as reference set (Supplementary Fig. S2). We also
observed that performance increase with smaller PD values, al-
though we expect this to be a dataset-dependent effect.

We further evaluated the importance of the reference group se-
lection by choosing random groups of cells to use as the reference.
We generated five separate lists of the 70 cells (the median number
of cells across time points) randomly chosen from the 447 cells in
the dataset and used these as the reference group with ssNPA. These
reference groups did not lead to good separation of the cells accord-
ing to timepoint and cell type, and notably the performance
decreased sharply with lower PD values (Supplementary Fig. S2).
This suggested that fitting the network to a group of cells that do
not share similar gene regulatory structure was very detrimental to
ssNPA performance, and thus choosing a group of reference samples
that we expect to have similar regulatory patterns is the more im-
portant consideration compared to which particular group we
choose.

scRNA-seq is still a developing technology and many of scRNA-
seq experiments do not provide as high-quality data as the dataset
we have used for benchmarking here. To simulate this phenomenon,
we downsampled the number of genes and then the number of
cells we use as input to ssNPA (Supplementary Fig. S3). Using E15.5
as the reference group and PD ¼ 4, we observed that ssNPA per-
formance was relatively robust with at least 85% of the 3000 genes
selected (mean NMI ¼ 0.58) but began to decrease by 80% (mean
NMI ¼ 0.56) and more steeply by 50% (mean NMI ¼ 0.52). With
only 25% of the genes, performance was very poor (mean NMI ¼
0.39). Similarly, we simulated smaller datasets with fewer cells by
downsampling but maintaining the same proportions of cells in each
timepoint and cell-type category. Performance bottomed out with
80% of cells (mean NMI ¼ 0.50). It was not feasible to test smaller
subsets with 75% of cells or less. As the number of cells decreased,
any given timepoint did not include enough cells to use as an appro-
priate reference group for the network-learning step of ssNPA.

Next, we compared ssNPA to Pathifier and ssGSEA. Both meth-
ods quantify gene interactions but require pathway information
from an external database. For Pathifier, we used the KEGG path-
way database (Kanehisa and Goto, 2000). Using the cells from

Fig. 1. Overview of ssNPA. Gene interaction network is learned as directed graph

from reference samples and a regression model is trained for each gene using its

Markov blanket as predictors. For each new query sample, the expression of each

gene is predicted from its model and squared prediction errors (deviations) calcu-

lated between this and the observed values. Query samples may deviate from the ref-

erence network at different subnetworks (A, B, C, etc.). Clustering can then be

performed on the deviation space to produce sample subtypes with deregulated

subnetworks
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Fig. 2. Comparison of how well (A) gene expression, (B) ssNPA, (C) Pathifier and

(D) ssGSEA separate murine liver cell scRNA-seq samples by developmental stage

and cell type. ssNPA was used with the E15.5 cells as the reference set and PD ¼ 4.

Pathifier was applied with the E13.5 cells as the reference set. Clustering for every

method was performed with the first 10 principal components
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E13.5 as the reference group with Pathifier led to the best perform-
ance (NMI ¼ 0.53), but the performance was quite consistent across
all the timepoints we tested as reference groups and even with ran-
domly chosen reference cells (Supplementary Fig. S4). With E13.5 as
the reference group, Pathifier produced six distinct clusters
(Supplementary Fig. S1C), but with the exception of E10.5 and
E17.5, it did not separate the developmental stages very well
(Fig. 2C). The cholangiocytes from all stages were grouped together,
but all of the intermediate stage hepatocytes were mixed together
and distributed across three clusters. Furthermore, the runtime of
Pathifier was very long compared to ssNPA (on the order of hours
compared to minutes). Finally, we tested ssGSEA which calculates a
gene set enrichment score for every sample. We used ssGSEA with
default parameters and the gene sets from the C2 collection of the
Molecular Signatures Database version 5.2 with mouse identifiers
(Subramanian et al., 2005). ssGSEA does not require the user to pro-
vide a reference set. Clustering with the ssGSEA produced five
clusters (Supplementary Fig. S1D), but in general, these were not
well-separated according to developmental time point (NMI ¼ 0.48,
Fig. 2D). The cholangiocytes were grouped into one cluster and the
hepatocytes from E10.5 and E17.5 were each in their own cluster.
However, the remaining hepatoblasts/hepatocytes spanning E11.5–
E15.5 were mixed together and divided between two clusters.

We additionally developed and tested a variation of ssNPA, the
ssNPA-LR algorithm, which uses lasso regression instead of causal
network learning to choose the features predicting the expression of
a gene (Supplementary Fig. S5A). We found seven clusters
(Supplementary Fig. S5B), which separated well both the early and
late developmental stages hepatocytes and the cholangiocytes, as
well as the E13.5 cells which were used as the reference group (NMI
¼ 0.60). The other three clusters contained more of a mix of the
intermediate timepoint hepatocytes. Although using E13.5 as the
reference group led to highest NMI, E14.5 and E15.5 had almost
identical performance and all timepoint groups were mostly consist-
ent (Supplementary Fig. S6). As with ssNPA, however, choosing ran-
dom cells as the reference group did lead to poor clustering results
(mean NMI ¼ 0.33).

Table 1 presents all the clustering performance results for the
various methods we tested. We found that ssNPA and ssNPA-LR
clearly outperform Pathifier, ssGSEA and gene expression by maxi-
mizing NMI (0.62 and 0.60, respectively). ssNPA also returned the
highest ARI of these methods (0.49). However, we note a strong ad-
vantage to ssNPA over ssNPA-LR when we consider how many
genes they utilized. On average, ssNPA used only 3.6 predictors for
every gene, while ssNPA-LR needed 13.5 genes. This could suggest
that the lasso regression step is overfitting compared to feature selec-
tion by causal network which jointly models the expression of all
3000 genes. Additionally, the runtime for ssNPA-LR is much slower
than for ssNPA because of the cross-validation step needed to select
a lasso regression sparsity parameter for every gene.

Finally, we note that the ssNPA gene network deregulation fea-
tures offer the additional benefit of being directly interpretable and
can identify which points in the network are being deregulated in
ways that lead to different subtypes. In order to investigate which
genes contributed to cluster identification, we used the magnitude of
the PCA loadings for the principal components used in clustering

(Supplementary Table S1). These genes with the highest loadings are
the ones whose network is most deregulated in all the cells com-
pared to the reference group (E15.5) and are differentially regulated
across development and differentiation. Mbd3 encodes a transcrip-
tion factor and was a top gene for PC 1. It is known to be involved
in the nucleosome remodeling deacetylase (Mi-2/NuRD) corepressor
complex in mice (Hendrich et al., 2001) and in separate, recent
scRNA-seq study of murine liver cell development was linked to
hepatoblast-specific network regulation (Su et al., 2017).
Additionally, the human ortholog MBD3 plays an important role in
TGFb/Smad signaling during the epithelial-mesenchymal transition
in pancreatic cancer (Xu et al., 2017) and inhibits the formation of
liver cancer stem cells (Li et al., 2017b). Fubp3 is another gene
encoding a transcription factor, FBP, that had a top loading for
PC 1. FBP is an important regulator of Myc (He et al., 2000), which
in turn is one of the most important regulators of cell differentiation.
FBF knockout in mice is embryonic lethal from E10.5 to birth, and
FBP loss is associated with pale liver, trilineage anemia and number
of other severe phenotypes in mice (Zhou et al., 2016). These results
lend support to our finding that differential regulation of genes like
Mbd3 and Fubp3 occurs throughout liver development and demon-
strate how ssNPA can directly highlight some of the most important
effectors in a gene regulatory network.

3.3 ssNPA clusters in breast cancer samples matching

the molecular subtypes and significantly differ in

survival
We also applied the various methods on breast cancer RNA-seq
data from tissues of known subtype. Our dataset was comprised of
127 basal, 41 HER2þ, 488 luminal A and 144 luminal B samples.
ssNPA identified five clusters that were significantly associated with
molecular subtype (v2 ¼ 609.52, P<2.2e-16). The majority of the
basal tumor samples (85%) were grouped together in cluster 3
(Fig. 3A and Supplementary Fig. S7A). The two luminal subtypes
were not completely separated; 88% of the luminal A samples were
distributed evenly among the final three clusters (0, 1 and 2), and
two of these clusters (0 and 1) also contained a large number of the
luminal B samples (51%). However, an additional 35% of the lu-
minal B samples were in cluster 4, which also contained 73% of the
HER2þ samples but only 8% of the luminal A samples.
Additionally, the five ssNPA clusters were significantly associated
with survival (P¼0.0015), which further suggests that ssNPA is
able to use information about gene network deregulation to separate
the BRCA tumor samples in a clinically meaningful way (Fig. 3D
and Supplementary Fig. S8A).

The other methods produced a similar result with respect to mo-
lecular subtype clustering (Fig. 3 and Supplementary Figs S7 and
S8). Pathifier identified nine clusters that were also significantly
associated with molecular subtype (v2 ¼ 596.23, P<2.2e–16).
These clusters were also significantly associated with survival, but
with a slightly larger P-value than ssNPA (P¼0.0021). Finally,
ssGSEA identified four clusters which were also significantly associ-
ated with molecular subtype (v2 ¼ 535.62, P<2.2e-16). However,
these clusters did not significantly associate with survival (P¼0.18).
Altogether, we see that ssNPA can perform similarly well to com-
parable methods in separating breast cancer samples according to
their molecular subtypes with the additional advantage of separating
samples according to high-level clinical endpoints such as patient
survival.

Finally, we again note that the ssNPA gene network deregulation
features can directly offer insight into where the gene regulatory net-
works differ across clusters. The genes with the top PC loadings are
those whose deregulation is most responsible for separating the
BRCA sample clusters (Supplementary Table S2). The top gene for
PC 1 was ITM2A, and a recent study demonstrated that the down-
regulated expression of this gene is associated with breast cancer
and poor survival outcomes (Zhou et al., 2019). Additionally, the
authors found that overexpression of ITM2A significantly inhibited
breast cancer cell proliferation and was involved in positive regula-
tion of autophagy. We observed a similar trend in our results;

Table 1. Comparison of different feature calculation methods

Method NMI ARI Avg no. feat.

ssNPA 0.62 0.49 3.6

Gene expression 0.50 0.37 NA

Pathifier 0.53 0.40 NA

ssGSEA 0.48 0.35 NA

ssNPA-LR 0.60 0.48 13.5

Note: Clustering for every method was performed with the first 10 princi-

pal components. E15.5 were used as reference cells for ssNPA and E13.5 were

used as the reference for Pathifier and ssNPA-LR. PD¼ 4 for ssNPA.

NMI, normalized mutual information; ARI, adjusted Rand Index.
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expression of ITM2A was the highest for the samples in cluster 2
which was also the group that had the best survival outcomes
(Supplementary Fig. S9). Clusters 0, 3 and 4 had lowest expression
of ITM2A and were grouped together with worst survival outcomes.
TNN had the second largest loading for PC 1, and its expression is
known to be induced in breast cancer metastasis in the bone via
regulation by SMAD4 and TGFb1-signaling (Chiovaro et al., 2015).
As with ITM2A, expression of TNN varied in a cluster-dependent
manner in our dataset (Supplementary Fig. S9B). Reduced expres-
sion of another top loading gene, SCN4B, has been associated with
high-grade primary and metastatic tumors, increased RhoA activity
and increased cell migration and invasiveness (Bon et al., 2016). On
the other hand, overexpression of SCN4B led to reduced tumor pro-
gression. Again, we saw in our data that expression of SCN4B var-
ied according to cluster and tracked with the survival outcomes of
these clusters (Supplementary Fig. S9C). As a final example,
HOXA7 was another top gene that plays an important role in breast
cancer. Knockdown of HOXA7 leads to decreased cell proliferation,
ERa expression and PR expression (Zhang et al., 2013). HOXA7 is
regulated through the HMGA2/TET1/HOX signaling pathway in
breast cancer, which is also predictive of patient survival (Sun et al.,
2013). This agrees with our observation that HOXA7 was most
highly expressed in cluster 2 which is mostly comprised of luminal A
samples that are ERþ and PRþ (Supplementary Fig. S9D). Mean ex-
pression of HOXA7 was lowest in cluster 3 which is mostly made
up of basal samples that are ER- and PR-. These are just a few such
examples from the list of top PC loading genes identified by ssNPA,
but they highlight the utility of the approach for identifying the key
players in the underlying molecular mechanisms of disease subtypes.
Other top genes we identified do not yet have well-documented roles
in breast cancer, but our work suggests they would be strong targets
for research into the mechanism of the disease. For example,
CLDN11 encodes a tight junction-associated protein and is known
to play a role in head and neck (Li et al., 2018), gastric (Agarwal
et al., 2009) and brain cancers (Katsushima et al., 2012).
Computational analyses have identified the gene as a biomarker for
breast cancer survival (Meng et al., 2016), but its mechanistic role in
the disease has not yet been directly investigated.

3.4 ssNPA identifies patient subclusters with different

survival rates in lung adenocarcinoma
We also tested ssNPA in subtyping patients in the context of lung
adenocarcinoma, a disease for which there is no subtyping ground
truth. The normal samples were used as reference dataset when
needed (ssNPA, Pathifier), but they were omitted during clustering
in order to better facilitate the discovery of new disease subtypes.

ssNPA features resulted in four clusters with significantly different
survival rates (P<0.0001, Fig. 4A and Supplementary Fig. 10A).
Subjects who maintain the greatest survival probability through the
first 1500 days were grouped into clusters 1 and 2 (Fig. 4D and
Supplementary Fig. S10A). Similarly, subjects with the worst sur-
vival were all clustered together in cluster 3. The final cluster was
comprised of subjects with an intermediate survival phenotype.
While we observe large differences in survival curve at later time
points (after 1000 days), these have very few subjects and thus con-
tribute little to the reported P-value. Survival differences across
Pathifier and ssGSEA clusters (Supplementary Fig. S10B and C)
were also significant (P¼0.00059 and P<0.0001, respectively).
This suggested that these pathway-based approaches are better able
to reflect variation in this particular lung cancer dataset compared
to the other examples we tested; however, it is was not obvious a
priori that this would be the case, and ssNPA was able to perform
equally well without requiring any prior information.

Similar to our analysis of breast cancer, ssNPA features can be
used not only to separate patients into groups with coherent clinical
phenotypes but also investigate the specific network perturbations
that underlying differences among clusters. Supplementary Table S3
lists the top 10 genes based on their factor loadings for the first 10
principal components of the ssNPA features. Notably, many of these
genes have well-documented connections to lung physiology and
cancer biology. For example, PRR11 was a top gene for PC 1 and its
expression is known to play an important role in promoting cell pro-
liferation in non-small-cell lung cancer (Ji et al., 2013). Silencing
this gene inactivates the Akt/mTOR signaling pathway, suppresses
cell proliferation and triggers autophagy in human lung cancer cells
(Zhang et al., 2018). Indeed, we saw that PRR11 expression tracked
with survival outcomes, with samples in cluster 3 having both the
highest expression of PRR11 and the worst survival outcomes clus-
ter expression decreasing in the order of improving survival
(Supplementary Fig. S11A). Another gene we identified, FAM83, is
a known oncogene involved in many types of cancer (Snijders et al.,
2017). FAM83 plays a role in activating the CRAF/MAPK/mTOR
signaling, and its expression is associated with higher tumor grade
and worse survival (Cipriano et al., 2012, 2014). Again, in our data
FAM83D was most highly expressed in cluster 3 which also had the
worst survival outcome (Supplementary Fig. S11B). As a final ex-
ample, we found the deregulation of AQP1 played an important role
in separating the LUAD clusters. This gene has been found to be
overexpressed in lung cancer cell lines and linked to increased cell
proliferation (Hoque et al., 2006; Xie et al., 2012). Knockdown of
the gene leads to decreased migration and invasiveness and
decreased expression of MMP-2 and MMP-9 (Wei and Dong,
2015). It is also thought to interact with many other important sig-
naling pathways in the cell including the Wnt/b-catenin/Lin-7 and

Fig. 3. Separation of breast cancer RNA-seq samples according to tumor molecular

subtype by (A) ssNPA, (B) Pathifier and (C) ssGSEA. ssNPA was used with PD¼10.

Clustering for all methods was performed with the first 10 principal components.

Molecular subtype was assigned according to estrogen receptor (ER), progesterone

receptor (PR) and human epidermal growth factor receptor 2 (HER2) status. We de-

fine ER-negative, PR-negative and HER2-negative as basal (triple-negative); ER-

negative, PR-negative and HER2-positive as HER2þ; ER-positive, PR-positive and

HER2-negative as luminal A; and ER-positive, PR-positive and HER2-positive as lu-

minal B. Breast cancer subject survival by clusters discovered with (D) ssNPA, (E)

Pathifier and (F) ssGSEA. Survival curves are truncated to only display points for

which at least 10 subjects survive; however, analysis was performed with the full

dataset as shown in Supplementary Figure S8

Fig. 4. Lung adenocarcinoma RNA-seq sample clusters (top row) and subject sur-

vival by cluster (bottom row) as discovered with (A) ssNPA, (B) Pathifier, (C)

ssGSEA. Survival curves are truncated to only display time points for which at least

10 subjects survive; however, analysis was performed with the full dataset (see

Supplementary Fig. S10). ssNPA was used with PD¼ 8. Clustering for all methods

was performed with the first 10 principal components
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FAK/PI3K/AKT pathways (Tomita et al., 2017). Interestingly, its ex-
pression varied in a cluster-dependent manner in our samples but
was highest in cluster 1 which had relatively good survival outcomes
and lowest in cluster 3 which had poor outcomes (Supplementary
Fig. S11C). Further study will useful in understanding its exact role
and regulation in lung cancer.

These are just a few of the genes we identified with ssNPA, but
there were many others that have important connections to lung
cancer. Additionally, several of the genes we found do not yet have
well-documented links to lung cancer but are highly suggestive. For
example, the top gene we identified for PC 1 was CAPN3 whose
mutation is associated with dominantly inherited limb girdle muscu-
lar dystrophy. The gene encodes an unusual protein that is activated
by Naþ and undergoes fast and exhaustive autodegradation which
makes it difficult to study, although it can still carry out some of its
protease function afterward (Ono et al., 2016). Other members of
the calpain family have been implicated in cancer development and
progression and have been proposed as possible targets for treat-
ment (Leloup and Wells, 2011), and CAPN3 specifically has been
linked melanoma progression through p53 accumulation and regu-
lation of oxidative stress-related pathways (Moretti et al., 2015).
We saw that CAPN3 expression varied by cluster with highest ex-
pression in cluster 1 and lowest expression in cluster 3
(Supplementary Fig. S11D). Because deregulation of CAPN3 played
such a large part in separating the LUAD clusters with ssNPA, fur-
ther study of its role in lung cancer specifically is merited.

4 Discussion

We presented ssNPA, a new method to assess gene network pertur-
bations in single samples. The method first infers the global network
from a set of reference samples using causal graph learning. In the
following step, given a new sample, the method calculates its devi-
ation from the reference network at every gene, thus providing infor-
mation about both the topology and the magnitude of network
perturbations. The perturbation feature vector can be used to cluster
samples into cell or disease subtypes. We demonstrated the perform-
ance of ssNPA by using it to evaluate cluster memberships of data-
sets with known ground truth; specifically, liver development cells
(time course scRNA-seq data) and TCGA breast and lung cancer
data. In the first case, we showed that ssNPA performs better than
currently used methods and from simple gene-based clustering on
finding the true developmental stage and type of the cell. This
showed that network perturbation features can recapitulate the time
course data. In this dataset, we found that using one of the middle
developmental stages (which are equadistant from both progenitor
and fully differentiated extremes) as reference point allows for better
results. This is likely to be the case in all datasets where changes of
the regulatory network depend on time. This is because using a mid-
dle point as reference is more likely to be able to capture most regu-
latory changes in whole time spectrum.

In the cancer data we identified clusters of patients either with
good agreement with known histologically determined cancer sub-
types (breast cancer) or with significant differences in survival (lung
adenocarcinoma). Both these cases demonstrate the ability of ssNPA
to identify disease subtypes, which is the most significant problem in
developing personalized medicine strategies, especially in complex
diseases.

We also compared ssNPA to ssGSEA and Pathfinder, two known
methods for single sample analysis. In all cases ssNPA performed
better than these methods as evidenced by the greater agreement of
the ssNPA-identified clusters to the ground truth and the more sig-
nificant differences in survival rates in the cancer cases. Network de-
regulation features also capture differences in the topology of the
network of each sample from the reference samples as well differen-
ces in the resulting gene expression outputs from those networks.
The better performance of ssNPA versus ssGSEA and Pathfinder
might reflect the fact that the latter depend on prior knowledge that
might not be very accurate or might not reflect the particular condi-
tions in the studied dataset.

In summary, ssNPA is a new method for characterizing single
samples of gene expression and offers significant advantages over
existing methods. Unlike ssGSEA and Pathifier, it does not require
prior pathway knowledge; it is substantially faster than Pathifier;
and can be used to produce high-quality sample clusters that reflect
the underlying mechanisms of the disease condition or phenotype.
Although in this work we used only 3000 genes so we can compare
ssNPA to Pathifier, ssNPA can run on any arbitrary number of
genes, if it is used with the parallelized FGES version. In the future,
ssNPA can be used for analyzing disease data to identify disease sub-
phenotypes and help develop personalized intervention strategies.

Data access

All data used in this project come from published papers and public-
ly accessible data sources (TCGA) as it is described in Materials and
Methods.

Software availability

ssNPA is currently freely available from http://www.benoslab.pit-
t.edu/Software/ssnpa/. We also include code and all software version
information for the analyses for this article in the form of R mark-
down files, as well as the input dataset files.
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