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Vertebrates are faced continuously with a variety of potential stressful stimuli and react by

a highly conserved endocrine stress response. An immediate catecholamine mediated

response increases plasma glucose levels in order to prepare the organism for the

“fight or flight” reaction. In addition, in a matter of minutes after this (nor)adrenaline

release, glucocorticoids, in particular cortisol or corticosterone depending on the species,

are released through activation of the hypothalamic-pituitary-interrenal (HPI) axis in

fish or hypothalamic-pituitary-adrenal (HPA) axis in other vertebrates. These plasma

glucocorticoids are well documented and widely used as biomarker for stress across

vertebrates. In order to study the role of glucocorticoids in acute and chronic stress

and gain in-depth insight in the stress axis (re)activity across vertebrates, it is pivotal to

pin-point the involved molecules, to understand the mechanisms of how the latter are

synthesized, regulated and excreted, and to grasp their actions on a plethora of biological

processes. Furthermore, in-depth knowledge on the characteristics of the tissues as well

as on the analytical methodologies available for glucocorticoid quantification is needed.

This manuscript is to be situated in the multi-disciplinary research topic of glucocorticoid

action across vertebrates which is linked to a wide range of research domains including

but not limited to biochemistry, ecology, endocrinology, ethology, histology, immunology,

morphology, physiology, and toxicology, and provides a solid base for all interested in

stress, in particular glucocorticoid, related research. In this framework, internationally

validated confirmation methods for quantification of a glucocorticoid profile comprising:

(i) the dominant hormone; (ii) its direct precursors; (iii) its endogenously present phase

I metabolites; and (iv) the most abundant more polar excreted exogenous phase I

metabolites in non-pooled samples are pivotal.
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Aerts Glucocorticoid Profiling Pivotal in Stress

KEY CONCEPTS

Accurate Identification and Quantification
of Stressors Experienced by an Individual
The sheer diversity in potential stressors, individual perception
and subsequent reaction to these stressors, and the plethora of
metabolic processes mediated by glucocorticoids render accurate
identification and quantification of the stressors experienced by
an individual pivotal.

Analysis of the Dominant Glucocorticoid Is
Affected by Other Steroids
Glucocorticoid quantification can be biased by (i) the less
dominant hormone; (ii) other steroids; (iii) direct precursors
of the dominant hormone and the dominant hormone itself
produced in extra-interrenal or extra-adrenal tissues; (iv) phase
I metabolites present in the body; and (v) phase I metabolites
present on the sample as contaminants.

Analysis of the Dominant Glucocorticoid Is
Affected by the Sample Tissue
Results can be enhanced or suppressed by tissue specific
compounds, and potential effects should be analytically validated.

Analysis of the Dominant Glucocorticoid Is
Affected by the Analytical Methodology
Used
Glucocorticoid analysis should best be performed using
confirmation methods. Hereby, UPLC-MS/MS is considered the
gold standard for quantitation of glucocorticoids in complex
biological tissues as it has the needed sensitivity, selectivity and
the advantage of having the capability to perform multi-analyte
assays, even across compound classes.

Analysis of the Dominant Glucocorticoid Is
Affected by the Lack of Analytical
Validation
Methods should best be developed in an EN ISO/IEC 17025
regulated environment and analytically validated according the
criteria of international standards to ensure full traceability and
quality of the results in time.

INTRODUCTION

Moberg (1) defined stress as “a highly complex multi-
dimensional phenomenon promoted by several noxious or
unpredictable stimuli (stressors) that cause a physiological
response (stress) aimed to maintain or recover the body
homeostasis.” Stressors are diverse and generally classified based
on their: (i) type (i.e., chemical, physical, and psychological);
(ii) duration [i.e., transitory (acute) or long-term (chronic)]; (iii)
severity; (iv) (un)predictability; and (v) (un)controllability (2).
Hereby, stress can be perceived as harmful or negative (distress),
as well as a neutral or even as a positive condition (eustress) (3).

Organisms are faced continously with a variety of potential
stressful stimuli and have developed over time a plethora

of mechanisms to cope with changes and challenges in
their environment (4). When faced with such stressful
stimuli, vertebrates, ranging from fish to humans, react by
a highly conserved endocrine stress response. An immediate
catecholamine mediated response increases plasma glucose levels
in order to prepare the organism for the “fight or flight” reaction
(5). In addition, in amatter ofminutes after this (nor)epinephrine
[(nor)adrenaline] release, glucocorticoids, in particular cortisol
(11β,17α,21-trihydroxypregn-4-ene-3,20-dione or C21H30O5)
or corticosterone (11β,21-dihydroxypregn-4-ene-3,20-dione
or C21H30O4) depending on the species, are released through
activation of the hypothalamic-pituitary-interrenal (HPI) axis in
fish (6) or hypothalamic-pituitary-adrenal (HPA) axis in other
vertebrates (2). These plasma glucocorticoids are widely used
as biomarker for stress across vertebrates (7, 8) and considered
as adaptation hormones as they mediate a redistribution of
energy (i.e., glucose) in order to restore pre-stress conditions.
However, failure to regain homeostasis (maladaptation) will
inevitably lead to chronic stress making the individual prone to
the detrimental effects of glucocorticoid mediated actions (e.g.,
decreased growth, decreased reproduction, immune suppression,
increased mortality). In the concept of “allostasis” [i.e., constancy
through change by resetting the set-points for homeostasis in
accordance to environmental cues (9, 10)], this situation can
be described as: the transition from allostatic load (when the
stress can be overcome, “eustress”) to allostatic overload (when
the stress cannot be overcome and becomes “distress”) (5, 11).
The dominant hormone, cortisol or corticosterone, respectively,
is pleiotropic and affects all major homeostatic systems of
the vertebrate’s body. Besides modulating actions, which alter
an organism’s response to a stressor, also preparative actions,
which alter the organism’s response to a subsequent stressor
or aid in adapting to a chronic stressor, are distinguished (2).
Hereby, a plethora of physiological processes are modulated
including central nervous system (CNS) and cardiovascular
functions, the metabolic system [e.g., bone metabolism (12),
stimulation of gluconeogenesis, proteolytic processes in the
muscle and lipolysis in the adipose tissues to increase plasma
glucose levels)], the immune system (inflammatory response and
lymphocyte production), growth, reproduction, and behavior
(13). Furthermore, physiological amounts of glucocorticoids are
also essential for normal renal tubular function and thus for
water and electrolyte homeostasis (14, 15).

The perception of potential stressors by an individual varies
(16, 17) and depends on various factors including but not limited
to the species, genetic background, previous experiences (18),
gender (19), age, and types as well as duration of the stressors
(20, 21). The stress response will vary accordingly between
individuals and physiological and behavioral responses tend to
be associated in distinct suites of correlated traits, called “stress
coping styles” (22). Hereby, the proactive stress coping style
(active coping or “fight-flight”) is associated with lowHPI orHPA
axis responsiveness, but with high sympathetic reactivity, and is
characterized by a high level of active avoidance, aggression and
other actions indicating active attempts to counteract the stressful
stimulus. The opposite is seen in reactive coping (passive coping
or “conservation-withdrawal”) (22).
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In all, the sheer diversity in potential stressors, individual
perception and subsequent response to these stressors, and the
plethora of metabolic processes mediated by glucocorticoids
render accurate identification and quantification of the stressors
experienced by an individual pivotal.

ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY
OTHER STEROIDS

By the Less Dominant Glucocorticoid
The vertebrate stress response is mediated by the stress system
which is activated when encountering environmental stressors
but also when the body is at rest, hereby responding to various
signals (e.g., circadian, neurosensory, blood-borne, and limbic)
(23). The noradrenergic synthesizing neurons of the locus
coeruleus/norepinephrine-central sympathetic system in the
brainstem as well as the corticosteroid releasing hormone
(CRH) and arginine vasopressin (AVP) synthesizing neurons
of the hypothalamic paraventricular nuclei (PVN) comprise
the central components, while the systemic sympathetic
and adrenomedullary nervous systems and the HPI or
HPA axis comprise the peripheral components of the stress
system (24). Once triggered, CRH stimulates the release of
adrenocorticotropic hormone (ACTH) from the pituitary,
which results in glucocorticoid release, mainly cortisol, and
corticosterone depending on the species, from the head
kidney or adrenal gland, respectively. In ray-finned fish,
cortisol predominates but corticosterone is also present; in the
remaining fish species, the dominant or sole glucocorticoid
varies. In this framework, 11-deoxycortisol in agnate fish
(25); 1α-hydroxycorticosterone in sharks and rays (26); and
11-deoxycorticosterone in teleost fish (27, 28), were shown to
be active glucocorticoids. In amphibians, reptiles and birds, the
dominant glucocorticoid is corticosterone, while mammals, most
placentals and marsupials secrete primarily cortisol. However,
some rodents (e.g., rats and mice) secrete primarily or only
corticosterone, whereas most other rodents secrete primarily
or only cortisol (e.g., guinea pigs), while hamsters secrete both
glucocorticoids in equal quantities. As a consequence, the less
dominant glucocorticoid should be considered during analytical
validation as it can cause cross-reactivity and subsequently bias
glucocorticoid quantification.

By Other Steroids
Glucocorticoids have a typical steroid structure consisting
of a cyclopentaphenanthrene nucleus comprising three fused
cyclohexane rings in a non-linear arrangement and a terminal
cyclopentane ring. Most glucocorticoids possess a 14-3-keto
group, a carbon ketol side-chain at C17 and generally an oxygen
function at C11. The orientation of the groups attached to
the steroid ring system is pivotal for the biological activity
(29). As a consequence, other steroids including (i) androgens
(C19-steroids such as testosterone); (ii) estrogens (C18-steroids
such as estrone); (iii) mineralocorticoids (C21-steroids such
as aldosterone); and (iv) progestagens (C21-steroids such as

progesterone) (30), can be considered as physical-chemical
similar molecules and should be taken into account during
analytical validation as these compounds can cause cross-
reactivity and subsequently bias glucocorticoid quantification.

By Direct Precursors of the Dominant
Glucocorticoid and the Dominant
Glucocorticoid Produced in
“Extra-Interrenal” or “Extra-Adrenal”
Tissues
All steroids are derivatives of cholesterol (C27H46O) (31).
Though, glucocorticoids were initially thought to be exclusively
synthetized by the interrenal or adrenocortical cells, respectively,
numerous studies have shown that they are also synthesized
locally in so called “extra-interrenal” or “extra-adrenal” tissues
(32). At present, these tissues include but are not limited
to: primary lymphoid organs (33), intestine (34), CNS (35),
cardiovascular system (36), skin (37–39), hair follicle (40), lung
(41), kidney (42), and retina (43).

As a consequence, quantification of the dominant
glucocorticoid produced by the HPI or HPA axis can be
biased by direct precursors of the dominant hormone and the
dominant hormone itself produced in extra-interrenal or extra-
adrenal tissues, making the quantification (or at least analytical
validation) of these other glucocorticoids of importance.

By the Manner How Glucocorticoids Are
Regulated
Systemically, glucocorticoid levels are influenced by distinct
brain regions including structures of the limbic system (i.e.,
amygdala and hippocampus) and the midbrain (i.e., prefrontal
cortex) (44) as well as by the hypothalamus, pituitary, and
interrenal cells or adrenal cortex, respectively (45). In addition,
the glucocorticoid pathway is controlled by the dominant
glucocorticoid through a negative feedback loop. Besides this
stress reactivity, glucocorticoid release is under control of a
circadian clock (46). In humans the secretion of cortisol from
the adrenal glands was shown to follow a diurnal cycle with a
profound increase after awakening (47, 48).

Local regulation of glucocorticoid levels is mediated by access
to target cells mediated by carrier proteins (49), by pre-receptor
metabolism due to metabolic enzymes and by the availability of
glucocorticoid (GR) and mineralocorticoid (MR) receptors.

By the Non-free Dominant Glucocorticoid in the

Blood
Glucocorticoid levels vary rapidly due to the pulsatile nature
of its secretion, rendering the dynamics of its binding critical
determinants of tissue levels of free hormone and consequent
hormone signaling. In most vertebrate species, the major
proportion of circulating glucocorticoids are bound to a plasma
glycoprotein called corticosteroid binding globulin (CBG) (50,
51). Subsequently, the free fraction is small (52). Since CBG is
too large to leave the capillaries under normal circumstances,
glucocorticoids bound to it remain in circulation. According to
the “free hormone” hypothesis, it is the concentration of free,
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unbound hormone that determines how much glucocorticoids
diffuses out of the capillaries and reaches the tissues. However,
as CBG-bound glucocorticoids were shown to be released by
enzymatic cleaving of the CBG molecule (53) and cell surface
receptors for the CBG-glucocorticoid complex were shown to
be present in certain tissues (54), one could argue that the
glucocorticoid dissociation from CBG is part of the mechanism
that makes the hormone biologically active.

In all, when focusing on cortisol producing vertebrates,
cortisol is transported in blood more than 90% protein bound,
approximately 70% with high affinity to CBG and 20% with
low affinity to albumin, but it dissociates so rapidly that it is
generally thought to be free (55). However, evidence indicates a
dichotomous pattern with respect to CBG in these vertebrates:
(i) a dominant branch where high levels of CBG bind most of
the glucocorticoid which applies to the majority of vertebrates;
and (ii) a smaller branch where low levels of CBG bind almost
none of the glucocorticoid which applies to the fish (56). As
a consequence, glucocorticoid analysis should be analytically
validated to ensure that solely the free fraction of cortisol is
quantified.

By Phase I Metabolites of the Dominant

Glucocorticoid Present in the Body
Intracellular cortisol within the endoplasmatic reticulum of
cells is regulated by local enzymes in a tissue-specific way
independently of its plasma concentration (57). The intracellular
enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) is
bidirectional (58): 11β-HSD type 1 is a reductase that converts
the 11-keto metabolite cortisone to its active form 11-hydroxy
cortisol, amplifying glucocorticoid action in liver and visceral
adipose tissue, but also in brain, bone, gonad, muscle and other
GR-expressing tissues including the eye, while 11β-HSD type
2 catalyzes the oxidation of cortisol to cortisone (a hydroxyl
group at C11 becomes a carboxyl group) and is co-expressed with
the MR in the kidney, colon and salivary gland and inactivates
cortisol to cortisone, thereby enabling aldosterone to bind to
the MR (59, 60). In addition, cortisone was found to be further
reduced to 20β-hydroxycortisone by 20β-HSD type 2 (61). As a
consequence, glucocorticoid analysis should include cortisone as
the latter is rapidly interconverted to and from cortisol as well as
20β-dihydrocortisone.

Corticosteroids affect a variety of target tissues over a broad
range of time scales, ranging from slow gene transcription
dependent to rapid gene transcription independent actions.
Following uptake from the circulation, binding can occur by
the two major functional groups of vertebrate corticosteroid
receptors: GR and MR distinguished by their amino acid
sequences and ligand specificity (62, 63). Most studies were
performed on human intracellular genomic receptors [gGR
reviewed by (64) and gMR reviewed by (65) as well as by
(66)] regulating transcriptional activity of steroid target genes.
Far less is known regarding the non-genomic effects mediated
by the extracellular membrane glucocorticoid (mGR) and
mineralocorticoid (mMR) receptors [for review see (67)], which
allow rapid modulation of synaptic transmission and membrane
ion currents hereby playing a key role in signal transduction

at the synapse, the key neuron-to-neuron interface involved
in learning and memory and as such in traumatic memories
during times of stress (68, 69). As a consequence, glucocorticoid
analysis should take into account the effect of phase I metabolites
present in the body (i.e., cortisone and 20β-dihydrocortisone)
as both compounds could potentially bind to GR and MR and
are also excreted in minor proportions to the environment (see
further).

By Phase I Metabolites of the Dominant
Glucocorticoid Present in the Environment
The dominant glucocorticoid, cortisol or corticosterone,
respectively, is controlled by the ratio of de novo synthesis to
catabolism by the action of the respective enzymes involved. In
this framework, steroids undergo extensive bio-transformations
which decrease their biological activity and increase their
water solubility by converting them to hydrophilic compounds
that can be excreted. In general, these bio-transformations
are divided into: (i) phase I metabolism which usually
includes oxidation (e.g., hydroxylation) and/or reduction
(e.g., hydrogenation) reactions; and (ii) phase II metabolism
which usually involves conjugation reactions with polar groups
such as glucuronide or sulfate and resulting into a highly
hydrophilic product, which facilitates excretion in the urine or
feces.

Cortisol and cortisone are metabolized in the liver (70).
The main pathways of phase I metabolic reaction include: (i)
oxidation and reduction at C11; (ii) reduction of the C4-C5 double
bond; and (iii) reduction at C20 (30, 71, 72). In a next step, (allo)-
tetrahydrocortisol (THF) and (allo)-tetrahydrocortisone (THE)
is (i) conjugated at a hydroxy group rapidly with glucuronic acid
or sulfate and excreted in the urine or (ii) cleaved to the C19

steroids 11-hydroxy or 11-oxo-androsterone or etiocholanolone.
In humans, non-metabolized cortisol and cortisone were shown
to comprise only about 0.1% of the total urinary cortisol
metabolites. At least 90% of the tetrahydro-derivatives of cortisol
and cortisone are excreted into the urine as glucuronide or sulfate
conjugates (73). Alternatively, reduction of the 20-oxo group by
20α- or 20β-hydroxysteroid dehydrogenase yields α and β cortols
and cortolones, respectively, with subsequent oxidation at the
C21 position to form the extremely polar metabolites, cortolic,
and cortolonic acids (71). In addition, hydroxylation at C6 to
form 6β-hydroxycortisol as well as reduction of the C20 position,
whichmay occur without A ring reduction giving rise to 20α- and
20β-hydroxycortisol are described (74).

Overall, approximately 50% of secreted cortisol appears in
the urine as THF/allo-THF/THE, 25% as cortols/cortolones,
10% as C19O3 steroids (androstanes), and 10% appears as
cortolic/cortolonic acids. The remaining 5% metabolites are
free, non-conjugated steroids (cortisol, cortisone and 6β-
and 20α/20β-metabolites of cortisol and cortisone). As a
consequence, glucocorticoid analysis should include the most
abundant phase I metabolites such as THF and THE as
they are indicative for possible contamination of the sample
with glucocorticoids from urine, feces, water, as well as from
anthropogenic contamination (e.g., from hands).
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ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY THE
TISSUE USED FOR GLUCOCORTICOID
QUANTIFICATION

The type of tissue used for glucocorticoid quantification is of
utmost importance as each tissue incorporates glucocorticoids
in accordance with the processes by which it is formed hereby
defining the timeframe of interrenal or adrenocortical activity
that the tissue represents. Subsequently, a proper tissue for
chronic stress quantification should allow a retrospective (i.e.,
over a certain period of time) view of the stress axis activity,
and subsequently should possess the capacity to incorporate
glucocorticoids in a stress (i.e., in reaction to stress full stimuli
eliciting a glucocorticoid mediated response) and time (i.e., over
a certain period of time) dependent manner (75). The type of
tissue also determines the structural changes of the dominant
glucocorticoid that may occur via processes of conjugation to
glucuronides and sulfates, metabolic conversion via enzymatic
action and bacterial breakdown (8). As a consequence, the
effect of the tissue on the analysis results, as the latter can be
enhanced or suppressed by tissue specific compounds, should be
analytically validated. In practice, the choice of tissue depends on
various factors including but not limited to: (i) the species; (ii)
the nature of the study; (iii) acute vs. chronic stress quantification;
(iv) the tissues available for sampling; and (v) logistical feasibility.
Table 1 provides an overview of the temporal window of stress
axis (re)activation that is being reported in tissues commonly
used for glucocorticoid analysis across vertebrates. Hereby, it
should be noticed that at present no tissue for chronic stress
quantification exists for amphibians.

ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY THE
ANALYTICAL METHODOLOGY USED

Glucocorticoids are measured using a wide variety of
analytical methods including radio- (RIA) and enzyme

TABLE 1 | Tissues commonly used for glucocorticoid analysis across vertebrates.

Tissue Temporal window on

HPI/HPA (re)activity

References

Vertebrate egg Maternal deposition (76)

Vertebrate plasma/serum Snapshot (57)

Whole body of fish larva Snapshot (77)

Mammalian saliva Minutes (78)

Vertebrate urine Minutes to hours (72)

Vertebrate feces Minutes to days (79)

Vertebrate excreta Minutes to days (80)

Water Minutes to days (81)

Reptilian shed skin Weeks to months (82)

Avian feather Weeks to months (83)

Fish scale Weeks to years (75)

Mammalian hair Weeks to years (84)

(EIA) immunoassay, gas chromatography (GC), high
performance liquid chromatography coupled to ultraviolet
or fluorescence detection (HPLC-UV or FL), gas or liquid
chromatography coupled to tandem mass spectrometry (GC-
or LC-MS/MS) as well as sensor based techniques. In practice,
the technique of choice depends mainly on the availability
of qualified operators and sophisticated equipment in the
laboratory.

By Screening Methods
Immunoassays are most often chosen because they are fast,
cheap, easy to perform, and commercially available for the
dominant glucocorticoid in widely used tissues such as
plasma of well-studied vertebrate species. RIA and EIA are
both competitive binding assays necessitating an antibody
directed against certain parts of the dominant glucocorticoid.
While RIAs rely on a radioactive isotope (e.g., tritium or
iodine) to generate a radioactive signal, EIAs use enzymes
to generate a colorimetric signal to quantify the dominant
glucocorticoid. Though immunoassays are sensitive (i.e.,
sufficient low levels can be detected) for the glucocorticoid
of interest, major disadvantages are the lack of specificity
(i.e., as they show high cross-reactivity with precursors and
phase I metabolites of the targeted glucocorticoid as well as
with substances with similar physical-chemical properties
such as other steroids due to the poly-reactive nature of
antibodies), the high lot-to-lot variation of antibodies (85),
and the necessity to measure hormones individually. For
example, Rettenbacher et al. (86) stated that their results
for egg corticosterone could be explained by cross-reactions
of the antibody used in the corticosterone EIA with other
steroids, probably of gonadal origin as Hackl et al. (87) found a
similar distribution pattern for progesterone. Subsequently,
immunoassays should always be analytically validated
in-depth.

The drawbacks of immunoassays have stimulated the
development of new screening methods. Electrochemical
biosensors have shown potential for fast, accurate and sensitive
analysis of glucocorticoids. However, a continuing challenge
is the sensitivity and stability of the surface bound bio-
recognition molecules, which depends on the matrix used
for their immobilization on the sensor (88). Besides the
use of antibodies, molecular imprinting, which involves the
synthesis of polymers in the presence of a template to produce
the complementary binding sites with specific recognition
ability, is also used. During this formation, the functional
monomers are polymerized in the presence of a template,
which is subsequently removed by washing and/or extraction
after polymerization, resulting in a molecularly imprinted
polymer (MIP) (89). A library of cortisol-imprinted polymers
was prepared by Baggiani et al. (90), while Moreno-Guzmán
et al. (91) reviewed the existing immunosensors for human
cortisol.

In all, the lack of or insufficient in-depth analytical
validation is the main cause of inconsistent results generated by
immunoassays in the pertinent literature.
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By Confirmation Methods
For confirmatory purposes, chromatographic techniques
such as GC and LC, especially when coupled to (tandem)
MS, are preferred since they allow a high resolution
as required for complex biological tissues (92). Major
disadvantages are the need for qualified operators and
sophisticated equipment, high costs and complex sample
preparations.

Significant improvement in the specificity of glucocorticoid
measurements was achieved with the introduction of GC-
MS/MS, however, accurate quantification is limited to analytes
which can be derivatized (93) in order to increase their volatility
(94). Because of limited sensitivity, low throughput and labor-
intensive sample preparation, GC-MS/MS is not optimal for
measuring glucocorticoid profiles. HPLC is well suited for the
separation of glucocorticoids, though when coupled to UV
or FL it lacks the sensitivity and specificity to distinguish
glucocorticoid traces from the biological matrix background
(29). Because of its inherent sensitivity and selectivity, LC-
MS/MS is considered the gold standard method for quantitation
of glucocorticoids in complex biological tissues (92, 95,
96). It has the further advantage of having the capability
to perform multi-compound assays, even across compound
classes (97).

ANALYSIS OF THE DOMINANT
GLUCOCORTICOID IS AFFECTED BY THE
LACK OF ANALYTICAL VALIDATION

Overall, glucocorticoid levels to be quantified are considered
“trace levels” as they are situated in the ppb (µg kg−1 or µg L−1)
and ppt (ng kg−1 or ng L−1) range. Regardless the sample tissue
and analytical methodology used, it is pivotal to demonstrate
that results are accurate, precise, and not biased by interfering
compounds rendering results highly reliable. Subsequently, every
procedure [i.e., parameter(s)/tissue combination using a specific
analytical methodology] should be analytically validated. In
this framework, working according the criteria of international
standards such as EN ISO/IEC 17025 (98) and Commission
Decision No. 2002/657/EC (99, 100), whereby experiments
are carried out by well trained and authorized personnel in
a controlled environment are a must. Hereby, the use of
calibrated equipment, products with a certificate of analysis
as well as performing all tests in standardized conditions
hereby registering all details in logbooks is of importance. In
addition, determination of the performance characteristics such
as accuracy, trueness, precision, sensitivity, specificity and cross-
reactivity with structurally related compounds are of utmost
importance as they can influence the interpretation of results
between studies. In particular immunoassays are prone to be
biased by this as the used antiserumdiffers between assays leading
to differences in cross-reactivity (8). Subsequent, physiological
(i.e., by pharmacologically induced physiological changes in
circulating glucocorticoid levels and to evaluate whether these

changes are reflected in measured concentrations afterwards) as
well as biological (i.e., glucocorticoid measurements in relation
to cortical activity and the experience of stress) validation is
needed in order to state that the method is fit for purpose
(7).

As a consequence, one should try to use methods developed
in an EN ISO/IEC 17025 regulated environment and analytically
validated according the criteria of international standards as this
ensures full traceability and quality of the results in time.

CONCLUSION

At present, most studies in the pertinent literature have
focused on the quantification of the dominant glucocorticoid,
cortisol or corticosterone depending on the species, using
immunoassays. Hereby, one should bare in mind that: (i) results
are prone to bias by cross-reactivity from other glucocorticoids
as well as substances with similar physical-chemical properties,
making analytical validation a must; (ii) immunoassays are
screening methods which do not allow quantification of multiple
substances, making them not suited for quantification of a
glucocorticoid profile needed to obtain a more accurate and
complete view on the HPI or HPA axis (re)activity, respectively.
However, in-depth validated immunoassays for the dominant
glucocorticoid can be useful in cases when only an indication
(i.e., qualitative) of stress is needed. In addition, the use of
pooled samples (e.g., for whole body of fish larva) renders it
impossible to take into account the coping style of a single
individual.

As a consequence, internationally validated confirmation
methods for quantification of a glucocorticoid profile
comprising: (i) the dominant hormone (e.g., cortisol); (ii)
its direct precursors (i.e., 17α-hydroxyprogesterone and 11-
deoxycortisol; as both will certainly lead to cortisol production);
(iii) its endogenously present phase I metabolites (i.e., cortisone
and 20β-dihydrocortisone; as feedback regulation of cortisol
at pre-receptor level is mediated by 11β-HSD and 20β-
reductase, respectively); and (iv) the most abundant more
polar excreted phase I metabolites (i.e., tetrahydrocortisol and
tetrahydrocortisone; to establish if exogenous glucocorticoids
present in the environment (e.g., from water) or anthropogenic
derived glucocorticoids (e.g., from hands) may have influenced
the results) in non-pooled samples are pivotal in stress research
across vertebrates.
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