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Biomolecular condensates are cellular organelles formed through liquid-liquid phase
separation (LLPS) that play critical roles in cellular functions including signaling,
transcription, translation, and stress response. Importantly, condensate misregulation
is associated with human diseases, including neurodegeneration and cancer among
others. When condensate-forming biomolecules are fluorescently-labeled and
examined with fluorescence microscopy they appear as illuminated foci, or puncta, in
cells. Puncta features such as number, volume, shape, location, and concentration of
biomolecular species within them are influenced by the thermodynamics of biomolecular
interactions that underlie LLPS. Quantification of puncta features enables evaluation of the
thermodynamic driving force for LLPS and facilitates quantitative comparisons of puncta
formed under different cellular conditions or by different biomolecules. Our work on
nucleoporin 98 (NUP98) fusion oncoproteins (FOs) associated with pediatric leukemia
inspired us to develop an objective and reliable computational approach for such analyses.
The NUP98-HOXA9 FO forms hundreds of punctate transcriptional condensates in cells,
leading to hematopoietic cell transformation and leukemogenesis. To quantify the features
of these puncta and derive the associated thermodynamic parameters, we developed a
live-cell fluorescence microscopy image processing pipeline based on existing
methodologies and open-source tools. The pipeline quantifies the numbers and
volumes of puncta and fluorescence intensities of the fluorescently-labeled
biomolecule(s) within them and generates reports of their features for hundreds of
cells. Using a standard curve of fluorescence intensity versus protein concentration,
the pipeline determines the apparent molar concentration of fluorescently-labeled
biomolecules within and outside of puncta and calculates the partition coefficient (Kp)
and Gibbs free energy of transfer (ΔGTr), which quantify the favorability of a labeled
biomolecule partitioning into puncta. In addition, we provide a library of R functions for
statistical analysis of the extracted measurements for certain experimental designs. The
source code, analysis notebooks, and test data for the Punctatools pipeline are available
on GitHub: https://github.com/stjude/punctatools. Here, we provide a protocol for
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applying our Punctatools pipeline to extract puncta features from fluorescencemicroscopy
images of cells.

Keywords: fluorescence microscopy, biomolecular condensate, liquid-liquid phase separation, image analysis,
puncta features, open-source software

INTRODUCTION

The biomolecular components of cells are compartmentalized
within organelles and other structures, wherein they perform
their biological functions. While many cellular compartments
enclose their components within bilayer membranes, others lack
a membrane and are referred to as membrane-less organelles or
biomolecular condensates. These membrane-less compartments
commonly form in cells through the process of liquid-liquid
phase separation (LLPS), through which biomolecules exist
within two distinct phases, a so-called “light phase” with low
biomolecule concentrations and a “dense phase” wherein
biomolecules are more highly concentrated (Flory and
Krigbaum, 1951; Banani et al., 2017). Depending upon the
relative thermodynamic favorability of homotypic versus
heterotypic interactions, LLPS causes the formation of cellular
biomolecular condensates highly enriched in a single species or
others containing multiple components (Riback et al., 2020). The
thermodynamic favorability and kinetics of the multivalent
biomolecular interactions that drive LLPS influence the
physical features of the resulting condensates, including their
size, shape, material properties (e.g., viscosity and surface
tension) and extent of partitioning of biomolecules within
them, quantified by the partition coefficient (Kp) (Feric et al.,
2016; Mitrea et al., 2016; Riback et al., 2020). Recognition that
biomolecules within large portions of the cell interior are
organized through LLPS has revolutionized the fields of cell
and structural biology.

Liquid-liquid phase separation by biomolecules has been
recognized since 2009, first in the context of live cells
(Brangwynne et al., 2009) and later in reconstituted systems
with purified components (Li et al., 2012). While many
experimental techniques are used to study the process of LLPS
(Mitrea et al., 2018), fluorescence microscopy of biomolecular
condensates containing fluorescently-labeled components has
emerged as a primary method. Commonly, proteins are
genetically encoded with a fluorescent protein label (e.g., green
fluorescent protein, GFP) (Giepmans et al., 2006) and expressed
in live cultured cells for studies of biomolecular condensates.
Performing confocal fluorescence microscopy in live cells
preserves active biological processes and biomolecular
dynamics, and enables quantitation of physical features of
condensates containing fluorescently-labeled components,
including number, size and shape, as well as their material
(Feric et al., 2016) and thermodynamic (Riback, et al., 2020)
properties. The extent to which proteins partition into
condensates is quantified by the partition coefficient (Kp),
mentioned above, which is the ratio of dense phase and light
phase concentrations ([DP] and [LP], respectively; Kp = [DP]/
[LP]). The thermodynamic favorability of protein partitioning

into condensates is expressed as the Gibbs free energy of transfer
(ΔGTr = -RT•ln (Kp)) (Riback et al., 2020). Thus, fluorescence
microscopy not only allows quantitation of physical features of
biomolecular condensates (e.g., their number and size in cells) but
by noting the relative difference of labeled material within and
outside of condensates, it can also quantify the driving force
underlying their formation through LLPS (ΔGTr). Access to these
types of quantitative information obtained through live cell
fluorescence imaging enables rigorous comparison of
condensates formed through phase separation under different
cellular conditions, or by different fluorescently-labeled proteins.
Studies that derive these biophysical parameters have been reliant
on manual determination of puncta features, performed in
simplified systems, or used custom-made scripts to perform
analyses. As these approaches are labor-intensive and subject
to user error, the field of biological condensates can benefit from
automated analysis of fluorescence microscopy images to
quantify puncta within cells and extract biophysical parameters.

NUP98 fusion oncoproteins arise through gene translocations
that fuse the N-terminal protein coding region of NUP98 to
C-terminal coding regions of > 30 different genes that commonly
encode DNA binding or chromatin binding protein domains
(Michmerhuizen et al., 2020) and are oncogenic drivers in ~10%
of pediatric cases of acute myeloid leukemia (AML)
(Michmerhuizen et al., 2020). NUP98 fusion oncoproteins
direct formation of DNA/chromatin-associated condensates,
which recent studies (Ahn et al., 2021; Chandra et al., 2022)
showed drive aberrant gene expression, transformation of
hematopoietic cells, and leukemogenesis. NUP98-HOXA9
(abbreviated NHA9) is a prototypical NUP98 fusion
oncoprotein that, when labelled with monomeric EGFP
(termed G-NHA9), was visualized using confocal fluorescence
microscopy to form hundreds of dense puncta in the nuclei of live
cells. We initially applied the 3D object counter plugin of FIJI
(Bolte and Cordelieres, 2006) to three-dimensional z stacks of live
cell fluorescence microscopy images to obtain features of puncta
formed by G-NHA9. However, the outcome of this analysis was
poor, and therefore we were motivated to develop a customized
image analysis pipeline (termed “Punctatools”). Herein we
discuss the development of the Punctatools pipeline and its
application to puncta formed by G-NHA9 in HEK293T cells,
as well as those formed by mutant forms of G-NHA9. We
demonstrate that the pipeline allows accurate segmentation of
nuclear puncta formed by the G-NHA9 constructs and extraction
of the associated quantitative puncta features. Access to this
information enabled us to understand how the different
interaction mechanisms contributing to LLPS by G-NHA9
govern puncta formation in cells. Accompanying this
manuscript, we provide the computer code associated with the
Punctatools image analysis pipeline, as well as scripts for
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FIGURE 1 | The Punctatools image analysis pipeline. After samples are prepared and image stacks are acquired (Steps 1–3), users are first given the option to
segment regions of interest (ROIs) using Cellpose (Steps 4 and 5). Following this, puncta centers are identified from raw puncta signals, and puncta are segmented from
the background (Steps 6–8). Users are given the option to establish a signal to concentration ratio (Step 9), which can be used when calculating thermodynamic features
(Step 10) and making statistical comparisons (Step 11). Optional steps are highlighted by light-blue background. Average mEGFP concentrations shown on the
graph x-axes are estimates derived from calibration and are subject to the limitations of this calibration as noted in the main text.
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performing standard analyses of puncta features and associated
statistical analyses.

MATERIALS AND EQUIPMENT

Reagents and Equipment
Example data were prepared usingHEK293T cells (American Type
Culture Collection; RRID:CVCL_0063) transfected with three
different previously reported monomeric EGFP (mEGFP)-
labeled NHA9 constructs, G-NHA9 (the wild-type fusion
oncoprotein), G-NHA9-21FGAA (with alanine mutations in 21
FG motifs), and G-NHA9-ΔDNA (with mutations in the HOXA9
homeodomain that abrogate DNA binding) (Chandra et al., 2022).
Immediately prior to imaging, cell culture media was replaced with
phenol red-free imaging media supplemented with Hoechst dye
(Thermofisher: CAT R37605 and 21063045, respectively) to enable
visualization of cell nuclei using high-resolution fluorescence
microscopy. Imaging was performed using a 3i Marianas
microscope system equipped with a 100X objective, 405 nm (for
Hoechst dye) and 488 nm (formEGFP-labeled proteins) laser lines,
and Slidebook 6.0 software. Full details on the preparation and
imaging of cells, including reagents, procedures, and acquisition
methods were reported previously (Chandra et al., 2022). We also
generated purified mEGFP and prepared solutions at
concentrations ranging from 1 nM to 100 μM; these solutions
were individually imaged using the same microscope settings as
used for cell imaging. The image results were analyzed and plotted
to give a standard curve of the relationships between fluorescence
intensity per square pixel in a single z-layer image slice and molar
mEGFP concentration. These relationships were linear and were
used to convert fluorescence intensities within regions of interest
(ROIs) and puncta in cell images to molar mEGFP concentrations.

Software
The image analysis pipeline utilizes Python and is compatible with
versions 3.7–3.9 (Van Rossum and Drake, 2009). The analysis relies
on use of the Punctatools package developed herein and its
dependencies. For instructions on how to install Punctatools,
please refer to the package’s Github page https://github.com/stjude/
punctatools. All dependencies will be installed automatically when
running the installation script. Microscopy images as well as cell and
puncta masks were examined using FIJI (Schindelin et al., 2012)
(https://imagej.net/software/fiji/). The FIJI package 3D-object counter
(Bolte and Cordelieres, 2006) was used to generate independent
puncta segmentations for comparison against Punctatools pipeline
results. R-studio (R 4.1.0) (R Development Core Team, 2019) was
used to plot puncta features, calculate thermodynamic parameters,
and perform statistical analysis.

METHODS

The Punctatools workflow can be divided into four stages
(Figure 1): Sample Preparation and Image acquisition (Steps
1–3), Optional ROI Segmentation (Steps 4 and 5), Puncta

segmentation and quantification (Steps 6–8) and Results
Analysis (Steps 9–11).

Step 1: Preparation of Samples
The NHA9 fusion oncoproteins used in our puncta imaging
studies were fluorescently-labeled at the N-terminus with mEGFP
and expressed through transient transfection in HEK293T cells
using CL20 backbone plasmids (Chandra et al., 2022). While
mEGFP was used in our studies, fluorescent proteins with
different spectral properties are available (Giepmans et al.,
2006). The G-NHA9 proteins form puncta in the nuclei of
HEK293T cells; we used Hoechst dye to fluorescently label
DNA and enable segmentation of nuclei. To enable conversion
of mEGFP fluorescence intensity values for G-NHA9 proteins
within and outside puncta to molar concentrations, we
determined a standard fluorescence intensity curve by
performing fluorescence microscopy imaging with solutions
containing purified mEGFP protein at concentrations ranging
from 1 nM to 100 μM (Chandra et al., 2022).

Step 2: Acquisition of images
Data for the G-NHA9 proteins were collected as 3D z-stacks with
pixel size of 0.11 µm in the x- and y-dimensions (total image
dimensions were 992 pixels by 992 pixels in the x- and
y-dimensions, respectively) and 0.2 µm spacing between planes
in the z-dimension, spanning a total z-dimension height of
12 µm. We record 3D z-stacked images at 15 to 20 different
positions within the field of view for each condition (e.g., for each
of three G-NHA9 protein constructs, wild-type and two
mutants). Additional experimental details can be found in our
published work (Chandra et al., 2022). The Punctatools pipeline
is also capable of analyzing 2D images (a single z-plane), although
many of the extracted parameters such as those dealing with
volume will have reduced accuracy. Using the above protocol, we
obtained images of hundreds of cells displaying fluorescently-
labeled nuclear puncta. The number of cell positions that need to
be imaged will vary based on transient transfection efficiency and
cell confluency. In our studies, we imaged between 50–250 cells
that displayed fluorescent signals for each condition to achieve
sufficient statistical power for comparisons.

As a guideline, the microscope objective used should be
capable of x-, y- and z-axis resolutions that are less than the
minimum dimensions of the puncta being quantified. Post
processing methods such as deconvolution should not prohibit
analysis with our pipeline, but care should be taken to account for
any artifacts generated by such techniques. We note that the
accuracy of data generated by this pipeline will be directly
impacted by quality of the microscopy images being analyzed.

Step 3: Data staging
To process an image and quantify puncta features within, our
pipeline requires all of the information for each field of view to be
in a single file. If possible, users are encouraged to export data
from the microscopy software as a single z-stack including all
optical channels. This is the simplest way to prepare data for
processing with this pipeline. We have also identified two
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alternative cases and provide tools to prepare data in the proper
format.

If the data is in a format that includes multiple positions or
timepoints in a single file (for example, using the
Slidebook format), tiff files for individual positions can be
extracted using an in-house developed FIJI macro we provide
in the distribution. First, create a directory to store the
extracted files, then run the conversion macro
“export_multipage.ijm” and specify a target location for the
new extracted files when asked. The macro will then convert
the multi-stack file into individual z-stacks compatible with
this pipeline.

If data is formatted as a single image for each z-slice and each
channel, it can be reformatted into single z-stacks for each
acquisition. To do this, first ensure that the files adhere to a
consistent naming convention. File names should include the
[SAMPLE_NAME] which denotes a unique acquisition. In
addition to the sample name, there should be specific
identifiers for the z position (e.g., “_Z”) and channel (e.g.,
“_C”) that immediately precede the channel and z position
numbers, respectively. An example of a properly formatted
image name is: “my_sample_position_3_Z00_C01.tif”. Once
these files are prepared and properly named, open the
“notebooks/setup_images_to_stack.ipynb” notebook and follow

TABLE 1 | List of parameters for ROI segmentation (setup_roi_segmentation.ipynb).

Parameter Definition Recommended
initial value

Notes

Input_dir Directory with images to be analyzed All z-layers and channels for a specific sample must be
combined into a single file (see Step 3 of the Protocol
Procedure).

Output_dir Directory to save ROI segmentation results ROI masks will be added as an extra channel to the
input image and saved in this directory.

Channel Channel index, starting from 0, that will be used to
segment ROIs

Cellpose allows using nuclei channel to improve whole-
cell segmentation. To use this option, provide two
channel indices as a list, where the first index
corresponds to the nuclei staining, and the second
index corresponds to the cytoplasm staining
Examples: 0–the first channel will be used to segment
ROIs (either cells or nuclei) [1, 0]–the second channel (1)
will be used as an auxiliary nuclei stain, the first channel
(0) will be used to segment whole cells.

Diameter Target ROI (cell or nucleus) diameter in pixels An example image displayed in the notebook will
contain scale in pixels to help determine the target ROI
diameter. Set to None to automatically detect the ROI
diameter.

Model_type Cellpose model to use for segmentation: ‘nuclei’ for
nucleus segmentation, “cyto” or “cyto2” for cell
segmentation

cyto We found that “cyto” and “cyto2” models work better
than “nuclei” for segmenting nuclei with irregular
shapes.

Gpu If True, cellpose segmentation will run on GPU; if False,
cellpose will use CPU

True GPU processing is significantly faster; use gpu = True
whenever possible.

Do_3D If True, cellpose segmentation is performed in 3D; if
False, cellpose segments ROIs in each individual z-layer,
and the ROIs are combined in 3D in the postprocessing

False 3D segmentation is resource intensive, though
sometimes more accurate. If do_3D = True results in
“CUDA out of memory” error, either set do_3D = False,
or set gpu = False.

Flow_threshold Cellpose parameter: the maximum allowed error of the
flows for each mask

0.4 Advanced parameter. Increase if cellpose returns too
few masks; decrease if cellpose returns too many ill-
shaped masks.

cellprob_threshold Cellpose parameter: defines which pixels are used to
run dynamics and determine masks

0 Advanced parameter. Decrease if cellpose returns too
few ROIs; increase if cellpose returns too many ROIs;
values should be between -6 and 6.

Remove_small_mode "2D”, or “3D”. Used to remove small ROIs by volume
(3D) or area (2D)

3D Set to “3D” unless testing on cropped images. Set to
“2D” if the image contains only a few z-layers. If set to
“3D”, small ROIs are excluded based on volume; this will
exclude a ROI if only small part of it is contained in the
field of view.

Remove_small_diam_fraction Size threshold used to exclude small ROIs, provided as
a fraction of the “diameter” parameter

0.5 Advanced parameter. Increase to remove more ROIs,
decrease remove fewer ROIs.

Parameter_file File name used to save the parameter values Parameters.json May include a complete path, or only a file name. If only
a file name without path is provided, the file will be saved
in the directory of the notebook.
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the included instructions to adjust the conversion parameters
(such as channel code and z-position code). You will have an
option to specify pixel size and z-spacing if they are missing from
the imagemetadata. Providing correct values for these parameters
is critical for determination of accurate puncta volumes. The
output of this notebook will be a (json format text) file with
conversion parameters. After creating this parameter file, open
the “notebooks/run_images_to_stack.ipynb” notebook, specify
the path to the json parameter file generated in the previous
step, and run the notebook to convert the entire dataset into
compiled tiff files.

Once image input files are properly formatted, they can be
divided into folders where each folder denotes a different
condition (e.g. “condition1/my_sample_position_3_Z00_C01.
tif”). The pipeline will note the name of each folder and
include this information in the final output files, allowing for
easy comparison between conditions.

Optional Step 4: Set-Up ROI (Cell/Nuclei)
Segmentation
Segmentation of ROIs allows for the analysis and quantification of
individual regions such as cells or nuclei. The Punctatools pipeline
utilizes Cellpose (Stringer et al., 2021) to segment ROIs using
fluorescence signals. To adjust the segmentation parameters, first
open the “notebooks/setup_cell_segmentation.ipynb” notebook
and follow the instructions to specify the path to the converted
dataset, channel of interest, approximate ROI size, and the
parameters for the Cellpose algorithm (Table 1). We
recommend that users start with default values for
segmentation parameters; in most cases these will provide
sufficient accuracy for cell/nuclei segmentation. After specifying
segmentation parameters, the setup notebook performs an
example ROI segmentation that can be used to verify and
adjust the parameters (see Table 1 for details). We recommend
that users repeat this step for several example images to ensure that
segmentation results are consistently satisfactory. Once
appropriate parameters have been determined, execute the rest
of the notebook, which will save the adjusted parameter values to a
json file which is used in subsequent steps.

Optional Step 5: Segment ROIs
Once the setup_cell_segmentation notebook has been executed
and a parameter file has been generated for ROI segmentation, in
order to perform that segmentation on the entire dataset simply
open the “notebooks/run_cell_segmentation.ipynb” notebook
and direct it to the parameter file created in Step 4. Running
the notebook will then segment all of the ROIs as specified in the
parameter file and output a new set of tiff files that include an
additional layer of ROI masks.

Step 6: Set-Up Puncta Segmentation
Puncta segmentation is done by first setting up parameters using
the “notebooks/setup_puncta_analysis.ipynb” notebook. This
notebook begins with instructions to specify input files. If ROI
segmentation was done, specify the parameter file created at the
end of Step 4 and the information from that file will be imported

into the notebook, including the ROI segmented input images.
Otherwise, specify a set of compiled z-stack image files as in Step
3. The notebook will then guide users through selecting a test
image, specifying channels of interest for puncta segmentation,
and preparing a small image region to test parameters. The first
step of puncta segmentation is the detection of puncta centers
using a Laplacian of Gaussian (LoG) blob detector. The LoG
threshold detection parameter will dictate the sensitivity of the
algorithm, with smaller values resulting in more puncta centers
being identified, and larger values resulting in fewer puncta
centers (Figure 2A). Following identification of puncta
centers, the pipeline will refine this selection by comparing
their intensities against ROI fluorescent background. The
background level is calculated one of two ways: the same value
can be used for all cells (Global Background = True, Figure 2B) or
each cell can have a unique background intensity level (Global
Background = False, Figure 2C).

Following this, the notebook guides the user through adjusting
the puncta segmentation parameters, beginning with the
segmentation mode (Figure 3). If no ROIs have been
segmented (Steps 4–5), set the segmentation mode to 0; this
will analyze all puncta in LoG space using the same parameters
according to the user defined segmentation threshold value. If
ROIs have been segmented, you may choose mode 1 or 2; this will
adjust the segmentation threshold depending on the background
fluorescence in the ROIs. Mode 1 will segment puncta based on
the LoG transformed image, while Mode 2 will segment puncta
based on the original intensity values. This step may result in
removal of some additional puncta detected after the previous
step. Follow the guidelines in the notebook and Table 2, and
inspect the output results to choose an adequate segmentation
mode and threshold value for each channel of interest. Following
this, additional filters such as the maximum allowed size of
puncta and whether puncta outside of ROIs should be
removed can be specified. The final parts of this setup
protocol are to specify the names of input image channels and
the output parameter file (if different from the input parameter
file). Execute these parts of the notebook to save the adjusted
parameter values, which will be used in the next step.

Step 7: Segment and Quantify Puncta
After generating a parameter file using “notebooks/
setup_puncta_analysis.ipynb”, segment and quantify the entire
dataset using the “notebooks/run_puncta_analysis.ipynb”
notebook. To do so, specify in the notebook the path to the
parameter file generated at the end of Step 6. Then, execute all the
steps in the notebook. It will segment puncta in all the cells in the
dataset and generate output files. Output files will include csv files
with measurements for individual puncta, and if ROI
segmentation was done, additional csv files with measurements
on individual ROIs will be generated (Tables 3, 4).

Step 8: Verify the Quality of the Cell/Nuclei
and Puncta Segmentation
The “notebooks/run_puncta_analysis.ipynb” notebook creates
tiff files that include the original images along with ROI and
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puncta segmentation channels. The pixel values in each
segmentation mask match the “puncta label” and “ROI label”
values from the corresponding csv tables and are useful for
identifying specific data points. To examine these masks
visually, first open the output tiff files using image viewing
software such as FIJI. Then adjust brightness-contrast and/or
the lookup tables to improve visibility of each channel. We found

that “glasbey” or “glasbey on dark” lookup tables work well for
visualizing segmentation masks. Inspect whether the cell/nuclei
and puncta masks match expectations. Repeat this inspection for
several images from different treatment conditions to ensure
consistent performance of the segmentation algorithm and
that results align with expectations. It is critical that examined
conditions include negative controls (such as diffuse fluorescent

FIGURE 2 | Setting-up puncta centers detection. (A) Puncta in fluorescence microscopy images are first identified using a Laplacian of Gaussian (LoG) filter; the
detection sensitivity is determined by the LoG “threshold detection” parameter. Puncta centers identified in an image substack for cells expressing G-NHA9 (i) using three
settings of the LoG “threshold_detection” parameter are shown (ii–iv). Detection of puncta centers can be further refined through adjustment of background filtering
parameters, as illustrated in (B) and (C). The examples in (B) and (C) used a LoG “threshold detection” value of 0.003, as shown in (A), panel iii (blue dashed box).
These data are also shown on the left (i) in panels (B) and (C). In (B) puncta centers were identified using the Global Background (BG) = “True” option, and a range of
values of the background (BG) threshold parameter (ii–iv). In (C), puncta centers were identified using the Global Background (BG) = “False” option, and a range of values
of the background threshold parameter (ii-iv). With the Global Background (BG) = “True” option (B), a fixed background threshold is applied to all ROI (cell nuclei) in the
image, while with the “False” option (C), the background threshold value is calculated for each ROI (cell nucleus) individually.
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signal, and/or samples with no fluorescent signal), to ensure that
the parameters are not overly sensitive. If the segmentation results
are unsatisfactory, select a small set of representative samples and
return to Step 4 and/or Step 6 to adjust the segmentation
parameters. Because changes to parameters can alter puncta
segmentation, and therefore quantification of puncta features
(Figure 4), users are encouraged to implement the same
parameter values on the entire dataset across all experimental
conditions to maintain quantification accuracy and to ensure that
results are comparable. In cases where parameters capable of
completely segmenting puncta-containing images while
simultaneously not detecting puncta in negative controls
cannot be found, we recommend applying the lowest value

parameters that return no false puncta in negative controls
and acknowledge that this circumstance results in under-
segmentation of puncta within some images. While inspecting
results, note the image name and cell ID of any dying or obviously
aberrant cells. A list of these cells can be supplied to a post-
processing script in Step 10 to exclude them from final analysis.

Optional Step 9: Calibration of Fluorescence
Intensity Versus Concentration
For biologically relevant studies, it may be necessary to
estimate concentrations of fluorescently-labeled
biomolecules in cells treated under different conditions. To

FIGURE 3 | Setting-up puncta segmentation. Puncta Segmentation can be done in three ways, shown using puncta centers identified in Figure 2C, background
threshold = 3. (A)Mode 0 segments puncta based on the LoG filtered image, using a fixed threshold value. (B)Mode 1 segments puncta based on the LoG filtered image
using a threshold value relative to the ROI background (LoG) intensity. (C)Mode 2 segments puncta based on raw intensity values using a threshold value relative to the
ROI background intensity.
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TABLE 2 | List of parameters for puncta segmentation and analysis (setup_puncta_analysis.ipynb).

Parameter Definition Recommended initial
value

Notes

Parameter_file Parameter file with previously set up ROI segmentation
parameters

If ROI segmentation was performed, you can set
this to the parameter file name used for ROI
segmentation. Alternatively, set this to a new
parameter file name and specify the following two
parameters: “input_dir” and “cell_segmentation”.

Input_dir Directory with images to be analyzed All z-layers and channels for a specific sample must
be combined into a single file (see Step 3 of the
Protocol Procedure). If ROI segmentation was
done, set this to the “output_dir” of the ROI
segmentation. Alternatively, ignore this parameter
and specify the “parameter_file”.

Roi_segmentation If True, the last channel of the input images will be used as
ROI mask

Set to False if the ROI segmentation step was
skipped. Set to True if the images from “input_dir”
contain ROI masks as the last channel. Alternatively,
ignore this parameter and specify the
“parameter_file”.

Output_dir Output directory to save puncta analysis results

Puncta_channels List of channel indices, starting form 0, that will be used to
segment puncta

Examples: [1]–puncta will be segmented in the
second channel.
[2, 3]–puncta will be segmented in the third and
fourth channels.

Minsize_um Minimum target puncta size in µm 0.2 Will be used as the minimum sigma for the
Laplacian of Gaussian detector. Decrease to detect
smaller puncta, increase to avoid detection of
smaller puncta.

Maxsize_um Maximum target puncta size in µm 2 Will be used as the maximum sigma for the
Laplacian of Gaussian detector. Increase to detect
larger puncta, decrease to avoid detection of larger
puncta.

Num_sigma Number of sigma values for the Laplacian of Gaussian
detection

5 Advanced parameter. Decrease to save
computational resources, increase to improve the
accuracy of puncta centers detection.

Threshold_detection Threshold used by LoG detector to exclude low intensity
blobs

0.001 Should be close to 0 and can be both positive and
negative. Start with threshold_detection = 0 and
first adjust minsize_um and maxsize_um to make
sure that all puncta of relevant size are detected.
After that, gradually increase the value of
threshold_detection to remove low-intensity
detection. See Figure 3A for examples.

Overlap Parameter used by the LoG detector to remove the
smaller one of two overlapping blobs

1 Advanced parameter. Set to 1 to only remove
completely overlapping blobs. Decrease to remove
blobs that are further apart. Should be between 0
and 1.

Threshold_background Threshold used to remove low intensity puncta centers,
provided relative to the ROI background value (see
“background_percentile”)

3 Example: threshold_background = 3 will remove all
puncta centers with fluorescent intensity lower than
3 background values. Set to 0 to keep all puncta
centers. Only applied if the ROI masks are provided.

Background_percentile Intensity percentile (between 0 and 100) used to calculate
the background value of the ROI

50 Advanced parameter. 50 corresponds to the
median value.

Global_background If False, the background value is calculated individually for
each ROI. If True, the background value is calculated
globally as the global_background_percentile of all ROIs

False Set to False if there is a large range of cell
fluorescence values. This will increase sensitivity in
cells with low fluorescence and decrease sensitivity
in cells with high fluorescence.

Global_background_percentile Percentile (between 0 and 100) of ROI background
values to calculate the global background value

95 Advanced parameter. Only used if
global_background = True

(Continued on following page)
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TABLE 2 | (Continued) List of parameters for puncta segmentation and analysis (setup_puncta_analysis.ipynb).

Parameter Definition Recommended initial
value

Notes

Segmentation_mode Determines the way the “threshold_segmentation” is
applied. For mode 0: absolute threshold is applied in LoG
space; for mode 1: a threshold relative to the background
is applied in LoG space; for mode 2: a threshold relative
to the background is applied in image intensity space

0 Advanced parameter. Set to 0 if the background
fluorescent signal in all ROIs is relatively uniform. Set
to 1 if there is a large range of ROI background
fluorescence values.

Threshold_segmentation Threshold for puncta segmentation. Used in combination
with the “segmentation_mode”

0.001 (mode 0)30
(mode 1) 2 (mode 2)

For mode 0, start with values between 0.001 and
0.003; for mode 1, start with values between 20 and
100; for mode 2, start with values between 2 and 3
Decrease or increase to detect more/bigger or
fewer/smaller puncta.

Remove_out_of_roi If True, puncta (parts) that extend beyond ROI will be
removed. If False, all puncta will be kept

False

Maxrad_um Maximum puncta radius in µm. Used to remove large
puncta

None Set to None to keep all puncta.

TABLE 3 | Measurements for individual ROIs (cells or nuclei).

Column name Definition

Image name Source file name, including subdirectory
ROI label Unique ROI (cell or nucleus) ID; matches the pixel value in the ROI segmentation mask
x the x-coordinate (pixels) of the ROI within the image
y the y-coordinate (pixels) of the ROI within the image
z the z-coordinate (pixels) of the ROI within the image

ROI volume pix Volume (or area, for 2D images) of the ROI in pixels
ROI volume um Volume of the ROI in µm3 (or area in µm2, for 2D images)
[Fl] mean intensity per ROI Average pixel intensity of the [Fl] channel inside the ROI. Calculated for each fluorescent channel in the image
[Fl] integrated intensity per ROI The sum of all pixel intensities of the [Fl] channel inside the ROI. Calculated for each fluorescent channel in the image
[Fl] mean background intensity Average pixel intensity of the [Fl] channel in the background (outsize of ROI); will have the same value for all ROI in

the image

[Fl] integrated background intensity The sum of all pixel intensities of the [Fl] channel in the background (outsize of ROI); will have the same value for all
ROI in the image

[Fl] entropy Entropy of the [Fl] channel inside the ROI
Pearson correlation coefficient [Fl] vs. [Fl*] Pearson correlation coefficient between each pair of fluorescent channels [Fl] and [Fl*] inside the ROI
Pearson correlation p value [Fl] vs. [Fl*] p-value for the Pearson correlation coefficient between each pair of fluorescent channels [Fl] and [Fl*] inside the ROI
Mutual information [Fl] vs. [Fl *] Mutual information between each pair of fluorescent channels [Fl] and [Fl*] inside the ROI
number of [P] puncta Number of puncta detected in the [P] channel and assigned to the current ROI. This will correspond to the puncta

measurements from individual puncta quantification files (Table 4) with matching “Image name” and “cell label”
values and “channel” = [P]. Calculated for each channel [P] specified as puncta channel

average [P] puncta volume pix per ROI Average volume in pixels of puncta detected from channel [P] in the current ROI
average [P] puncta volume um per ROI Average volume in µm3 (or area in µm2, for 2D images) of puncta detected from channel [P] in the current ROI

total [P] puncta volume pix per ROI Total volume in pixels of puncta detected from channel [P] in the current ROI
total [P] puncta volume um per ROI Total volume in µm3 (or area in µm2, for 2D images) of puncta detected from channel [P] in the current ROI
average [P] puncta distance to ROI border um per
nucleus

Average distance in µm (in 3D) from the puncta’s centers of mass to the ROI border

[Fl] mean intensity inside [P] puncta The average intensity of the [Fl] channel inside puncta detected in the [P] channel in the current ROI. For [Fl] = [P],
this will correspond to the dense phase concentration

[Fl] mean intensity outside [P] puncta The average intensity of the [Fl] channel outside puncta detected in the [P] channel in the current ROI. For [Fl] = [P],
this will correspond to the light phase concentration

[Fl] integrated intensity inside [P] puncta The sum of all intensities of the [Fl] channel inside puncta detected in the [P] channel in the current ROI.
[FL] integrated intensity outside [P] puncta The sum of all intensities of the [Fl] channel outside puncta detected in the [P] channel in the current ROI.
Overlap coefficient [P]_[P*]_coloc Overlap coefficient (overlap over union) for the current ROI for puncta masks detected from each pair of puncta

channels [P] and [P*]. This is a measure of colocalization between puncta detected in different channels
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estimate concentrations of fluorescently-labeled protein inside
and outside of puncta, a conversion factor that establishes the
relationship between fluorescence intensity and fluorescent
protein (e.g., mEGFP) concentration needs to be calculated.
Prepare pure solutions of known concentrations of fluorescent
protein in imaging media and collect images using parameters
that are identical to those used in the experimental data
collection (laser power wattage, acquisition time, etc.).
When preparing these samples, it is important to account
for factors that influence fluorescence intensity such as
crowding, pH, and concentration; these factors can
influence the intrinsic fluorescence of the fluorescent-label
in the cellular setting (Kneen et al., 1998; Leiderman et al.,
2006; Morikawa et al., 2016). We provide an example
notebook, “notebooks/calibrate_intensities.ipynb” to match
fluorescent intensities to protein concentrations (e.g., for the
mEGFP channel). With this, a standard curve of the
relationship between apparent fluorescence intensity and
fluorescent protein concentration can be established, which
can then be used to calculate a conversion factor. This
parameter can be used to determine the apparent
concentrations of labeled biomolecule inside (dense phase)
and outside (light phase) of puncta when the relationship
between fluorescence intensity and concentration is linear.
Note that the exact concentration is not necessary to
determine thermodynamic parameters such as partition
coefficients.

Optional Step 10: Calculation of
Thermodynamic Characteristics
This processing step enables pipeline users to generate multiple
plots in several formats that allow comparison between
experimental conditions. Immediate comparisons that can be
made by this step are comparisons of basic parameters of cells
such as: number of puncta, average volume of puncta, and
average fluorescence intensity of a given fluorophore (FL)

within cells. To facilitate further comparisons, data can be
analyzed to derive the partition coefficient (Kp) for the
fluorescently-labeled biomolecule within puncta Eq. 1 and
partition coefficients are then used to derive the Gibbs free
energy of transfer into puncta (ΔGTr) Eq. 2, where R (1.9872)
is the gas constant in units of kcal/mol and T is temperature in
Kelvin units.

Kp � [DP]
[LP] �

[FL]mean intensity inside[FL] puncta
[FL]mean intensity outside[FL] puncta (1)

ΔGTr � −RTln(Kp) (2)
To compile output data, calculate thermodynamic parameters,

and compare datasets, we developed R functions that read output
files from previous steps and performs these calculations. This
function can be found in the “scripts/
thermodynamic_characterization/puncta_thermo_calc.Rmd” R
notebook provided. This script also generates plots to compare
datasets. To run this analysis, first load the requisite packages and
the function in R. Then call the function and provide the
necessary inputs: cell. data = “PATH to cell data csv file”,
puncta. data = “PATH to puncta data csv file”, cell. channel =
“Name of ROI signal”, puncta. channel = “Name of puncta
signal”, factor_conc = [[Conversion factor from intensity
to µM]] (optional), and temp = [[temperature in Kelvin
units]]. Assign output of the function to a dataframe, which
can then be exported to a spreadsheet.

Step 11: Statistical Analysis and
Comparisons
To determine the statistical significance of differences between
the features of puncta imaged in different biological replicates, or
under different biological conditions, use the provided R package
“scripts/statistical_analysis/library.R”. An example of how to
prepare and run the package is also provided as “scripts/
statistical_analysis/runPuncta.R”. To utilize the package, first

TABLE 4 | Measurements for Individual puncta.

Column name Defintion

Image name Source file name, including subdirectory
Puncta label Unique puncta ID; matches the pixel value in the puncta segmentation mask
ROI label ID of the ROI (cell or nucleus) the punctum belongs to; 0 corresponds to puncta located outside ROI
Channel Channel name in which the punctum was segmented
x the x-coordinate (pixels) of the punctum within the image
y the y-coordinate (pixels) of the punctum within the image
z the z-coordinate (pixels) of the punctum within the image
Puncta volume pix Volume (or area, for 2D images) of the punctum in pixels
Puncta volume um Volume of the punctum in µm3 (or area in µm2, for 2D images)
Distance to ROI border um Distance in µm (in 3D) from the punctum’s center of mass to the border of the cell or nucleus; 0 corresponds to puncta

located in the background
[FL] mean intensity per puncta Average pixel intensity of the [Fl] channel inside the punctum. Calculated for each fluorescent channel in the image
[FL] integrated intensity per puncta The sum of all pixel intensities of the [Fl] channel inside the punctum. Calculated for each fluorescent channel in the image
Pearson correlation coefficient [Fl] vs. [Fl*] Pearson correlation coefficient between each pair of fluorescent channels [Fl] and [Fl*] inside the punctum
Pearson correlation p value [Fl] vs. [Fl*] p-value for the Pearson correlation coefficient between each pair of fluorescent channels [Fl] and [Fl*] inside the punctum
Mutual information [Fl] vs. [Fl*] Mutual information between each pair of fluorescent channels [Fl] and [Fl*] inside the punctum. This is a measure of

correlation between channels
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FIGURE 4 | Impact of the “threshold_segmentation” parameter on the number and volume of detected puncta. (A) Example cells expressing the G-NHA9 (left),
G-NHA9-21FGAA (second from left), and G-NHA9-ΔDNA (second from right) constructs with different sizes of puncta; mEGFP (right) is the negative control. (B) Plots
showing how extracted features such as average number of puncta per cell (left) and average volume of puncta per cell (right) change with differing segmentation
parameters. (C) Puncta segmentation masks generated with different threshold_segmentation (TS) values. Scale bars show 5 µm. Puncta segmentation was
performed using mode 1, default LoG parameters (num_sigma = 5, minsize_um = 0.2, maxsize_um = 2) and a threshold detection value of 0.002 to identify potential
puncta centers. Images are shown as maximum intensity z-projections. Full z-stacks including 3D segmentation can be found in the supplemental files.
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read the cell-level data for multiple biological conditions into a
data frame in R. Then call the function and specify the following
inputs: the column names of the characteristics to be compared
(y.var), the condition variable (cond.var), the image subsample/
position (subsamp.var), a vector with names of the conditions to
include in the analysis (cond.inc.), the name of the
transformation (trans.name, examples include “identity” or
“log”), and an indicator of whether the y-variable is a count
variable (y.count, T or F). Based on these inputs, compare.
puncta.R will determine the proper statistical tests to perform
and compute statistical estimates of the effect of the biological
conditions on y with confidence intervals and p-values. It will
then return the input data, statistical results, and a brief narrative
describing the results.

RESULTS

Software Design
We provide the full image analysis pipeline as an open-source
Python package “Punctatools” (https://github.com/stjude/
punctatools). It is solely dependent on open-source tools, such
as Cellpose (Stringer et al., 2021), scikit-image (van derWalt et al.,
2014), and intake_io (Höckendorf and Medyukhina, 2022), all of
which will be installed automatically at setup. The pipeline
consists of tools that perform several major functions
(Figure 1): data staging, segmentation of the regions of
interest (ROIs; e.g., individual cells or nuclei), puncta
segmentation, and puncta quantification (discussed below).

ROI segmentation is done using Cellpose (Stringer et al.,
2021), a deep-learning-based algorithm for cell and nucleus
segmentation. This step is applied to segment either cells or
nuclei, depending on the fluorescent signal used (e.g., Hoechst for
segmenting nuclei in the examples provided here). Following
segmentation of ROIs in individual z-layer images, they are
combined in three dimensions (when the two-dimensional
segmentation mode was used). Optionally, tools are provided
to exclude small ROIs (e.g., those corresponding to aberrant or
dying cells) and/or ROIs near the edges of images in the x- and
y-axis dimensions (see Supplementary Meterial S1).

Segmentation of puncta within ROIs is done through the
following steps (Figures 2,3; Supplementary Meterial S1): 1)
a Laplacian of Gaussian (LoG) filter is applied to identify
candidate puncta centers (Figure 2A); 2) intensity-dependent
puncta center filtering is performed based on contrast to the
background signal of the ROI (Figures 2B,C); 3) thresholding of
the image, followed by a seeded watershed segmentation is
applied to the LoG transformed (Figures 3A,B) or raw
fluorescence intensity signal (Figure 3C); and 4) optional
filtering of puncta is done based on their size or extension
beyond the ROI mask (see Supplementary Meterial S1).

After ROI and puncta segmentation, the Punctatools pipeline
performs quantitative measurements on ROIs (Table 3) and
puncta (Table 4). For each punctum, Punctatools quantifies
location, volume, distance to ROI border, as well as the mean
and integrated fluorescence intensities of all pixels in all detection

channels within the segmented punctum. The values of these
parameters are summarized for individual ROI. Punctatools also
quantifies the mean and integrated fluorescence intensities for all
pixels within each ROI, as well as all pixels inside (dense phase)
and outside (light phase) of puncta for each ROI; if a calibration
curve was established relating fluorescence intensities with molar
concentrations (e.g., for the mEGFP channel; see Step 9), these
values can be converted to molar concentration units. In our
example data, ROIs of interest are cell nuclei and the
biomolecules of interest (G-NHA9 constructs) are
fluorescently-labeled with mEGFP. Therefore, the parameters
described above give the apparent average total nuclear
mEGFP concentration for all nuclei in the images being
analyzed, and corresponding dense and light phase
concentrations. Furthermore, the pipeline will report
correlation statistics (e.g., Pearson correlation coefficients,
mutual information) for each pair of channels. This
calculation is performed and reported for both ROIs and
puncta. Additionally, if multiple puncta channels are
segmented, the pipeline will calculate the overlap coefficient
(overlap over union) between segmented puncta for each ROI.

The parameters for all steps of ROI and puncta segmentation
are interactively adjusted using the provided setup notebooks and
allow users to tune pipeline performance until results agree with
their expert assessment (see Tables 1, 2 for the full list of
adjustable parameters). The sensitivity, computational expense,
and limits of detection will be determined by these user-defined
parameters. For example, the parameters that determine the LoG
transformation (num_sigma, overlap, threshold_detection,
maxsize_um, and minsize_um) allow users to adjust the
pipeline to detect puncta within the expected size range.
Because changes in the analysis parameters result in
differences in quantifications of puncta features (Figure 4),
when comparing the puncta features of different conditions,
all conditions need to be analyzed with the same parameters.

In addition to the Punctatools package, we provide the set of
jupyter notebooks (Python language scripts), which we used for
the analyses shown in this manuscript. The notebooks include
step-by-step guides on how to adjust ROI and puncta
segmentation parameters to adapt the workflow for particular
experimental conditions (e.g., cell type, type of fluorescently-
labeled biomolecule, location of puncta formed by the labeled
biomolecule with cells, etc.).

We also developed an R-function to extract thermodynamic
parameters from the raw pipeline output
(puncta_thermo_calc.Rmd). The function first reads the ROI
and puncta datasets generated in previous steps for a given
experimental condition, along with parameters needed to
calculate the relevant characteristics of each cell. These include
the apparent concentration of the fluorescently-labeled
biomolecule (e.g., a mEGFP-labeled protein) in the ROI and
the corresponding dense and light phase, the partition coefficient
(Kp), and the Gibbs free energy of transfer (ΔGTr). Data generated
by this function can be exported to a spreadsheet for examination,
or directly plotted in R to make comparisons between conditions.
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FIGURE 5 | Example Punctatools pipeline output. (A) Exemplary microscopy images illustrating differences in puncta features for G-NHA9 (green box, n = 1,004),
G-NHA9-21FGAA (blue box, n = 880), and G-NHA9-ΔDNA (red box, n = 849). The fluorescence signals for the G-NHA9 constructs are illustrated in green and those for
Hoechst dye are shown in blue. The Punctatools pipeline quantifies raw images to extract parameters such as, (B), the apparent average nuclear concentration per cell of
the fluorescently-labeled biomolecule (mEGFP) and (C), Pearson correlation coefficients (PCC) between fluorescent channels (the Hoechst dye and mEGFP
channels in these examples). Additional functions within Punctatools generate plots reporting features such as, (D) Puncta number; (E) Puncta volume; (F) Puncta

(Continued )
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Finally, we developed an R package to assess the statistical
significance of differences in values of puncta parameters
generated using the procedures discussed above for single
replicates of images recorded under different biological
conditions. The package can be found in the Punctatools
github repository “scripts/statistical_analysis/library.R”. The
package defines a function image.stats that compares ROI-level
imaging characteristics across biological conditions. The input
data is first passed as the dset argument to compare. puncta. The
function then transforms the data as specified (trans.name) and
subdivides it to include the biological conditions of interest
(cond.var). Next, it fits a linear mixed effects model if y is not
an integer variable (using lmer of the lme4 package) or a general
linear mixed effects model with a Poisson distribution and log-
link if y is a count variable (using glmer of the lme4 package). In
each case (when y is an integer variable or not), the model
represents the substantial variability between technical
replicates in y (subsamp.var) as a random effect and the
biological comparison across conditions of primary scientific
interest (cond.var) as a fixed effect. The package then
computes statistical estimates of the effect of the biological
conditions on y with confidence intervals and p-values.
Finally, the package returns these statistical results, copies of
the input data and specifications, and a short narrative describing
the results of the statistical analysis. In future work, we intend to
extend this function to appropriately manage data from
experiments with multiple biological replicates per condition.
As the data collection for these studies becomes streamlined and
less cumbersome, we encourage investigators to include multiple
biological replicates in their studies to enhance statistical
reliability and scientific rigor.

Example Results
Successful implementation of this pipeline up to Step 8 will return
multiple results files. Amongst these are annotated image-format
files that depict the masks generated for ROIs and puncta, in
addition to the original intensity information; these files are
stored within the puncta subdirectory. Masks are helpful for
visually inspecting the results to determine whether ROIs (e.g.,
nuclei in our G-NHA9 construct examples) were properly
segmented, and that puncta were correctly identified and
segmented. Additionally, there are numerous spreadsheets that
report the extracted puncta features for the different conditions
being tested. One set of spreadsheets details parameters for
individual puncta, noting volume (in pixels3 and μm3), x-, y-,
z-axis position, average and integrated fluorescence intensity, etc.
Another set of files reports information relevant to the behavior of
condensates formed in cells by the fluorescently-labeled
biomolecule(s). For example, average values for puncta
features within each ROI, average fluorescence intensity in the

ROI, and correlation between fluorescence intensities of the
different channels within the ROI. Further processing (as in
Steps 9–11) converts this information into features relevant for
thermodynamic analysis. We illustrate some of these results for
images of live HEK293T cells expressing three different G-NHA9
constructs (Figure 5A) analyzed using the Punctatools pipeline.
For example, as discussed under Procedure (Step 9), if a standard
curve for the relationship between fluorescence intensity of the
fluorescent label (mEGFP in our case) and molar concentration is
available, the average fluorescence intensity per ROI (nuclei in
our case) can be converted to average molar concentration within
each ROI. The results show that the average nuclear
concentration of the mEGFP-labeled constructs for individual
cells varies from 1 μM to over 10 μM and that the concentration
ranges and distributions differ between the constructs
(Figure 5B). Also, the extent of positional overlap of the
fluorescence signals of the mEGFP-labelled G-NHA9
constructs and the Hoechst dye, which stains chromosomal
DNA, as given by the Pearson correlation coefficient, differs
for the three G-NHA9 constructs (Figure 5C). The conversion
of fluorescence intensity to molar concentration enables
examination of the dependence of puncta features on the
concentration of the puncta-forming biomolecule—on a per
ROI basis (per cell nucleus in our examples). We illustrate this
feature of Punctatools on mEGFP concentration-dependence of
puncta number, puncta mole fraction (e.g., the fraction of
mEGFP-labeled biomolecules within puncta) and ΔGTr (e.g.,
the thermodynamic favorability of the labeled biomolecule
partitioning into puncta) for the three G-NHA9 constructs
(Figures 5D–F). Finally, we determine statistical significance
of the differences between puncta features using the statistics
tools within the Punctatools pipeline (Figure 5G). In summary,
the functionalities included in Punctatools enable evaluation and
optimization of image analysis performance and, assuming
suitable performance is achieved, detailed analysis of features
of puncta formed by fluorescently-labeled biomolecules in
live cells.

Comparison to Other Methods
FIJI is an open-source platform used to view and analyze image
data with numerous plugins that provide additional functionality.
We used the “Coloc 2” plugin to confirm the Pearson correlation
coefficient (PCC) values output by our pipeline. To do so, we first
imported the Cellpose ROIs into FIJI, then isolated the regions
from the surrounding data and ran the plugin. We compared the
PCC values generated by “Coloc 2” with those generated by our
pipeline for each ROI in a sample image and found them to be
identical, confirming robustness of our pipeline’s calculations.
Additionally, we compared the results of the Punctatools
pipeline’s segmentation against manual segmentation of

FIGURE 5 | volume fraction (Fvol); (G) Puncta mole fraction (Fmol); (H) Light phase concentration (LP); (I) Dense phase concentration; (J) Partition coefficient (Kp); or (K),
ΔGTr versus the apparent average concentration of the fluorescently-labelled biomolecule (mEGFP in these examples) per ROI (cell nucleus in these examples). (L) The
pipeline also determines the statistical significance of differences between these values for different conditions (three G-NHA9 constructs in these examples), including
p-values. Average mEGFP concentrations shown on the graph x-axes are estimates derived from calibration, and are subject to the limitations of this calibration as noted
in the main text.
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FIGURE 6 | Comparison of puncta segmentation performance: Punctatools versus FIJI 3D object-counter. (A) A single z-layer image of puncta in cells expressing
G-NHA9 (the G-NHA9 fluorescence signals are illustrated in green and those for Hoechst dye are shown in blue); two ROIs (Cells #20 (solid red circle) and #24 (dashed
green circle)) in this image were used for the performance comparisons presented in other panels. Cells #20 and #24 display many puncta and no puncta, respectively.
Analysis of the 3D z-stack data to quantify puncta features for individual ROIs (57 nuclei total) resulted in different numbers of puncta by the Punctatools pipeline and
FIJI 3D Object counter differ; in (B), a constant, global background threshold was used by Punctatools (Mode 0) and the FIJI 3D object-counter and in (C), the
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puncta done by drawing ROIs in FIJI, and quantified each cell as
defined by Cellpose. We found the results to be in good
agreement (Supplementary Figures 1B,C).

We also used a FIJI plugin to compare our pipeline’s puncta
segmentation against conventional thresholding approaches. “3D
object counter” identifies and counts 3D objects in a set of data by
first suggesting a recommended threshold value and then separating
“objects” from the background based on the distribution of intensity
values in the analyzed region. To segment puncta using this plugin,
we first isolated individual cell nuclei from an acquired z-stack of
puncta-displaying cell nuclei using the regions generated from
Cellpose as generated in Step 5. We then analyzed each cell
nucleus in this file with 3D object counter in two different ways:
with a threshold automatically determined from the collective
intensity distribution in the entire image-stack (Global
Sensitivity), and with a threshold automatically determined from
each individual cell nucleus’s intensity distribution (Local
Sensitivity). We then compared the results between these analyses
and the analyses of two different configurations of our pipeline: one
that analyzes cell nuclei in the context of the entire file (Mode 0,
Global Background = True, Figure 6B) and a configuration that
analyzes cell nuclei individually (Mode 1, Global Background =
False, Figure 6C). In cell nuclei that display obvious puncta, such as
nucleus #20 (Figure 6D), the Punctatools pipeline found more
puncta (974 and 779, with local and global background options,
respectively) than the FIJI 3D Object Counter method (44 and 275,
respectively). In contrast, in a low expressing cell with no apparent
nuclear puncta (nucleus #24), the Punctatools pipeline found no
puncta while the 3D Object counter method found 14 puncta when
evaluating the cell nucleus with a local threshold (Figure 6E). In
addition, we found that for both thresholding methods, the
Punctatools pipeline returned segmentation masks that were truer
representations of puncta shape, and the pipeline performance was
superior in segmenting separate puncta in areas where multiple
puncta existed close to one another. In conclusion, we determined
that the LoG-based method of determining puncta segmentation
used in Punctatools is superior to conventional intensity-
thresholding methods.

Puncta analysis could potentially be simplified by 2D
projection from 3D data prior to analysis. However, 2D
projection produced inaccuracies in quantification of key
quantities such as volume fraction and partition coefficient
(Supplementary Figures 1D,E).

There are multiple existing software packages designed to
facilitate algorithmic analysis of fluorescence microscopy data.
For example, there are numerous open-source plugins for FIJI
that recapitulate many of the analysis steps performed in the
Punctatools pipeline. Additionally, CellProfiler (Stirling et al.,
2021) contains a suite of image analysis tools designed to process
and analyze large batches of image data. These open-source tools

have been used to develop many different protocols that perform
a large variety of analytical tasks on cell images and can execute
these protocols on large sets of data and could be used to create
pipelines comparable to the Punctatools pipeline.

DISCUSSION

Our image analysis pipeline was developed to facilitate objective,
automated analysis of fluorescence microscopy images of
biomolecular condensates formed through the process of LLPS.
We tailored the performance of our pipeline to accommodate the
physical features of biomolecular condensates; for example, the
identified condensates, or puncta, are analyzed over their entire
three-dimensional volumes and their boundaries are identified using
a Laplacian of Gaussian filter applied to their fluorescently-labeled
components. Quantification of entire puncta volumes enables
analysis of the total puncta volume relative to the remaining
nuclear volume, which is termed the puncta volume fraction
(Fvol). Our pipeline also quantifies the intensity of the signal for
the fluorescently-labeled biomolecule within puncta, termed the
dense phase, and within the surrounding ROI (the nucleoplasm
in our examples), termed the light phase. These fluorescence
intensities can be converted to apparent molar concentrations in
the respective phases if an appropriate standard curve is available
(e.g., recorded using purified mEGFP for our examples). The
availability of these concentrations enables the mole fraction of
the fluorescently-labeled biomolecule within puncta (Fmol) to be
determined (Figure 5E). These parameters, Fvol and Fmol, are not
available from other image analysis software packages. Another
advantage of our image analysis pipeline is that it is more
sensitive to the presence of puncta than other, intensity-base
detection methods (Figure 6). Our pipeline detects puncta by
using the Laplacian of Gaussian transformation, which enables
detection of sharp fluorescence intensity fluctuations that
distinguish the puncta dense phases from the surrounding light
phase. In the simplest case, the theory of liquid-liquid phase
separation provides that the concentration of the fluorescently-
labeled biomolecule that forms puncta has a uniform
concentration in the light phase and a uniform but higher
concentration in the dense phase. The ratio of dense to light
phase concentrations is the partition coefficient (Kp) and its value
in condensates can range from a few-fold to over 100-fold. Our
pipeline detected hundreds of puncta formed in cells by the NHA9
fusion oncoprotein while intensity-based image analysis methods
detected significantly fewer puncta (Figure 6). While we illustrate
the performance of our image analysis pipeline using exclusively
nuclear puncta-forming proteins, it is adaptable to identifying and
analyzing condensates formed outside of the nucleus with
appropriate experimental design (e.g., by providing a fluorescent

FIGURE 6 | background thresholds were determined by the two algorithms for each ROI (cell nucleus; Mode 1 for Punctatools). In (B) and (C), the number of puncta
identified by Punctatools for each ROI is plotted on the x-axis and that determined by the FIJI 3D object-counter on the y-axis. (D) Raw image data for Cell #20 displaying
many puncta (a single z-slice is shown, (i) and puncta segmentation masks generated using the FIJI 3D object counter (ii, iv) or Punctatools (iii,v) using global (ii,iii) or local,
ROI-specific (iv,v) background thresholds. (E) as in (D) for Cell #24, which did not express G-NHA9 and does not display puncta. In (D) and (E), the G-NHA9
fluorescence signals are illustrated in green and those for Hoechst dye are shown in blue. The masks for segmented puncta in (D) are illustrated in multiple colors.
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signal for segmentation of the entire cell volume). Therefore, we
believe that the Punctatools image analysis pipeline discussed herein
will be useful in the analysis of cellular condensates formed by many
other fluorescently-labeled biomolecules.

The quantitative information from Punctatools pipeline provides
detailed insight into the phase separation behavior of biomolecules in
cells. For example, we enumerate the average fluorescence intensity
per unit volume for fluorescently-labeled biomolecules which, when a
standard curve relating fluorescence intensities to molar
concentrations is available, allows the concentration dependence of
puncta features to be examined. Puncta number (Figure 5D)
increases for the three G-NHA9 constructs (G-NHA9, G-NHA9-
21FGAA and G-NHA9-ΔDNA) with increasing nuclear expression
level, but these dependencies vary. The G-NHA9-ΔDNA construct,
which interacts with other proteins in the nucleus but does not bind
DNA, forms fewer puncta that are larger (Figure 5E) than those
formed by G-NHA9. In contrast, the G-NHA9-21FGAA construct,
which harbors 21 pairs ofmutations in the FGmotifs that drive phase
separation, forms fewer puncta than G-NHA9 and only at
significantly higher protein expression levels. These results, based
upon quantitative image analysis using the Punctatools pipeline,
illustrate how altering the functional properties of the NHA9
fusion oncoprotein through mutation (e.g., by altering interactions
with DNA or proteins, respectively, with G-NHA9-ΔDNA and
G-NHA9-21FGAA) affects LLPS and puncta features in cells.
Quantitative analysis of puncta within cell images also provides
access to information on the volume occupied by puncta within
the ROI (nuclei in our studies). For example, puncta formed by the
G-NHA9 constructs occupy only a very small fraction of the nuclear
volume (Figure 5F), especially at low expression levels, although this
fraction increases to almost 0.1 at the highest expression levels.
However, the fraction of mEGFP-labeled protein molecules within
puncta (Figure 5G) exceeds 0.1 at the higher expression levels due to
preferential partitioning within the phase-separated condensates, as
given by the partition coefficient (Kp, Figure 5H). We note, however,
that G-NHA9 construct partitioning within puncta declines sharply
with increasing expression level (Figure 5H) because the mEGFP-
labeled protein concentration increases more steeply in the light
phase ([LP], surrounding puncta) than in the dense phase ([DP],
within puncta (Figures 5I,J). This is due to declining thermodynamic
favorability of incorporation of mEGFP-labeled G-NHA9 molecules
within puncta with increasing expression level (e.g., ΔGTr values
become less negative, Figure 5K), which is a hallmark of
multicomponent phase separation driven by heterotypic
interactions (Riback et al., 2020). Thus, the quantitative analyses
enabled by Punctatools provides detailed insight into relationships
between LLPS mechanisms and the physical and thermodynamic
features of cellular puncta.

It is now recognized that large regions of the interior of cells are
occupied by biomolecular condensates that form through LLPS and
perform diverse biological functions. While the basic principles
underlying LLPS by biomolecules are understood, tools to
quantitatively compare the features of the different types of
condensates that form through LLPS are limited. Fluorescence
microscopy is commonly applied in studies of condensates formed
in cells by fluorescently-labeled biomolecules but often only qualitative
analyses of the resulting images are performed. While many types of

image analysis software tools are available for quantitative analyses of
punctate structures in cells, we are not aware of any that have been
developedwith the principles of LLPS inmind. The Punctatools image
analysis pipeline presented here was developed to enable the
identification and segmentation of cellular puncta formed through
LLPS, which in turn provides access to the wealth of quantitative
physical and thermodynamic features discussed above. While the
example data and analyses we present were generated through studies
of fluorescently-labeled proteins that form nuclear puncta, our
pipeline is adaptable for studies of condensates that form within
the cytoplasm with appropriate experimental design. Therefore, we
propose that Punctatools will be useful in studies of the growing
numbers of biomolecules that perform their function(s) in the setting
of phase separated condensates.
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