
www.landesbioscience.com JAK-STAT e24137-1

JAK-STAT 2:3, e24137; July/August/September 2013; © 2013 Landes Bioscience

REVIEW REVIEW

Introduction

Atopic dermatitis (AD) is a common skin disease manifested 
clinically by chronic inflammation and characterized histologi-
cally by skin infiltration of inflammatory cells including pre-
dominantly lymphocytes, eosinophils, and mast cells. It affects 
10–20% of children and 1–3% of adults in developed countries,1 
and the prevalence is increasing. Many of these patients also suf-
fer from asthma and allergic rhinitis2 along with intense itch-
ing and skin infection. Although the pathogenesis and etiology 
of AD remain to be completely understood, this multifactorial 
disease likely results from a complex crosstalk between genetic 
and environmental factors. Exaggerated Th2 response, disrup-
tion of the epidermis barrier functions, high levels of serum IgE, 
and decreased production of antimicrobial peptides (AMPs) are 
the key findings in AD.3,4 Data from human and animal studies 
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Atopic dermatitis (AD), a common chronic inflammatory 
skin disease, is characterized by inflammatory cell skin 
infiltration. The JAK-STAT pathway has been shown to play 
an essential role in the dysregulation of immune responses 
in AD, including the exaggeration of Th2 cell response, the 
activation of eosinophils, the maturation of B cells, and the 
suppression of regulatory T cells (Tregs). In addition, the JAK-
STAT pathway, activated by IL-4, also plays a critical role in the 
pathogenesis of AD by upregulating epidermal chemokines, 
pro-inflammatroy cytokines, and pro-angiogenic factors as 
well as by downregulating antimicrobial peptides (AMPs) and 
factors responsible for skin barrier function. In this review, we 
will highlight the recent advances in our understanding of the 
JAK-STAT pathway in the pathogenesis of AD.
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indicate that AD is a Th2 dominant inflammatory skin disease at 
the acute stage followed by Th1 involvement at the chronic stage 
of the disease.3-5 Specifically, this notion of Th2-dominance in 
AD is validated by a mouse model we have successfully gener-
ated through overexpressing IL-4, a key Th2 cytokine, in the 
basal epidermis using a epidermis-specific keratin 14 promoter.6 
The IL-4 transgenic (Tg) mice spontaneously develop skin 
lesions, serological abnormalities, and skin infection, which fulfil 
the clinical and histological diagnostic criteria for human AD.6 
Consistent with an inflammatory disease process, upregulation 
of chemokines,7,8 proinflammatory cytokines,5 B cell activation 
molecules,9 angiogenic factors,10,11 and several critical adhesion 
molecules12 has been found in these Tg mice.

The JAK-STAT pathway is a classical signal transduction 
pathway for numerous cytokines and growth factors. The bind-
ing of ligands to their receptors leads to JAK activation, which in 
turn phosphorylates and activates STATs. The activated STATs 
then translocate to the cell nucleus to regulate their target genes. 
The JAK family includes JAK1, JAK2, JAK3, and TYK2, and the 
STAT family includes STAT1, STAT2, STAT3, STAT5A/B, and 
STAT6. As a negative regulator of the JAK-STAT pathway, the 
SOCS family consists of cytokine-inducible SH2 domain-con-
taining protein (CIS) and SOCS1–7. SOCSs may act on the acti-
vation loop of JAKs, or they may interact with phosphotyrosines 
in the cytoplasmic domain of cytokine receptors, suppressing the 
JAK-STAT pathway with a negative feedback mechanism.13 In 
this review, we will discuss the roles that the JAK-STAT pathway 
plays in the pathophysiology of AD.

JAK-STAT in Th2 Differentiation

Since AD is a Th2-dominant disease, examination of how the 
JAK-STAT pathway regulates Th2 differentiation would help us 
to understand the possible roles that JAK-STAT play in AD. It 
is well established that IL-4 promotes the differentiation of Th2 
cells, which in turn produce IL-4, IL-5, IL-10, and IL-13. The 
study of IL-4 and the IL-4 receptor α-null mice demonstrated 
clearly that IL-4 is required for a Th2 response and the production 
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IFN, IL-6, and IL-12.35-37 These patients showed impaired Th1 
differentiation and accelerated Th2 differentiation with clini-
cal manifestations including unusual susceptibility to various 
microorganism infections, AD-like skin lesions, and high serum 
IgE levels, suggesting a regulatory role of the JAK family in Th2 
differentiation.

Another TYK2 null mutation and hypomorphic mutations 
in STAT3 are associated with the hyper-IgE syndrome (HIES), 
a primary immunodeficiency characterized by AD like-skin 
lesions, susceptibility to infections, and high serum IgE levels.38 
In this syndrome, IL-12 and IFNα/β signal pathways are defec-
tive, thus blocking the Th1 differentiation. As a result, the Th2 
response is exaggerated, leading to similar clinical findings as 
AD.38 Because STAT3 is important for B cell proliferation and 
differentiation, HIES patients have decreased number of memory 
B cells as compared with AD patients.39

As a negative regulator of the JAK-STAT pathway, suppres-
sor of cytokine signaling 2 (SOCS2) deletion leads to increased 
susceptibility to AD as compared with wild-type mice. These 
mice show an exaggerated Th2 response along with significantly 
elevated serum IgE levels, eosinophilia and low IL-17 levels. 
SOCS2-knockout CD4+ T cells display constitutively high levels 
of STAT6 phosphorylation as compared with wild type T cells.40 
In addition, IL-2-induced STAT5 activation, also involved in the 
early Th2 differentiation, is exaggerated in the SOCS2-knockout 
CD4+ T cells.40 On the other hand, IL-12-stimulated STAT4 
phosphorylation is unaffected, and IL-6 mediated STAT3 phos-
phorylation is inhibited. Since it is generally accepted that the 
development of the Th1, Th2, and Th17 immune responses 
are mediated by STAT4/STAT1, STAT6/STAT5, and STAT3 
respectively,40,41 the increased STAT6/STAT5 activation and sup-
pressed STAT3 activation naturally lead to an exaggerated Th2 
response at the expense of Th17.40

Another example of the JAK family involvement in Th2 
immunity is shown in NC/Nga mice that develop AD-like skin 
inflammation. Nakagawa et al. reported that Pyridone 6 (P6), a 
pan-JAK inhibitor, delayeded the onset and reduced the severity 
of AD-like skin lesions in NC/Nga mice.42 P6 suppressed the 
IFN-γ/STAT1, IL-2/STAT5, and IL-4/STAT6 signaling path-
ways strongly while it suppressed IL-6/STAT3 pathway only 
modestly, resulting in reduction of the Th1 and Th2 responses 
but the enhancement of the T17 response.42

JAK-STAT in Eosinophils

Eosinophil skin infiltration is frequently observed in the skin 
lesions of AD patients and AD mouse models.43-46 Although 
STAT6 null mice have defects in Th2 differentiation and IgE 
class switching,47 crossing these mice with NC/Nga mice cannot 
prevent the development of AD-like skin lesions.48 Even though 
these mice do not produce IgE and Th2 cytokines, the histologi-
cal features of their skin lesions are similar to that of AD.48 These 
authors suggested that a Th2 response is not absolutely necessary 
for the development of AD-like skin lesions; instead, IFN-γ and 
eosinophil skin infiltration may play an essential role.48

of Th2 cytokines.14,15 In addition, studies from the IL-4 Tg mice 
demonstrated upregulation of the Th2 cytokines.5 Consistently, 
the IL-4 Tg mice generated on a Th2-dominant strain, BALB/c 
mice, develop earlier onset and worse AD-like skin lesions than 
the IL-4 Tg mice generated on a Th1-dominant strain, C57BL/6 
mice, suggesting that the Th2 systemic immune milieu, in addi-
tion to cutaneous Th2 immune milieu, plays an essential role 
in the pathogenesis of AD.16 Additionally, knocking out Bcl-6, 
a transcription factor functioning to regulate IL-4 signal trans-
duction, leads to Th2-mediated hyperimmune response in many 
organs, further supporting the regulatory function of IL-4 on 
Th2 immunity.17 Importantly, IL-4 signals through the JAKs-
STAT6 pathway to regulate Th2-related target genes in lympho-
cytes, firmly supporting a role of JAK-STAT in Th2 regulation.18

In addition to IL-4, other factors are also important for Th2 
differentiation. Thymic stromal lymphopoietin (TSLP), known 
to promote Th2 differentiation, to activate natural killer T cells 
and basophils, and to affect B cell maturation, has been reported 
to be associated with AD.19 While the murine TSLP receptor sig-
nals via STAT3, STAT5/Tec, a Src type kinase, the human TSLP 
receptor activates STAT1, STAT3, STAT5/JAK1, and JAK2.20,21

It has been reported that histamine enhances the secretion of 
Th2 cytokines such as IL-4, IL-5, IL-10, and IL-13 and inhib-
its the production of Th1 cytokines.22 Histamine was shown to 
stimulate IL-13 production through the JAK-STAT pathway in 
a murine Th2 cell line.23 In addition, tyrphostin, a JAK-STAT 
pathway inhibitor, reversed the effects of histamine on IFNγ, 
IL-5, and IL-10 production.24 Horr et al. have shown that hista-
mine, by acting through the H4 receptors on T cells, can suppress 
STAT1 activation and help to drive the Th2 response, leading to 
the development of AD.25

It is generally accepted that TYK2, JAK2, and STAT4, 
which are IL-12 signaling pathway components, are essential 
for Th1 cell differentiation, while JAK1, JAK3, and STAT6, 
which are IL-4 signaling components, are critical for Th2 dif-
ferentiation.20 In addition, STAT5A/B, which are involved in the 
upregulation of GATA3 and IL-4Rα, and STAT3, which helps 
STAT6 bind to its target genes, also play some roles in Th2 cell 
differentiation.20,26,27

STAT6 regulates genes involved in Th2 and B cell differen-
tiation, IgE class switching, and MHC class II production.15,18 
While STAT4 null mice fail to generate Th1 cells and conditional 
STAT3 knockout mice have an exaggerated Th1 response,28 
STAT6 null mice have impaired Th2 cell development and IgE 
class switching.29 On the contrary, mice expressing constitutively 
active STAT6 (STAT6VT) develop an AD-like skin lesion.30 In 
addition, several STAT6 polymorphisms are also associated with 
a predisposition to allergic diseases and high levels of IgE.31,32

JAK3 is expressed in natural killer cells, T cells, and B cells. 
A JAK3 mutation in severe combined immunodeficiency (SCID) 
patients leads to the absence of T cells and natural killer cells and 
the production of dysfunctional B cells.33 JAK3-null mice also 
have similar defects.34

In humans, a loss-of-function mutation in TYK2 leads to 
defects in multiple cytokine signaling pathways including type I 
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JAK-STAT in Epidermal Keratinocytes

Being a major cell type of the skin and possessing the ability 
to participate in various immune responses, epidermal kerati-
nocytes are likely an active player in the skin inflammation of 
AD.69,70 We and others have shown that the dysregulation of the 
keratinocyte genes by IL-4 play an important role in AD.8,71-74 
Two types of IL-4 receptors have been identified. The type I 
receptor consisting of IL-4Rα and IL-2Rγc chains is expressed 
in hematopoietic cells, while the type II receptor consisting of 
IL-4Rα and IL-13Rα1 is expressed in other cell types including 
keratinocytes.75,76

In keratinocytes, both IL-4 AND IL-13 binds to IL-4Rα 
and IL-13R1. IL-13Rα2, which was reported as a dominant 
negative inhibitor for both IL-4 and IL-13, binds to IL-13 with 
high affinity, but lacks a significant cytoplasmic domain.77 We 
have previously reported that IL-13Rα2 is upregulated by IL-4 
in keratinocytes.71 In AD patients this gene is similarly upregu-
lated.78 This may be due to a negative feedback mechanism avail-
able to keratinocytes to maintain homeostasis.

We have also shown that IL-4 upregulates chemokines CCL8, 
CCL24, CCL25, CCL26, CCL3L1, CXCL6, and CXCL16,8,71 
all known for their roles in the pathophyisology of AD. The 
eotaxin subfamily that consists of CCL11/eotaxin-1, CCL24/
eotaxin-2, and CCL26/eotaxin-3 plays an important role in 
AD.43,79,80 Eotaxins bind to the chemokine cysteine–cysteine 
receptor 3 (CCR3), which are expressed predominantly on 
eosinophils, recruiting these cells to the inflammatory site. Skin 
infiltrating eosinophils release a variety of cytotoxic granule 
proteins to cause tissue damage.44 In the regulation of CCL26, 
though both STAT3 and STAT6 are phosphorylated by IL-4, 
only STAT6 is functionally activated.8 Detailed analysis of the 
promoter of the CCL26 gene has shown that the STAT6 response 
element consists of two palindromic half sites TTC and GAA 
spaced by four nucleotides. Others also reported that STAT6, 
different from other STAT members, prefers the STAT sites with 
four spacing nucleotides.81 In addition to tyrosine phosphoryla-
tion, STAT3 activation may also involve serine phosphorylation82 
and lysine acetylation.83 Knockout mice studies indirectly sup-
port our results in that while STAT6 null mice demonstrated 
defects in eosinophil tissue infiltration,29,84 the STAT3 Cre-loxP 
knockout mice did not show similar defects.29 Furthermore, IL-4 
and IL-13 double knockout mice, when sensitized with ovalbu-
min, develop a skin lesion characterized by intact CD4+ dermal 
infiltration, severely diminished eosinophil infiltration, and 
undetectable OVA-specific IgE levels,85 suggesting that STAT6 
activation is required for eosinophil skin infiltration in AD.

In addition to chemokines, IL-4 also upregulates pro-
inflammatory factors, such as IL-1α, IL-19, IL-20, IL-25, IL-27, 
IL-12Rβ2, IL31RA, and nitric oxide synthase 2 (NOS2).71 
Moreover, we demonstrated that IL-4 signals through the JAK-
STAT pathway to regulate IL-19 expression in keratinocytes.86

Using PCR array, we have found that that IL-4 upregulates 
angiogenic or lymphangiogenic-related genes, such as VEGF, 
ANG-1, ANGL-4, IGF1, Notch4, PGF, and MCP-1.11,71 Using 

Eosinophils express the IL-31 receptor A (IL-31RA),49 and 
IL-31 has the ability to delay the apoptosis of eosinophils and 
to stimulate the secretion of pro-inflammatory cytokines and 
chemokines through JAK-STAT.49,50 In addition, IL-5, mainly 
involved in B cell proliferation and differentiation, was shown 
to induce eosinophilia when upregulated.51 Conversely IL-5 or 
IL-5 receptor α chain (IL-5Rα) null mice show defects in B cells 
and eosinophils.52 In eosinophils, IL-5 signals through the JAK2-
STAT1/STAT5 and MAP kinases pathways to regulate genes 
involved in cell proliferation, survival and effector functions.52-54

JAK-STAT in Tregs

In the skin, regulatory T cells (Tregs) help to regulate the 
immune response, and in AD, Treg function is suppressed.55-57 
Depleting Treg cells significantly increased the severity of the 
skin inflammation in OVA-sensitized mice.58 In T cells, IL-4-
activated STAT6 upregulates GATA3, the master regulator of 
Th2 cells. GATA3 in turn suppresses Foxp3, the master regula-
tor in Treg cells.59 This regulatory pathway could possibly explain 
why Treg function is suppressed in AD. In addition, STAT5A/B 
and STAT3 may also play important roles in the regulation of 
Foxp3.60 On the other hand, Foxp3 can also suppress GATA3’s 
ability to regulate Th2 genes.59 It was reported that the IFN-γ 
gene transfer stimulates Treg related cytokines and improves 
AD-like symptoms of NC/Nga mice.61 This finding, however, 
seems to contradict the notion that IFN-γ is a promoting fac-
tor for AD.48 On the clinical level, treatment with a low-dose 
cyclosporine A is effective in reducing skin inflammation with 
simultaneous increase of Treg population in AD patients, further 
supporting a role of Treg in AD.62

JAK-STAT in Th17 Cells

STAT3, mediating the IL-23 and IL-6 pathways, is critical for 
the differentiation of Th17 Cell.63,64 In the early stage of human 
AD, the number of Th17 cells is increased,3 and IL-17 has been 
reported to upregulate adhesion molecules on keratinocytes, 
enhancing T cell-keratinocyte adhesion and T cell-mediated 
cytotoxicity.65 However, in chronic AD, the Th17 pathway is sup-
pressed,66 which could account for the AMP deficiency in AD.3

JAK-STAT in Mast Cells

In the skin lesions of AD patients as well as AD mouse models, 
the number of mast cells is increased.6,67 IL-9 stimulates VEGF 
production from human mast cells through the activation of 
STAT3 in an in vitro experiment.68 Interestingly, IL-9 serum lev-
els in AD patients are not different from those of non-AD con-
trols even though IL-9 and its receptors are upregulated in the 
lesional skin of the AD patients,68 suggesting that the upregula-
tion of VEGF in mast cells via IL-9 may be a localized cutaneous 
phenomenon. The prominent increase of mast cell VEGF pro-
duction and angiogenesis in an AD animal model also supports 
the role of JAK-STAT in this immune pathway10,11
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the IL-4 Tg mice and cell culture, we showed that CD11b+ mac-
rophages attracted to the skin lesion by MCP-1 may account for 
lymphangiogenesis observed in AD by secreting VEGF-C.11

While IL-4 upregulates chemokines, pro-inflammatory 
factors, angiogenic factors in keratinocytes, it downregulates 
antimicrobial peptides (AMPs) or factors involved in APM pro-
duction.71 Other groups have also demonstrated that the dys-
regulation of AMPs affects the development of AD.87 Human 
β-defensin-3 (HBD-3), which is significantly decreased in AD, is 
downregulated by IL-4, IL-10, and IL-13.88 In addition, HBD-2 
and human cathelicidin (LL-37) were also found to be reduced 
in AD skin lesions as compared with psoriasis.89 Howell et al. 
suggested that low levels of LL-37 suppressed by IL-4 and IL-13 
through STAT6 may be the mechanism responsible for increased 
vaccinia virus replication as occurred in eczema vaccinatum of 
AD patients.90

Skin barrier function defects are critical for the development 
of AD.91 In addition to the filaggrin mutations in some AD 
patients, cytokines are now known to induce the downregulation 
of several barrier proteins. Loricrin and involucrin are two impor-
tant factors for skin barrier function. They are downregulated 
by IL-4 and IL-13 in keratinocytes, and in STAT6 transgenic 
mice, their expression is significantly decreased as well.92 In addi-
tion, filaggrin, which is reduced in acute AD skin lesion, is also 
suppressed by IL-4 and IL-13 in keratinocytes.93 Interestingly, 
while IL-4 markedly reduces ceramide levels in the epidermis by 
downregulating the expression of serine-palmitoyl transferase-2, 
acid sphingomyelinase, and β-glucocerebrosidase, Th1 cytokines 
(GM-CSF/IFN-γ/TNF-α) increase the ceramide levels.94

Taken together, the role that IL-4 plays in the dysregulation 
of keratincoyte functions in AD involves the upregulation of che-
mokines, pro-inflammatory factors, and pro-angiogenic factors 
and the downregulation of AMPs and factors responsible for skin 
barrier function.

Pruritis in AD is induced by complicated crosstalks among 
keratinocytes, immune cells, and nerve fibers.95 The data from 
the Nc/Nga mice studies indicate that although IL-4 is a key 
mediator of the inflammatory process in AD, IL-31 might be the 
key causative factor for pruitus.50 In addition, IL-31 transgenic 
mice developed a Th2 immune response with severe pruritic skin 
lesions similar to AD.96

IL-31 is upregulated in the skin of AD patients, and it induces 
the itching sensation either by direct stimulation of the dorsal root 
ganglion fibers that express IL-31RA or by indirect stimulation of 

pruritic factors from keratinocytes.50,97 IL-31 receptor activation 
in keratinocytes induces calcium influx and STAT3 mediated 
β-endorphin production, which may contribute to the peripheral 
itching in AD.98

Conclusion

Thus far, data from our laboratory and others seem to indicate 
an influential role of JAK-STAT in the pathogenesis of AD, 
with IL-4 being a key mediator (Figs. 1 and 2). Specifically, 
the JAK-STAT pathway is instrumental for the Th2 cell dif-
ferentiation. In the immune milieu of AD, the enhancement 
of Th2 cell proliferation and their release of various cytokines 
via the JAK-STAT pathway is likely the critical factor for the 
inflammatory responses in AD. This Th2 immune upregulation 
could then lead to B cell maturation and plasma cell differen-
tiation, resulting in the hyper-secretion of IgE. IgE binding to 
skin mast cells causes histamine release, which further exacer-
bates AD. Similarly, this hyper Th2 immune milieu triggers 
epidermal cells to release various chemokines, pro-inflamma-
tory cytokines, and angiogenic factors that participate in AD 
pathophysiology. Moreover, IL-5 released from this hyper Th2 
milieu could activate eosinophils that are attracted to the skin by 
the eotaxin subfamily, further worsening the AD condition. In 
addition, by way of IL-31, an inducer of pruritus, AD becomes 
increasingly intensified.

Our understanding of the JAK-STAT pathway and its rela-
tionship to the dysregulated immune response and keratinocyte 
function is still in its infancy. We have many unanswered ques-
tions. What are JAKs’ and STATs’ tissue-specific functions? How 
does the JAK-STAT pathway crosstalk with other pathways in 
AD? What exact roles do the different JAKs and STATs play in 
the pathogenesis of AD? Answering these questions will enable 
us to target more specifically the key components of the complex 
pathophysiology of AD, thus providing the best treatment for 
this disease.
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Figure 1. Proposed mechanism of JAK-STAT involvement in atopic dermatitis (AD) development, part I. Skin barrier function defects are critical for the 
development of AD. In addition to the filaggrin gene mutation defects in some AD patients, IL-4 is also able to downregulate barrier proteins filaggrin, 
loricrin and involucrin through the JAK-STAT pathway making the epidermis more penetrable by allergens and pathogens. Once penetrated through 
the epidermis, allergens/pathogens are detected by dendritic cells, which become subsequently activated to present these antigens to naïve Th0 cells. 
The Th0 cell can then differentiate into the Th2 cell through the JAK1,3-STAT6 pathway under the influence of IL-4. In the Th0 cells, the STAT6 pathway 
can also upregulate GATA3, a master regulator of Th2 cells. GATA3 in turn suppresses Foxp3, the master regulator in Treg cells, thus allowing more 
T cells to be activated. Black arrows indicate activation pathway. Red lines indicate inhibition pathway.
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