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Abstract

We address the question of color-space interactions in the brain, by proposing a neural field

model of color perception with spatial context for the visual area V1 of the cortex. Our frame-

work reconciles two opposing perceptual phenomena, known as simultaneous contrast and

chromatic assimilation. They have been previously shown to act synergistically, so that at

some point in an image, the color seems perceptually more similar to that of adjacent neigh-

bors, while being more dissimilar from that of remote ones. Thus, their combined effects are

enhanced in the presence of a spatial pattern, and can be measured as larger shifts in color

matching experiments. Our model supposes a hypercolumnar structure coding for colors in

V1, and relies on the notion of color opponency introduced by Hering. The connectivity ker-

nel of the neural field exploits the balance between attraction and repulsion in color and

physical spaces, so as to reproduce the sign reversal in the influence of neighboring points.

The color sensation at a point, defined from a steady state of the neural activities, is then

extracted as a nonlinear percept conveyed by an assembly of neurons. It connects the corti-

cal and perceptual levels, because we describe the search for a color match in asymmetric

matching experiments as a mathematical projection on color sensations. We validate our

color neural field alongside this color matching framework, by performing a multi-parameter

regression to data produced by psychophysicists and ourselves. All the results show that we

are able to explain the nonlinear behavior of shifts observed along one or two dimensions in

color space, which cannot be done using a simple linear model.

Author summary

The color perception produced by an image heavily depends on the spatial distribution of

its colors. From this “color in context” phenomenon, extensively studied in psychophysics

for decades, has arisen the question in neuroscience of how color and space interact in the

brain. Visual signals are indeed processed in such a way that neighboring pixels make the

perception at some point different from its real color, inducing a color shift. In this work,

we propose to emulate perception in context by modeling the activity of color sensitive

neurons with a neural field. Our framework unifies two antagonistic effects, assimilation
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and contrast, which have been suggested to occur simultaneously but at different scales.

We use the notion of color opponency inspired by the work of Hering, so as to express

these effects as a combination of attraction and repulsion in physical and color spaces. We

introduce the concept of “color sensation”, and show how to rigorously link the neural

field model to perceptual shifts, by considering color matching as a mathematical projec-

tion on color sensations. The results show that our model is able to reproduce some non-

trivial behaviors of the color shifts observed in experiments.

Introduction

Color induction, which refers to a change in color appearance of a test stimulus under the

influence of spatially neighboring stimuli in the field of view [1], has been extensively studied

in psychophysics [2]. This effect has been observed for uniform inducing surrounds [3–7] and

geometrically more complex ones as well [8–15]. The geometry of spatial context, and espe-

cially the frequency of chromatic modulation, have been shown to play an important role in

color induction. Many works on this subject have been devoted to the study of two induction

effects in particular, known as chromatic assimilation and simultaneous contrast (see Fig 1).

Chromatic assimilation is the fact that the chromatic appearance of a test stimulus changes

towards the chromaticity of inducing stimuli. Conversely, simultaneous contrast corresponds

to the test chromatic appearance changing away from the chromaticity of inducing stimuli.

Contrast is interesting in that it involves the notion of color opponency: the change is often

made towards an opponent or complementary color [5, 7, 16]. These increased perceptual sim-

ilarity or dissimilarity can be viewed as the results of attractive or repulsive effects respectively

in color space.

While assimilation and contrast had previously been thought to occur separately, [15, 17,

18] suggested that they act simultaneously in a synergistic manner. The idea that effects

induced by context result from a balance between assimilation and contrast was also proposed

in cognition [19]. The experimental settings used by [18] to demonstrate the synergy relied on

asymmetric color matching. In psychophysics, this is a classical procedure to objectively mea-

sure the amount of color induction caused by spatial context. A human observer views two

still color images side by side, a test image Jtest whose pattern influences the perception of a test

color ctest, and a comparison image Jcomp[ccomp] with a modifiable comparison color ccomp (see

Fig 2). In most experiments, the two images have the same geometric patterns and are com-

posed of elementary shapes, such as rectangular, round or concentric patches, uniformly filled

with different colors [3, 7, 20]. The patches to be compared are filled with ctest and ccomp. The

observer is asked to change ccomp until color appearance between the test and comparison

patches are the same, leading to a perceptual match. The perceptual shift is then the difference

between the final color cmatch and the test color ctest. In Fig 3, we illustrate this experiment with

simple square patterns.

In [18], color shifts were measured for patterns with concentric annuli as in Fig 1 (Down),

whose colors were distinguished by the stimulation of S cones only. The matching surround

was a neutral gray. Stimuli were expressed in a variant of the cone-based chromaticity space

proposed by [22] and specified by three coordinates s, l, Y, where s and l are defined as the

ratios S
LþM and L

LþM respectively, and Y stands for luminance. The definition of the S,M, L sig-

nals is recalled below. Their results showed that the largest color shifts in s chromaticity were

induced by patterns alternating between two distinct colors, such as purple and lime. In
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particular, shifts induced by uniform backgrounds or patterns alternating between white and

purple or lime were smaller.

Such large shifts could not be induced by optical factors (spread light or chromatic aberra-

tion) only, but implied some neural processing of the stimuli [23]. To explain this, [18] sug-

gested that stest was shifted towards the adjacent ring thanks to assimilation, while it was also

repelled away from the second ring by contrast, resulting in the matching value smatch. They

proposed a S+/S- center-surround receptive field model to predict the shifts: at a point x in the

test ring,

shift at x≔ smatch � stest ¼ DOG � ðJtest � Jcomp½stest�ÞðxÞ;

where Jtest and Jcomp, in s coordinates, are convolved with a Gaussian kernel beforehand to

account for retinal blurring; the Difference of Gaussians DOG stands for the receptive field.

Color appearance would then be the combined contributions of chromaticity at the point of

interest and influence of the surround filtered by the S+/S- receptive field.

Fig 1. Assimilation and contrast in action (in the style of [17] Fig 1). Up, left. Simultaneous contrast: the small

patches on the left and the right are identical, but they tend to appear darker inside the yellow surround, lighter inside

the dark surround. Up, right. Chromatic assimilation: the same grayish background tends to be blue or green

depending on the color and spatial frequency of the grid covering it. Down. Synergy of both phenomena: the two

central rings are identical, but are perceived as pink or orange when surrounded by concentric annuli with a purple/

lime or lime/purple pattern.

https://doi.org/10.1371/journal.pcbi.1007050.g001

Fig 2. Color matching measures the influence of context over color perception. The green color ctest is tested against

a yellow surround in the test image Jtest. The observer changes the comparison color ccomp inside Jcomp until a match

occurs at cmatch between the two central patches. Color induction is measured as the obtained shift.

https://doi.org/10.1371/journal.pcbi.1007050.g002
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After tuning the parameters, this simple linear model was capable of explaining data in the

specific experimental setting of [18], where the chromaticity s of the test ring was fixed while

that of the surround was changed. However, it was unable to explain the dependency of shifts

upon stest reported in a later paper [17] where, conversely, stest was varied while the surround

was left unchanged. Indeed, in the above equality, the central ring of the difference image Jtest

− Jcomp[stest] has chromaticity s = 0, after cancellation of the test and comparison chromatici-

ties. The model is also conceptually difficult to justify, because it treats the central ring and the

surround as fundamentally different spatial components, while handling single chromaticities

and spatial integrations at the same conceptual level. This prevents their computational frame-

work from being extended to various patterns and other matching experiments.

Here, we build a framework dedicated to general color matching experiments. It is able,

in particular, to explain the nonlinear behavior of color shifts found by [17, 18]. As a starting

point, we reformulate their fundamental observation into a Principle of Synergy which relies

on the notion of color opponency introduced by Hering [16]:

1. Adjacent neighbors surrounding a spatial point x in an image I tend to perceptually attract
towards their color, in the sense that they contribute to make the color appearance at x
more similar to theirs.

2. Remote neighbors tend to repel towards their respective opponent color. They are not

immediately adjacent to x, but at some short distance.

3. Far neighbors are too far from x to have any substantial influence on the color perception

at x.

This viewpoint implies an appropriate change of vocabulary: in the sequel, chromatic assim-

ilation and simultaneous contrast refer to local interactions, which may act at the same time

but at two different local scales. The global effect observed is then the integration of infinitesi-

mal influences induced by spatially neighboring points. Perception can in particular result in

attraction (assimilation wins over contrast), repulsion (contrast wins over assimilation), or

none of them. Thus assimilation and contrast, which seem to be contradictory effects, can be

described as concomitant local phenomena.

Beyond giving a merely computational model, we aim at designing a framework consistent
with the physiological and anatomical observations currently available. Light entering the eye

stimulates L, M and S cones of the retina proportionally to quantal absorption rate [24], in a

Fig 3. A typical color matching experiment. Upper row, left to right. For each of the three pairs of (gray, yellow) large

squares, the central patches have identical colors. TheirHSL coordinates are (120˚, 55%, 46%), (120˚, 85%, 71%), (60˚,

57%, 56%), respectively. The HSL color space is extensively used in computer graphics and defined in [21]. Lower row,

left to right. One of the authors (A.S.) has modified theHSL coordinates of the left central patch, in order to obtain

perceptually equal patches (as much as possible). This is calledmatching. We can see how far the “perceived”HSL are

from reality: (138˚, 55%, 39%), (140˚, 41%, 59%), (66˚, 29%, 54%). The reader probably does not perceive the two

patches as perceptually equal, because matching is subject-dependent.

https://doi.org/10.1371/journal.pcbi.1007050.g003
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“wavelength-blind” fashion according to the principle of univariance [25]. At a point x of the

retina R, the stimulus Lx of L cones can be approximated at first order as [26, 27]

Lx ≔
Z

l2L

Cx
ðlÞSx

LðlÞ dl ¼ hC
x
;Sx

LiL2ðLÞ
; ð1Þ

where C is the spectral distribution of the light over the visible spectrum Λ, and the spectral

sensitivity Sx

L of L cones located at x depends on their local density.

L,M, S signals are then relayed by the Lateral Geniculate Nucleus (LGN) and transmitted to

the primary visual cortex (V1) through axonal projections. It has been established that chro-

matic input to the visual cortex from the LGN is encoded in an opponent fashion as Hering

postulated [16] and as was later confirmed by neurophysiologists [28–30]. This justifies the use

of a color-opponent framework here. LGN cells have been found to respond to linear combi-

nations of L,M, S stimuli [23, 30]. L −M and S − (L +M) signals are transmitted to single-oppo-
nent cells in layers (4Cβ) and (2/3 and 4A) of the visual cortex respectively [2, 23]. In contrast

to them, cells clustered inside or around Cytochrome Oxydase (CO) blobs in layer 2/3 of V1

are sensitive to a continuum of colors instead of three cardinal axes, nonlinearly with respect to

cones [23, 31, 32]. As such, they may have a prominent function in encoding color in the cor-

tex, as proposed in [33, 34]. Most of them were found to be double-opponent cells [2, 35, 36].

Single- and double-opponent cells are very likely to play a fundamental role in color process-

ing in the brain [2, 23]. The former are important for analyzing color in large areas while the

latter are sensitive to edges and orientation, implying that color assimilation would be due to

single-opponent cells and color contrast to double-opponent cells [2].

The visual cortex has the specificity to be organised into hypercolumns, i.e., groups of neu-

rons sharing the same receptive field and coding for a particular physical quantity at this posi-

tion, such as orientation, spatial frequency, and temporal frequency [32, 37–39]. These signals

are mapped from the retina to V1 following an approximately logarithmic retinotopy [40, 41].

Unlike in the case of orientation, for which the existence of such hypercolumns in V1 is now

well established [32], the anatomical and physiological bases for a functional architecture

encoding color are still debated. However, in light of the promising findings made by [31], and

as discussed in [23, 32, 42], it is reasonable to assume in our work a hypercolumnar organisa-

tion of cells tuned to a continuum of colors, having double-opponent characteristics, and

related to CO blobs in layer 2/3 of V1. Our work also supposes the presence of long-range lat-

eral connections between hypercolumns, in agreement with observations of [43] where hori-

zontal connections tend to link blobs to blobs. Note that we do not use further assumptions

about the anatomical organization of color-tuned cells with respect to blobs (inside, around,

independent), which is still unclear [2, 23].

In this context, our model relies on a neural field [44–47]. It is worth noting that neural

fields have been previously applied to simpler examples of sensory processing in visual cortex,

in order to study the spontaneous formation of population tuning curves. Orientation tuning

has been addressed in an important paper by Ben-Yishai and colleagues [48]. Their model of

a single cortical hypercolumn did not take into account the spatial relations between these

hypercolumns, which was done in the 2001 landmark paper by Bressloff and colleagues [49].

The problem was then revisited by Bressloff [50–52], and later by two of the authors of the

present paper [53]. Spatial frequency tuning has been addressed by Bressloff and Cowan [54,

55], and by Chossat and Faugeras [56]. The combination of orientation tuning in binocular

vision giving rise to rivalry waves has been studied in [57]. These simpler models have the ben-

efit of explicit knowledge regarding feature preference maps (image orientations, image tex-

tures) and connectivity in V1 (orientation hypercolumns and their relations with CO blobs).

Color neural field for perception in context
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This color neural field framework allows us to study color-space interactions. In recent

years, the interactions between color, and orientation/form/space, have received increasing

attention [2]. Double-opponent cells may strongly contribute to the relationship between

color and form processing, since the shape of their receptive fields determines their orientation

tuning [23]. This supports the hypothesis that functional architectures for color and orienta-

tion would be intermingled and realize color-form interactions. A framework was proposed

by [42] for modeling color and orientation processing in V1. They assume that two popula-

tions of neural masses, one color-insensitive but orientation-tuned, and the other sensitive to

both, interact through an extended version of the ring model [48]. Our work is related but

complementary to theirs, because rather than considering only two hypercolumns of each

kind and using uniform inputs, without introducing space, we study the interactions between

color and space by the means of multiple color hypercolumns and patterned inputs, without

introducing orientation. The relation between orientation and color falls outside the scope of

this work, and should be examined in the future.

The goal of our work is therefore to provide a neural field model unifying assimilation and
contrast inside a color-opponent framework, consistent with psychophysical data, and compatible
with the physiology of V1. We have successfully achieved this aim.

Materials and methods

Ethics statement

A.S. conceived and designed the experiments herself and consented to participate.

Color and opponent representation

The rigorous definition of color is thoroughly explained in S1 Appendix, where we also present

the most common representations of the color space. Here, for the sake of simplicity, we only

briefly state the minimal definitions and properties to be used in the model.

Color is mathematically defined as an equivalence class of metameric lights [26, 58–60].

Two physical lights of spectral distributions C1; C2 2 L
2ðLÞ aremetameric if they produce

exactly the same visual effect under the same viewing conditions, and this identification

strongly depends on the observer. In our framework, metamerism can be expressed as the

equality of the triplets of scalar products characterizing C1 and C2

ðL;M; SÞ ¼ ðhCi;SLiL2ðLÞ
; hCi;SMiL2ðLÞ

; hCi;SSiL2ðLÞ
Þ;

with SL the spectral sensitivity of L cones (and likewise for M and S cones), see (1). We

dropped the exponent x 2 R2
by considering for simplicity that cone density is constant across

the retina and that light is spatially uniform (although we can define metamerism with respect

to any x). Color is hence naturally identified to a three-dimensional vector for trichromats,

being specified by a triplet of cone stimuli (L,M, S). For a light of spectral distribution C, its

color is denoted ½C�.
Color space, denoted C, is then defined as the subset of physically realizable colors which are

visible to the eye. Since the cone signals (L,M, S) are non-negative and cannot reach all possi-

ble positive values [60], C can be identified to a bounded subset of ðRþÞ3 through a choice

�LMS : C! R3 of coordinates. In this work, we suppose that an appropriate choice of coordi-

nate system �opp : C! R3
leads to an opponent representation of the color space

Copp ≔ �oppðCÞ ð2Þ

satisfying the following important properties. First, it is a bounded and convex subset of R3

Color neural field for perception in context

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007050 June 7, 2019 6 / 28

https://doi.org/10.1371/journal.pcbi.1007050


which enjoys symmetry: if c 2 Copp, then � c 2 Copp. Second, the symmetry operation c 7! −c
must pair any color to its opponent one, in the sense of Hering [16]. Hence, color regions of

Copp come into opposed pairs, for example Yellow and Blue or Red and Green regions, or like-

wise. Third, Copp must contain the neutral or zero color 0, opponent to itself, which would cor-

respond to some neutral gray with no hue (for a fourth condition, see details in S1 Appendix).

Following up on this, we consider in this work an opponent representation in the style of

Hering’s theory. Indeed, in view of the physiological results exposed in the Introduction, it is

now accepted that L,M, S signals are recombined in area V1 into Yellow-Blue, Red-Green and

Achromatic independent channels [61], although the right choice of the opposite axes has been

debated [62]. Our model does not depend in a decisive manner upon the choice of a specific

color opponent space. In fact our particular choice of Hering’s coordinates is not very different

from the cone opponency coordinates defined in [30]. Also, we do not require that the oppo-

nent axes point towards perceptually unique hues, unlike in the original theory of Hering. Sup-

posing such a simple relationship between physiology of the cells and psychology related to

hue pureness was indeed criticized [23, 30, 62].

Here, we rely on the (l, s, Y) and (H, S, L) representations, and restrict ourselves to a lower-
dimensional subspace of the original color opponent space, also denoted Copp for convenience

(in this context, the letters ‘S’ and ‘L’ of HSL stand for Saturation and Luminance respectively,

not Short or Long cones, while ‘H’ stands for Hue).

In the case of the (l, s, Y) representation, we apply our model to the one-dimensional sub-

space based on the chromaticity s and defined by c≔ s − 1. The (l, s, Y) representation used in

[15, 17, 18], a variant of the one proposed by [22], is defined as

s ¼ S
LþM

l ¼ L
LþM

Y ¼ LþM þ S

:

8
><

>:

We then define Copp to be the one-dimensional color subspace based on the change of coor-

dinates c≔ s � 1 2 Copp ≔ ½� 2; 2�, where the number 2 is arbitrary, but covers the typical

range of c values used in experiments (purple, lime and white correspond to (l, s, Y) = (0.66,

2.0, 15cd/m2), (0.66, 0.16, 15cd/m2) and (0.66, 0.98, 15cd/m2) respectively.).

The Hue, Saturation and Luminance or (H, S, L) representation (note that the letters ‘S’ and

‘L’ are not referring to Short or Long cones), often used in computer graphics, maps the sRGB
unit cube or gamut of a device to a cylinder whose central axis is achromatic and perpendicular

to a chromatic disk [58, 63]. Standard formulas provide the change of coordinates T sRGB!HSL

[21].

We use the two-dimensional chromatic disk Copp, defined as the intersection of the constant

luminance plane L = 1/2 with the HSL cylinder, and identified to the unit disk, so that

ðc1; c2Þ≔ ðS cos ðHÞ; S sin ðHÞÞ 2 Copp. The gamut corresponds in fact to a subject- and

device-dependent subspace Cdev strictly smaller than the subspace of chromatic colors visible

by the observer, since they are not all reproducible by a screen. The gamut of standard devices

however covers a large part of visible colors, hence justifying its use, and the HSL representa-

tion has already proven its efficiency in computer graphics.We claim that the specific details of
the display, such as gamut and screen characteristics, do not play a major role in our methods
and results, provided that all experiments are consistently made in the same conditions.
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Model

The main thrust of our model is twofold: first, we put forward an evolution equation for the

dynamics of neural activities, considered as a spatial and color neural field [44–47]. Second, we

propose a theoretical framework for color matching experiments in the context of color percep-

tion, and introduce a formal definition of color sensation.

Notations. The retina R � R2
maps onto the spatial domain of the cortex O � R2

through axonal projections. The scene projects onto the retina as a retinal image J : R! Copp,

and is transmitted to the cortex as a cortical image I : O! Copp. Both images I and J take val-

ues in the opponent representation, and can be considered as triplets of scalar images. In the

following, c 2 Copp � R
d implicitly refers to the associated color ½C� ¼ �� 1

oppðcÞ, where Copp is

defined in Eq (2) and d depends on the dimension of the color space being considered, i.e. 1

or 2.

Under the assumption of color-coding hypercolumns, as discussed in the Introduction,

(r, c) denotes the neural mass selective for cortical position r 2 O and color c 2 Copp. We define

a neural activity a which depends on position r 2 O, color c 2 Copp, and time t 2 R. A sum-

mary of notations used throughout the paper is given in Table 1 above.

Color neural field. We now describe our neural field model. We assume that, on a time

interval I � R containing 0, the neural activity a : O � Copp � I ! ½0; 1� is solution to

an integrodifferential equation of Wilson-Cowan type [64]:

t
da
dt
¼ � aðtÞ þ F o ? a tð Þ þHð Þ aðtÞ 2 L1ðO� CoppÞ ð3Þ

where at each instant a(t) takes values in [0, 1] and represents a firing rate, or any physical

activity.

• The typical speed of the dynamics τ is here of less importance than other parameters, so that

it can be taken as τ = 1 up to rescaling of the time axis;

Table 1. Mathematical notations.

Physical space

R � R2 spatial domain of the retina

O � R2 spatial domain of color hypercolumns

x 2 R a retinal point

r 2 O a cortical point or hypercolumn

Color space

C spectral distribution of a light

C color space: the set of human-visible colors

c 2 C a color

CLMS � R
3 LMS standard representation

Copp � R
3 an opponent representation of C

ðLx;Mx; SxÞ 2 CLMS L,M,S signals received at x 2 R
Dynamic entities

J(x, t) retinal image

I(r, t) cortical image

a(r, c, t) neural activity of neural mass (r, c) at time t

https://doi.org/10.1371/journal.pcbi.1007050.t001
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• the activation function F is a sigmoid converging to 0 and 1 at ±1:

FðxÞ≔
1

1þ e� gx
; ð4Þ

parameterized by γ, which is proportional to the highest slope of the sigmoid F0ð0Þ ¼ g

4
;

• H stands for the color input relayed by single-opponent cells in the LGN (alternatively, by

those in layers (4Cβ) and (2/3 and 4A), see Introduction) to the neural masses (r, c)

Hðr; c; tÞ≔ hðc � Iðr; tÞÞ; hðcÞ≔ mhe
�
kck2

2s2
h ;

ð5Þ

where the cortical image I(r, t) is in opponent coordinates. Thus, the strongest input is given

to neural masses sensitive to colors closest to the actual viewed color I(r, t), as expected for

color-tuned cells. The euclidean metric of R3 � Copp serves to compare them through h.

The connectivity kernel ω is the central part of our model and is designed so as to encode
the antagonistic actions of contrast and assimilation. It acts on a according to

o ? aðtÞ ¼
Z

O

Z

Copp

gðr � r0Þf ðc; c0Þaðr0; c0; tÞ dr0dc0; ð6Þ

where the ? operation depends on the opponent representation Copp, and the different func-

tions are such that (see Fig 4)

• g is a classical difference of gaussians or “Mexican hat”, parameterized by weights μ, ν and

variances α, β:

gðrÞ≔ me�
krk2

2a2 � ne�
krk2

2b2 : ð7Þ

To have local excitation, we suppose g(0)>0, i.e., μ> ν. The kernel g weights the influence of
spatially neighboring hypercolumns;

• f(c, c0) is a function of two variables in Copp, parameterized by μc, νc, αc, βc:

f ðc; c0Þ≔ mce
�
kc� c0k2

2a2
c � nce

�
kcþc0k2

2b2
c : ð8Þ

Formulated as such, f is symmetric in c and c0. For any fixed c, f(c, �) is a difference of gaus-

sians, one which is centered at c, the other one at its opponent −c. By introducing the gauss-

ian kernels

f1ðcÞ≔ mce
�
kck2

2a2c f2ðcÞ≔ nce
�
kck2

2b2
c ;

it reformulates as

f ðc; c0Þ≔ f1ðc � c0Þ � f2ðcþ c0Þ ¼ f1ðc0 � cÞ � f2ðc0 � ð� cÞÞ:

f(c, c0) hence measures the influence of c0 over c, depending on the position of c0 relative

to the opponent pair (c, −c). Here, the minus sign in −c is essential and expresses color

opponency.

Given these definitions and for I regular enough, a solution to (3) exists on R and is unique.

Because � a < _a < 1 � a, an elementary proof shows that it remains bounded by 0 and 1,

Color neural field for perception in context
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provided that 0< a(0)<1. In the sequel we write

oðr; c; r0; c0Þ ≔ gðr � r0Þf ðc; c0Þ

for the connectivity kernel. The neural field dynamics (3) can then be reformulated as

da
dt
ðr; c; tÞ ¼ � aðr; c; tÞ þ F

Z Z

O�Copp

oðr; c; r0; c0Þaðr0; c0; tÞ dr0dc0 þHðr; c; tÞ

0

B
@

1

C
A:

Because we only consider static and not dynamic images here, the color inputH(r, c, t) =

H(r, c) is kept constant.

Interpretation of the connectivity kernel. The connectivity kernel ω is the most impor-

tant item in the neural field model, because it both expresses the antagonism between contrast

and assimilation, and reflects properties reminiscent of center-surround double-opponent

cells. The lateral connection from (r0, c0) to (r, c) is excitatory or inhibitory if ω(r, c, r0, c0) is pos-

itive or negative, respectively, and with a strength proportional to the absolute value. The level

of activity a(r0, c0, t)>0 of neighboring masses (r0, c0) is weighted by ω(r, c, r0, c0), whose sign

depends on the relative positions of r0 and r, c0 and ±c. Four situations are possible, according

to the respective signs of g(r − r0) and f(c, c0), summarized in Table 2.

Hence, configurations in which (r0, c0) excites (r, c) correspond to situations where r0 is adja-

cent to r, i.e., g(r − r0)>0, and c0 is close to c; or where r0 is a remote neighbor, i.e., g(r − r0)<0,

and c0 is close to the opponent color −c (see Fig 4). Otherwise, the connection is inhibitory.

This behavior typically models the synergy principle of assimilation and contrast. Interestingly,

this seems to suggest a behavior compatible with that of double-opponent cells. Qualitatively,

the activity of (r, c) is likely to increase or decrease for a center-surround ON/OFF pattern,

while reaching less extreme values for uniform inputs because of compensation. In the Results

section, we illustrate the roles of the connectivity kernel ω and the cortical inputH.

Fig 4. f and g functions, displayed on a 1D axis for illustration purpose. The influence of c0 and r0 over c and r,
respectively, depends on their position relative to (c, −c) and r. In color space, it is positive when c0 is closer to c,
negative when it is closer to −c; in physical space, it is positive when r0 is an adjacent neighbor of r, and negative when

it is a remote one.

https://doi.org/10.1371/journal.pcbi.1007050.g004

Table 2. Sign of the connectivity kernel ω.

g(r − r0)f(c, c0) c0 close to c c0 close to −c
r0 close to r >0 <0

r0 far from r <0 >0

https://doi.org/10.1371/journal.pcbi.1007050.t002
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Convolution form. Using that

oðr; c; r0; c0Þ ¼ gðr � r0Þ½f1ðc � c0Þ � f2ð� c � c0Þ�;

the double integral can be rewritten into a convolution-like form:

o ? a ¼ g�
O
f1 �
Copp
a � Sym � ½f2 �

Copp
a�

� �

;

where convolutions are computed in their respective spaces, and the symmetry in color space

Sym ¼ � IdC induces a representation (Sym � a) (r, c) ≔ a(r, −c) on the space of cortical

activities. Note that Sym � ½f2 �
Copp
a� ¼ f2 �

Copp
ðSym � aÞ thanks to symmetry of f2 and Copp.

Color sensation and color matching experiments

The Color Neural Field Eq (3) describing (at least, theoretically) how the visual cortex reacts to

a color image, we now link our model to psychophysical data. This subsection introduces the

central notion produced by our model, i.e., that of color sensation. Basically, it corresponds to

some feeling produced in the brain when observing a still image. We define it to be a steady

state of the neural field dynamics of Eq (3), then restricted to the hypercolumn in correspon-

dance to the test point. This concept allows us to propose a mathematical description of color

matching experiments (see Introduction), where matching is considered as the projection of

the test color sensation onto a family of color sensations elicited by comparison images. Such a

“matching as a projection” framework allows the model to predict color shifts. It could be gen-

erally applied to other dynamics than Eq (3), as well as other definitions of sensation relatively

to these dynamics.

Color sensation and not perceived color. In our attempt to build the most general

mathematical framework defining color matching experiments, test and comparison images

Jtest; Jcomp 2 CR
are not supposed to have a simple or identical geometry. Formally, Jcomp =

Jcomp[c] is an image parameterized by some color c, which the observer can adjust in the experi-

ment, until reaching a perceptual match for the value c = cmatch between Jtest and Jcomp at the

points of interest xtest and xcomp. During the search process, the observer explores the family

of possible comparison images fJcomp½c�gc2C. Matching is relative to the specific pair of points

(xtest, xcomp), because there is no reason for the final comparison image Jcomp[ccomp] to be every-
where perceptually equivalent to the test image (see Fig 2).

We believe that it probably does not make sense to define “the” perceived color, which

would be an element of C. As an illustration of this difficulty, one would say that “the” per-

ceived color in Jtest of Fig 2 is some green cmatch. But if the comparison surround had been

replaced by a lighter or darker gray, the resulting matching colors would be different from the

previous one, for they depend on the comparison background. Yet, the perception of a test

color should not depend on the comparison image. Instead, we find more appropriate to talk

about a color sensation elicited by an image J at some point x.

Definition (color sensation). Let J be a fixed image inducing the cortical image I(r)≔ J(x)

with r = χ(x) where χ is the retinotopic mapping. Suppose that there exists a unique stationary

solution to which the dynamics of Eq (3) converges, denoted aJð�; �;1Þ≔ lim
t!1

aJð�; �; tÞ. Then

the color sensation generated by J and perceived at a cortical point r0 is the following element of

L1ðCoppÞ:

aJðr0; �;1Þ : Copp ! ½0; 1�:

Color neural field for perception in context
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Under some conditions, there exists a unique stationary state, which is linearly stable (see

S3 Appendix). It is however possible that there exist several stationary solutions: in this case,

we should use a more sophisticated definition of color sensation, which is outside the scope of

this paper. Color sensation at r0 is thus a function on Copp which represents how the hypercol-
umn responds to any color. This concept can be extended to a group of hypercolumns by con-

sidering a collection of color sensations. Our representation is much richer than defining “the”

perceived color, since we have instead a whole function attached to each hypercolumn, as an

echo of the complexity of color perception with spatial context.

Color matching as a mathematical projection. We propose that matching can be mathe-

matically described as a projection. This process corresponds tomatching two brain states,
whatever the perception being matched, such as color, texture, touch, pitch, timbre, or any

other feeling. Such a formal description implies that color sensations can be compared in a

quite objective manner though matching experiments; and more generally, perception is likely

to be a relative concept that can be assessed through comparisons as objective as possible,

instead of an absolute one.

In the following, the cortical points where matching takes place are denoted by rtest and

rcomp, and the corresponding color sensations elicited by Jtest and Jcomp[c] are denoted by atest

and acomp[c] respectively.

Proposition (matching as a projection). A color matching experiment consists in choos-

ing cmatch 2 C so that acomp[cmatch] is closest to atest, i.e.,

cmatch ≔ arg min
c

distðatest; acomp½c�Þ ð9Þ

where dist is a perceptual similarity criterion.

For example, one can take distðatest; acomp½c�Þ ¼ katest � acomp½c�kL1ðCoppÞ. In S3 Appendix, we

show that under appropriate conditions, we can smoothly parameterize color sensations

acomp[c] with respect to c. Hence, color matching is formally the projection of atest onto a non-

linear manifold whose elements are facomp½c�gc2C.

Data

Reference data. We used the data in the figures of [18] and [17]. Usage of the data was

kindly approved by the authors. In order to apply our model to this dataset, we suppose that

color-tuned cells in the hypercolumns are of three types, each tuned to one particular 1D color

axis, and that color matching is made independently on each axis. Because the data mainly

involved s chromaticity, we applied the model only along the s axis independently of l and Y
axes.

Personal data. Throughout the experiments, we used two particular test and comparison

backgrounds filled with Yellow (HSL = (60˚, 50%, 50%)) and Gray (HSL = (0˚, 0%, 50%)),

respectively. A.S. performed color matching experiments as in Fig 3 (in a spirit similar to [3]

who worked with achromatic colors). Experiments used a standard computer screen, in a dark

room. Squares were presented against a black background. Asymmetric color matching was

repeated for several colors tested with the Yellow surround, at regularly spaced locations in the

three-dimensional HSL color space. We obtained a vector field of color shifts in the HSL space

associated to the pairs (ctest, cmatch), as seen in Fig 5 (note that representing shifts as a vector

field is not new [9]). Our final data was obtained by averaging the shifts along the Luminance

coordinate, and lived in the chromatic disk only (see the Results section), as we are mainly

interested in chromatic shifts. The treatment of luminance seems to be more complex, and has

to be separate from that of chromaticity.

Color neural field for perception in context
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To apply our model to this dataset of 2D shifts, we suppose that color-tuned cells in the

hypercolumns are of two types, one tuned to 2DHSL chromaticity, and the other to 1D Lumi-

nance. As before, color matching is supposed to take place independently within each sub-

space, and we only considered what happened in the chromatic disk.

Results

To validate our model and compare it to experimental data, we regressed the scalar parameters

q≔ ðmc; nc; ac; bc; m; n; a; b; mh; sh; gÞ

involved in the Gaussians and the activation function (see Eqs (4), (5), (7) and (8)), to the psy-

chophysical data described above. The regression consists in minimizing some energy E(q)

that is the sum of the squared errors between the predicted matching color cpredq and the actual

matching color cmatch found in the experiments. Details of this difficult numerical task are pro-

vided in S2 Appendix, where we state three algorithms for reproducing the Color Neural Field

dynamics, simulating a color matching experiment, and performing the regression. The latter

two algorithms can be used for fitting general neural fields to general matching data. Here is a

summary of our results.

• We illustrate the role of the connectivity kernel ω and of the cortical inputH (Figs 6 and 7).

• We simulate the dynamics of Eq (3) in the case of a purple/lime patterned cortical image I
shown in Fig B in S2 Appendix (Fig 8).

• Our model is able to predict the data from observers ‘MC’ and ‘AZ’ of [18] respectively, after

regression (Fig 9).

• The regressed functions f and g corresponding to observer ‘MC’ are displayed, and we illus-

trate the concept of color sensation (Figs 10 and 11).

• We regress the model to the data of [17] and succeed in explaining the nonlinear behavior of
the shifts along the s chromaticity of the test color (Fig 12). This constitutes an important

result in the present work, since it initially motivated the latter.

Fig 5. Yellow pushes towards blue. Using fixed Yellow test and Gray comparison surrounds (symbolized as squares in

the figure) similarly to Fig 3, we obtain a vector field of shifts (ctest, cmatch) in the HSL space (symbolized as spheres and

arrows). There is clearly a “yellow pushes towards blue” phenomenon, where contrast wins.

https://doi.org/10.1371/journal.pcbi.1007050.g005
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Fig 6. Connectivity kernel in 3D physical and color space. Left.W1 defined with r0 = 0 and c0 = 1. Right.W2 defined

with r0 = 0 and c0 = .5. The color bar extends between −1 and 1, going from dark green (negative values, strong

inhibition) to dark orange (positive values, strong excitation).We provide an interactive 3D animation of the
connectivity kernels ω(r0, c0, �, �) for all values of c0 2 Copp in S1 File. For varying r0, the kernel is just spatially translated

along r0. However, for varying c0, the positive and negative gaussian kernels in f follow c0 and −c0, collide when c0 goes

through zero, then exchange of position when |c0| grows again.

https://doi.org/10.1371/journal.pcbi.1007050.g006

Fig 7. Cortical input and color sensations in 3D physical and color space. Left. Cortical inputH. Right. Color

sensations a1. In both subfigures, the color bar extends between 0 and 1, and is set so that small variations are easily

seen.We provide an interactive 3D animation of the evolving activities a(�, �, t) along the iterations of the fixed point
algorithm in S2 File. The convergence is quite fast and 15 iterations are sufficient.

https://doi.org/10.1371/journal.pcbi.1007050.g007

Fig 8. Dynamics of the color neural field Eq (3). The neural activities are plotted after a. one, b. two, c. thirty iterations, and

convergence is reached after fifteen iterations. The red curve indicates the activity atestq ðr0; �Þ of hypercolumn r0 corresponding to the

test stripe. Other blue curves correspond to spatial points ri located on surrounding stripes. Notice that only four and not eight

different curves are seen, because of the axial symmetry artificially introduced to facilitate numerical computations, as explained in

S2 Appendix. A video of the dynamics is provided in S1 Video.

https://doi.org/10.1371/journal.pcbi.1007050.g008
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• Even when the model is regressed to observer ‘AZ’ [18] in a setting where the s chromaticity

is not changed, it is still able to predict a nonlinear behavior similar to that observed when s
is changed such as in [17] (Fig 13).

• We are also able to explain the vector field of shifts (“yellow pushes towards blue” phenome-

non of Fig 5) in the chromatic disk, for our data (Fig 14).

Before going further, let us point out some important facts.

1. We do not claim that the regressed parameter value is indeed a global minimizer of the

energy E(q) (see S2 Appendix), but only that it is sufficient for the algorithms to approxi-

mately mimic the experimental data in a satisfying way.

2. For each regressed parameter, and for one typical image input (purple/lime pattern), we

empirically checked that the activity a1, to which our Algorithm 1 with dt = 1 (S2 Appendix)

converges, is indeed a stable stationary solution of Eq (3) to which any solution converges in

time. Furthermore, we numerically checked that this stable steady state is unique, so that we

can call its restriction to the hypercolumn r0 a color sensation.

Fig 9. Our tuned model predicts color shifts from [18]. Left. Observer ‘MC’. Right. Observer ‘AZ’. Red dots indicate experimental

data, while blue crosses stand for predicted matching comparison colors. The data has been averaged over three sets of experiments,

as detailed in the original article. The ordinate corresponds to the color shift, expressed in Copp coordinates with c = s − 1 . The

abscissa i = 0, . . ., 7 refers to the test pattern: p/p, l/l, p/w, l/w, w/p, w/l, p/l, l/p, where p stands for purple, l for lime, w for white.

https://doi.org/10.1371/journal.pcbi.1007050.g009

Fig 10. Comparing color sensations for real and predicted matching color. Left. Color sensations atestq , acompq ½cmatch�
and acompq ½cpredq �. Right. Functions f and g for the regressed parameter value q = qMC. Right, up. Heatmaps for g and f.
Right, down. Corresponding side views.

https://doi.org/10.1371/journal.pcbi.1007050.g010
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3. Before undertaking any solid interpretation of the regressed parameter values, edge effects

due to the finite size of the spatial domains in the numerical implementations still have to

be carefully considered, which is outside the scope of this article.

Note that for all figures except Fig 14, we consider the settings of [18] and [17], in which the

color space is one-dimensional (see Materials and methods section). In Figs 6 and 7, the con-

nectivity values, the cortical inputH and the neural activities a1 are illustrated as 3D heatmaps

defined on O� Copp. The 3D space is the product of the 2D physical space by the 1D color

space, parameterized by x, y and c respectively. In Figs 6, 7, 8, 10 and 11, the dynamics, inputs

and connectivity values are parameterized by the value q = qMC optimized on observer ‘MC’ of

[18] (see Fig 9).

Connectivity kernel and cortical input

In Fig 6, we setW(�, �) ≔ ω(r0, c0, �, �), and display it for two values of (r0, c0). The two configu-

rations of Table 2 (excitatory or inhibitory connections) can be clearly seen in the figure. In

fact, most of the neural masses have negligible influence on (r0, c0). This occurs when c0 is nei-

ther close to c0 nor to −c0, or when r0 is too far from r0 (not shown on the figure, because the

outer variance of the DOG g has a great value compared to the extent of O). The properties of

the connectivity values are analogous to double-opponent cells’ center-surround behavior.

In Fig 7, we show the cortical inputH(r, c) = h(c − I(r))), where the purple/lime patterned

image I is as in Fig B in S2 Appendix and corresponds to the cortical counterpart of one typical

test pattern of [18]. We also show the color sensations a1 after convergence. The inputH is

obtained by “lifting” the image I inside O� Copp. Altitudes of maximal values hence alternate

between lime (c’ −1), purple (c’ 1), and white (c’ 0). The shape ofH heavily determines

Fig 11. Color matching is a projection. Blue and green curves are as in Fig 10 and correspond to atestq and acompq ½c
match�.

After regression, the green one should be the nearest to the blue one with respect to the L1 norm, among all the curves

facompq ½c�gc generated by the family of comparison images fJcomp½c�gc2Copp (shown in gray).

https://doi.org/10.1371/journal.pcbi.1007050.g011
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that of the final activities a1, since it has the role of cortical input. It can be noticed that a1
reaches values lower than 1/2 in the bottom part of the heatmap.

Simulation and regression results

In order to emulate a color matching experiment, the first building block of our algorithm is

to simulate the Color Neural Field dynamics in Eq (3), as shown in Fig 8, and accordingly to

Algo 1 in S2 Appendix (with dt = 1). Once again, the cortical image is given by Fig B in S2

Appendix.

Color matching can then be emulated by applying Algo 2 in S2 Appendix. The parameters

have to be regressed to the experimental data in order to reproduce the color shifts. Fig 9

shows that our model is able to explain the shifts measured for the observers called ‘MC’ and

‘AZ’ in [18], by using the regressed values qMC = (0.60, 0.69, 0.30, 0.40, 4.42, 1.82, 0.58, 8.35,

0.47, 0.30, 1.80) and qAZ = (0.60, 0.69, 0.31, 0.40, 4.42, 1.81, 0.60, 8.35, 0.47, 0.30, 1.80), respec-

tively. The slight difference observed between the parameter values could partly account for

subject differences.

Fig 12. Our tuned model is able to reproduce nonlinear data from [17] Fig 3. The blue and orange curves

correspond to our predicted shifts along the tested chromaticity given by the absicssa. The data above and below the

zero line correspond to a fixed purple/lime or lime/purple pattern, respectively. Red crosses indicate the means of shifts

across four subjects for seven tested values, and stand as groundtruth (refer to [17] for details).

https://doi.org/10.1371/journal.pcbi.1007050.g012
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Fig 13. Our model reproduces nonlinearity even when tuned to other data. We use the parameter value qAZ
corresponding to Fig 9 (right) while emulating the experiments of Fig 12.

https://doi.org/10.1371/journal.pcbi.1007050.g013

Fig 14. The color neural field model reproduces nonlinear shifts in the chromatic disk. Left. 36 pairs of experimental data points

(test and matching colors) in the HSL chromatic disk at constant luminance, resulting from averaging the shifts (refer to Data

section and Fig 5). Right. Predicted results.

https://doi.org/10.1371/journal.pcbi.1007050.g014
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We compare in Fig 10 (left) the color sensations atestq , acompq ½c
match�, and acompq ½c

pred
q � (refer to S2

Appendix for the notations), taken at the point of interest r0 = (0, 0), and with q = qMC. They

are generated by the purple/lime test image (as before), the comparison image filled with the

experimental value cmatch, or with the predicted matching value cpredq , respectively. After regres-

sion, cpredq becomes close to the experimental value cmatch, so that the two corresponding curves

nearly coincide.

Among all curves facompq ½c�gc, a
comp
q ½c

match� should be the nearest one to atest with respect to

the L1 norm, and we illustrate this in Fig 11. The qualitative difference between the test and

comparison curves mainly comes from the difference of complexity of their respective inputs:

the test image has a complicated pattern, while the comparison images are simpler.

We confront our model to the nonlinear shifts observed by [17] in Fig 12. We find that it

is able to reproduce the data after regression, with the fitting parameter value qnonlin = (0.42,

0.71, 0.63, 1.16, 4.43, 1.72, 0.56, 6.35, 0.47, 0.30, 1.80). This non-trivial result, alongside the

results in Fig 9, provides a strong justification to our framework. In Fig 13, instead of qnonlin,
we used the value qAZ that explained the data on Fig 9 (right) observed by [18]. Let us recall

that in the experimental settings of [18] and Fig 9, stest was fixed while the surround varied,

unlike in the settings of [17] and Fig 12, where conversely for some fixed test patterns stest was

changed. The predictions in Fig 13 are hence not close to the ground truth data, especially at

the endpoints where the orange and blue curves are crossing. Shifts are also smaller in magni-

tude. However, it is remarkable that the model predicts a similar trend with respect to stest.
Crossings are also quite expected at stest of magnitude great enough, for which a reversing of

the shift direction is plausible. For too great magnitudes, the shifts are likely to become negligi-

ble. We obtain similar results by using qMC.

Finally, as a further important validation, we show in Fig 14 that our framework is also effi-

cient in explaining the vector field of shifts in the chromatic disk (Fig 5). The convergence

towards the opposite blue is made obvious, with the regressed parameter value qHSL = (0.73,

0.15, 0.52, 0.68, 4.41, 1.84, 0.51, 8.35, 0.47, 0.30, 1.80). As a remark, the sampling resolution

of the 2D color space is quite low for computational reasons, so that the meaningfulness of

parameter values has to be carefully considered. We also obtain a smoother result than in the

experimental data, as a SoftMin method is used to search for optimally matching colors (see

associated code).

Discussion

This work constitutes a first attempt at building a neural field framework for color perception
which explains psychophysical data in a consistent manner. Our model addresses the important
problem of color-space interactions (see Introduction), while unifying chromatic contrast and
assimilation. It relies on the hypothesis that color-tuned cells in layers 2/3 of V1 are physiologi-

cally structured in hypercolumns, sharing spatially similar receptive field positions and tuned

to a continuum of colors. We have tested this model on psychophysical data from two kinds of

experimental settings (that of Monnier and Shevell [17, 18] and ours), by supposing that cells

separately encode three 1D color axes or a 2D chromatic plane alongside a 1D achromatic axis,

respectively, and that color matching takes place independently within each subspace (see

Data section). These two assumptions, although very different, have both led to promising

results.

Our model provides a Color Neural Field as well as a color matching framework, which is

in fact suitable to general dynamics and independent of the particular equations we have used

in this work (3) (see S2 Appendix). The notion of color sensation connects these cortical and

perceptual levels, and is a nonlinear object extracted as a percept from an assembly of neurons.
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It is compatible with the nonlinearity of the responses of V1 neurons with respect to cone

signals, which has been shown to constitute a distinctive feature compared to neurons in the

LGN and the retina [2, 23]. Furthermore, color sensation takes into account a whole distribu-

tion of activities, in contrast to single-neuron concepts. This idea had already been suggested

in the context of population coding [65–67], but with different perspectives (where preferred

stimuli are integrated over several neurons to deduce the preferred stimulus of the whole

population, while here dynamic activities elicited by one stimulus are spatially integrated to

produce sensation, which still contains information about each neuron). Finally, note that con-

sidering matching as a projection is an idea quite close to that of inversion in the correspond-

ing-pair procedure proposed in [68], which predicts colors that produce the same sensation

in dichromat and trichromat viewers. This concept of inversion corresponds to the particular

case when the brain state or percept (such as color sensation in our sense) is in fact at zero dis-

tance from the set on which it is projected (which in our case does not happen in practice).

Distinction from color constancy problems

The present work has to be distinguished from those dealing with color constancy problems.

Color constancy is the ability of humans to guess the reflectance of objects despite very different

illumination conditions [69]. Reflectance is a property characterizing matter, defined as the

proportion of luminous energy reflected by its surface. In Eq (1), it is linked to the spectral

power distribution P of the incident illuminant (daylight, lamp) through the relation

Cx
ðlÞ≔ Px

ðlÞRx
ðlÞ;

where reflectance and illuminant power are taken at the point of the scene which sends light to

x in the retina. The phenomenon of color constancy, first studied by E. Land who proposed

the Retinex algorithm [70, 71], has since been the subject of much research. Given cone inputs

(L,M, S), how does the brain retrieve the spectral reflectance R of an object? By contrast, we

are not interested in how color is linked to reflectance, but rather in how identical stimulation

of the cones can lead to different sensations because of spatial context.

Three meanings of “color”

In view of the previous discussion, to the naive question “What is the color of this object?”,

we see that at least three types of answers are theoretically possible. First, identify the colored

material likely to produce such a visual effect, i.e., guess its reflectance R; second, report the

color ½C� produced by cone stimulation; and third, describe the color sensation, as introduced

in this work. In practice, none of these tasks is trivial, even regarding color naming, since

thought and language related to color involve complex cognition [72].

Summarizing the previous ideas, the three punctual relationships

Rx1

1
¼ Rx2

2

½Cx1

1
� ¼ ½Cx2

2
�

Sx1

1
¼ Sx2

2

are independent, because there are situations where any of them can hold or not. The reader

can be convinced by simple examples. For instance, the same object seen in daylight or

under shadow has different colors because ½Cdaylight� 6¼ ½Cshadow�, but we can easily recognize

it and guess that R ¼ Rdaylight ¼ Rshadow. On the reverse, two objects having the same color
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can be guessed as being made of different materials, if their surroundings are not the same,

that is, ½C1� ¼ ½C2� but R1 6¼ R2. Another example is given by color induction, as largely dis-

cussed here. Because of the surrounding context, two colors ½C1� ¼ ½C2� deriving from identi-

cal L,M,S cones stimulation can be perceived as different color sensationsS1 6¼ S2. The

reverse situation can occur, where different colors are perceived as similar with different

contexts.

However, if the whole retinal space is taken into account, then the sets

fRx
gx2R ð10Þ

f½Cx
�g

x2R
ð11Þ

fSx
gx2R ð12Þ

are linked to one another. While papers on color constancy are devoted to the link between

Eqs (10) and (11) [69, 73], ours focuses on the relationship between Eqs (11) and (12). Our

framework supposes that fSx
g
x2R

depends on the sole knowledge of f½Cx
�g

x2R
.

Our model is not an image processing model

Our model should not be considered as an image processing algorithm. First, our work

involves a psychophysically and physiologically relevant neural structure, while image

processing models often lie at the conceptual level of an image. In the literature, many algo-

rithms are designed to make the image perceptually better (contrast enhancement, histogram

equalization, etc.) and allow for image compression, in accordance with various perceptual

criteria, an early work being [74] for example. Some of them are computational models sim-

ulating perception, and inspired by neural mechanisms underlying vision, as in [75], and

more recently [76]. Taking an image as input, their algorithms produce another image as

output, which represents “the” perceived color image, in order to reproduce color induction

effects. In fact, the simple convolutional receptive-field model of [18] is already a basic ver-

sion in this family of algorithms. In the more sophisticated approach of [75], the image

evolves according to a Wilson-Cowan dynamic, which is akin to descending the gradient of

some energy, leading to histogram equalization. M. Bertalmı́o also proposes a method to

reproduce the lightness matching data of [77], in particular some assimilation or contrast

effects (in the usual global sense, not at the local scale). His attempt to match psychophysical

data based on neural-like dynamics can be considered similar to ours. However, shifts are

estimated through a direct algebraic computation of the values found at different locations of

the disks after convergence. This prevents any straightforward generalization of the method

to spatially more complicated patterns, an impediment which we already mentioned in the

Introduction for the model of [18].

More importantly, a major conceptual problem in this image-based approach is that, it seems
inappropriate to simulate perception by producing an output image of the same nature as the
original one, that represents “the” perceived color image. Indeed, the original and final images

do look different: the final image hardly represents our perception of the original one, since it is

also processed by the brain. This ambiguity should be clearly discussed when dealing with the

output image. For instance, [74] proposes to map color images into an opponent perceptual

space, where they are processed and compared through a perceptual metric, that has a role

clearly different from the usual RGB color space of images.
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The need for a universal model

It is the fate of any model to meet its own limitations. Below, we depict non-exhaustively some

questionable features or drawbacks encountered by ours.

Physiological interpretation of the model. In the Results section, we suggested that the

shape of the connectivity kernel might be related to the behavior of a double-opponent cell,

and that the cortical input to (r, c) might be relayed by single-opponent cells in the LGN, or in

layers (4Cβ) and (2/3, 4A) of V1. The double-opponent cells of our framework would then be

connected over single-opponent cells (similarly to the color-orientation model of [42]). These

analogies should not be regarded as firm assertions, but rather as possible links between our

model and current knowledge about the physiology of V1 neurons. At least, double-opponent

cells are suspected to play a role in simultaneous contrast, and single-opponent ones in assimi-

lation (see Introduction). If pursuing further our analogy, both populations would be in fact

involved in these effects, and a combined action of the two is indeed expected [2, 23, 78]. How-

ever, our model has two important drawbacks regarding its biological interpretation. First, the

values found for the inner ON-center diameter of the DOG g, after the different regressions

to data of [17, 18] (see Results), approximately correspond to 2˚ of visual field and cover about

7 stripes (the test one, and three on each side). This value is likely to be two to six times too

large, because one would rather expect a frequency selectivity in the range of 1–3 cyc/deg [79].

It is probable that we did not find more plausible values for the parameters in g because of the

small spatial domain we used in numerical computations. Yet, the numerical regression is

quite complex (minimizing with respect to shifts, which themselves involve the minimization

of matching) and has to satisfy numerous criteria (closeness to data, nonlinearity, non-satura-

tion of the activity, fast convergence in time of the dynamics, and reasonable duration of the

regression). Looking for more biologically plausible values, using a larger spatial domain and

finer discretization steps, was hence out of reach in reasonable time for the current work. Fur-

thermore, another defect of the model is that it only considers concentric center-surround

receptive fields for double-opponent cells, as in early works [35, 36], although anisotropic

receptive fields have been found later [2, 23, 78], which account for their sensitivity to

orientation.

Color-orientation and color-edge interactions. We have not explored the link between

orientation and color, contrarily to the complementary work of [42] (see Introduction).

Instead, we have addressed color-space interactions, and compared the model to (spatially

non-trivial) data. It is worth noting that, cells are supposed here to be tuned to colors in one to

three dimensions, whereas in their model, cells were tuned to different hues (organized along

the circle), with luminance and saturation being treated as input and amplitude of the activity,

respectively. Also, they introduce a two-color external signal, which allows two different hues

to have effect on the same hypercolumn, as they suppose is the case when the brain expects to

see one color but receives another stimulus instead. This requires however to modify the input

involved in the dynamics. Unlike them, we consistently consider one color input per location,

and define color sensation in a flexible manner which can in particular account for a “two-

color” impression.

Orientation and edges should both be integrated into the construction of a more universal

color-space model. Edges are thought to have an important role due to “visual edge contrast”

[80] in the perception of a colored surface, and to be selectively processed in V1 [79]. In partic-

ular, they may contribute to watercolor effects [81], in which a local feature (two thin borders

of dissimilar colors) spreads into a global impression (one of the delimited area seems to be

faintly colored by the inner border). A simple integration over the spatial domain, as made

here, cannot sufficiently account for the effect of a colored edge over the entire perception.
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Further remarks. We used an ideal mathematical setting to ease the analysis, but it is

quite improbable that an opponent representation of C enjoys perfect symmetry. Moreover

the geometry and structure of C is still not entirely understood. It seems reasonable however

to talk about a nearly symmetric space, and work in the biggest symmetrically opposable space

we can define inside C.

Furthermore, we did not compare our model to data varying along the luminance axis,

because it certainly deserves a special treatment, separately from the chromatic plane. An easy

adaptation of our model would be to consider anisotropic gaussian kernels in f and g, or use a

non-separable connectivity kernel ω, which could be a finite sum of separable kernels ωi = fi� gi.
This should already allow different treatments of the luminance and chromatic dimensions.

Finally, we insisted on using color sensations (functions on C), and not perceived colors

(an element in C), to describe the perception of a color. This would indeed lead to confusions

(input vs. perceived images), and incompatibility with the matching experiments (see Discus-

sions above and the Materials and methods section). However, in our framework it is still pos-

sible to define “the” perceived color as the one cmax 2 C which maximizes the neural activity in

hypercolumn r0, similarly to the “winner-takes-all” law of orientation perception. The problem

of this approach is that our model would then predict positive afterimages, given that the input

image is positively added in the dynamics.

Towards color hallucinations

Just as for neural field models modeling orientation vision, we can study bifurcations of the

solutions of Eq (3) around stationary states [49, 53, 56, 82]. Under some hypotheses of symme-

try and periodicity, we can predict, using equivariant bifurcation theory, the emergence of

visual patterns or “planforms”. In the same fashion as [49] who explained orientation-based

geometric hallucinations, a color neural field model can predict patterned color hallucinations.

Future psychophysical experiments, may confirm this and support the relevance of this kind of

model for color vision.

Conclusion

Our work addresses the question of color-space interactions, by providing a color neural field

model alongside a general framework to account for matching experiments. We propose to

consider color matching as a mathematical projection, in agreement with the principles of psy-

chophysics, where subjective notions are assessed by means of objective procedures. Our neu-

ral field unifies assimilation and contrast at the cortical level, and relies on the idea of color

opponency. The notion of color sensation that we introduce bridges the gap between these

cortical and perceptual levels, and is a nonlinear percept involving a whole distribution of

neurons.

This framework allows the study of psychophysical phenomena such as color induction,

by taking advantage of a classical computational neuroscience tool. To our knowledge, this

is the first color neural field model consistent with psychophysical data and compatible with

physiological findings. The assumption that V1 is organized into a structure similar to color

hypercolumns has still to be experimentally proved though. We believe that the proposed

framework could possibly be adapted to other perceptual situations, such as hearing or touch.
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