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Abstract

During the Marine Aerosol Cloud and Wildfire Study (MACAWS) in June and July of 2018, 

aerosol composition and cloud condensation nuclei (CCN) properties were measured over the N.E. 

Pacific to characterize the influence of aerosol hygroscopicity on predictions of ambient CCN and 

stratocumulus cloud droplet number concentrations (CDNC). Three vertical regions were 

characterized, corresponding to the marine boundary layer (MBL), an above-cloud organic aerosol 

layer (AC-OAL), and the free troposphere (FT) above the AC-OAL. The aerosol hygroscopicity 

parameter (κ) was calculated from CCN measurements (κCCN) and bulk aerosol mass 

spectrometer (AMS) measurements (κAMS). Within the MBL, measured hygroscopicities varied 
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between values typical of both continental environments (~0.2) and remote marine locations 

(~0.7). For most flights, CCN closure was achieved within 20% in the MBL. For five of the seven 

flights, assuming a constant aerosol size distribution produced similar or better CCN closure than 

assuming a constant “marine” hygroscopicity (κ = 0.72). An aerosol-cloud parcel model was used 

to characterize the sensitivity of predicted stratocumulus CDNC to aerosol hygroscopicity, size 

distribution properties, and updraft velocity. Average CDNC sensitivity to accumulation mode 

aerosol hygroscopicity is 39% as large as the sensitivity to the geometric median diameter in this 

environment. Simulations suggest CDNC sensitivity to hygroscopicity is largest in marine 

stratocumulus with low updraft velocities (<0.2 m s−1), where accumulation mode particles are 

most relevant to CDNC, and in marine stratocumulus or cumulus with large updraft velocities 

(>0.6 m s−1), where hygroscopic properties of the Aitken mode dominate hygroscopicity 

sensitivity.

1. Introduction

Marine stratocumulus (MSc) clouds, commonly observed off the Western coasts of North 

America, South America, Africa, and Australia, cover nearly one fifth of the Earth’s surface 

and exert a large impact on its radiative balance (Wood, 2012). These cloud decks are 

particularly relevant to global climate due to their high albedo contrast with the underlying 

ocean and relatively low altitude, resulting in stronger shortwave reflectance than longwave 

absorption (Brenguier et al., 2000; Randall et al., 1984; Wood, 2012). Previous estimates 

suggest that a ~12% increase in the albedo of these clouds would produce a negative 

radiative forcing equivalent in magnitude to that of doubling atmospheric CO2 

concentrations (Latham et al., 2008; Stevens & Brenguier, 2009). Remote sensing, parcel 

modeling, and large eddy simulation (LES) studies have all established that MSc exhibit 

substantial albedo susceptibility to variations in cloud droplet number concentrations 

(CDNC) (Berner et al., 2015; Chen et al., 2011; Oreopoulos & Platnick, 2008; Platnick & 

Twomey, 1994; Sanchez et al., 2016). Understanding the sensitivity of MSc CDNC to 

aerosols acting as cloud condensation nuclei (CCN) is therefore a critical aspect of reducing 

uncertainty in climate change predictions (Seinfeld et al., 2016).

The CDNC and albedo of MSc are substantially influenced by the abundance of below-cloud 

CCN. A recent satellite analysis suggested that variability in below-cloud CCN 

concentration may be responsible for ~45% of the variability in the radiative effect of marine 

boundary layer clouds (Rosenfeld et al., 2019). This influence results from the fact that 

increased CCN abundance enhances cloud reflectivity at constant liquid water path 

(Twomey, 1977) and has the potential to reduce MSc precipitation rates, increasing cloud 

lifetime (Ackerman et al., 1993; Albrecht, 1989; Goren & Rosenfeld, 2012; Rosenfeld, 

2006). As a result, a major component of the uncertainty in the estimated indirect aerosol 

forcing has been attributed to the prediction of below-cloud CCN concentrations (Rosenfeld 

et al., 2014; Sotiropoulou et al., 2007). While the aerosol size distribution is generally 

thought to be the most important determinant of CCN activity (e.g., Dusek et al., 2006; 

Ervens et al., 2007; McFiggans et al., 2006; Reutter et al., 2009), particle composition has 

also been shown to exert a substantial influence (Jimenez et al., 2009; Liu & Wang, 2010; 

Mei et al., 2013; Quinn et al., 2008; Sanchez et al., 2016).
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The propensity of a given aerosol particle to act as a CCN can be described using Köhler 

theory (Köhler, 1936; Seinfeld et al., 2016), provided sufficient information is known 

regarding particle size and solute properties (e.g., molecular weight, solubility, density, and 

activity). A novel framework, κ-Köhler theory, condenses these solute characteristics into a 

single parameter κ (the aerosol hygroscopicity) that can be easily incorporated into large-

scale models (Petters & Kreidenweis, 2007). Substantial effort has, therefore, been devoted 

to quantifying κ values in a multitude of environments (Ervens et al., 2010; Gunthe et al., 

2009; Pringle et al., 2010; Rose et al., 2010; Thalman et al., 2017). While κ values 

characteristic of inorganic aerosol components are relatively well-established, atmospheric 

organic aerosol is composed of numerous, highly diverse organic compounds, complicating 

representation of organic hygroscopicity using a single parameter (Kanakidou et al., 2005). 

Experimental studies have characterized κ values of secondary organic aerosol (SOA) (e.g., 

Asa-Awuku et al., 2010; Duplissy et al., 2008, 2011; Frosch et al., 2013; Lambe et al., 2011; 

Massoli et al., 2010; Zhao et al., 2015), and field studies have characterized the typical range 

of organic κ values (κorg) observed in the atmosphere (Chang et al., 2010; Gunthe et al., 

2009; Levin et al., 2014; Mei et al., 2013; Thalman et al., 2017; Wang et al., 2008). 

Generally, ambient κorg values are found to be 0.1–0.2 for aged aerosol and primary marine 

organics and ~0 for freshly emitted combustion aerosol (e.g., soot) (Kreidenweis & Asa-

Awuku, 2014). A linear relationship has been noted between observed κorg values and 

organic aerosol oxygen-to-carbon (O:C) ratios in both the laboratory and the field (Chang et 

al., 2010; Lambe et al., 2011; Mei et al., 2013; Wang et al., 2019).

Ambient particle hygroscopicity data have been combined with aerosol size distribution 

measurements in CCN closure studies to assess the extent to which Köhler theory can be 

used to predict ambient CCN concentrations (e.g., Almeida et al., 2014; Asa-Awuku et al., 

2011; Cubison et al., 2008; Medina et al., 2007; McFiggans et al., 2006; Moore et al., 2012; 

Ren et al., 2018; VanReken et al., 2003). Analyzing the accuracy of predicted CCN 

concentrations can provide insight into the influence of specific aerosol characteristics on 

CCN activity (Bougiatioti et al., 2011; Cubison et al., 2008; Medina et al., 2007; VanReken 

et al., 2003; Wang et al., 2010). For instance, size-resolved compositional (i.e., 

hygroscopicity) data are often required to accurately reproduce observed CCN 

concentrations in locations dominated by organic aerosol (Bhattu & Tripathi, 2015; Medina 

et al., 2007; Ren et al., 2018), while aerosol mixing state has been shown to strongly impact 

total CCN concentrations in urban environments (Cubison et al., 2008; Ervens et al., 2010; 

Quinn et al., 2008). By analyzing data from five ambient measurement campaigns, Ervens et 

al. (2010) found that for aerosol measured farther than a few tens of kilometers from the 

emission source, CCN activity could be predicted within a factor of two independent of 

either aerosol mixing state (i.e., internal or external) or organic solubility (i.e., insoluble or 

slightly soluble). Wang et al. (2010) further demonstrated that CCN concentrations can often 

be reproduced within 20% assuming internal mixing of aerosol components if the overall κ 
of the aerosol population is >0.1. The direct impact of variability in aerosol hygroscopicity 

on CCN concentrations is often assessed by assuming an invariant chemical composition, 

represented as a fixed κ, in CCN closure analyses. Field campaigns in continental 

environments ranging from polluted megacities to the pristine tropical rainforest have shown 

that CCN concentrations could be reproduced within 20% and 50%, respectively, assuming a 
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constant κ = 0.3 (Gunthe et al., 2009; Rose et al., 2010), a value representative of average 

continental conditions (Andreae & Rosenfeld, 2008; Pringle et al., 2010). However, in 

coastal regions, MBL aerosol can result from a mixture of distinct marine and continental 

emissions (e.g., Coggon et al., 2014; Mardi et al., 2018; Modini et al., 2015; Sorooshian et 

al., 2009), which complicates aerosol representation using regional or global models. CCN 

closure analysis can provide insight into the uncertainties in CCN concentrations that may 

result from inaccurate model representation of aerosol composition in these environments.

Due to the importance of the persistent stratocumulus cloud decks over the N.E. Pacific to 

global climate, aerosol characteristics in this region have received considerable attention. 

However, the diverse range of particle sources, including shipping exhaust (Coggon et al., 

2012; Murphy et al., 2009; Prabhakar et al., 2014; Wonaschütz et al., 2013), primary and 

secondary natural marine emissions (Modini et al., 2015; Prabhakar et al., 2014; Sorooshian 

et al., 2009), anthropogenic and biogenic continental emissions (Coggon et al., 2014; Hegg 

et al., 2010; Moore et al., 2012), wildfire plumes (Brioude et al., 2009; Mardi et al., 2018), 

and aged aerosol from the Asian continent (Roberts et al., 2006, 2010), combined with 

strong temporal and spatial variability due to variable meteorological conditions, has 

hindered determination of general characteristics of the marine atmosphere in this location. 

This complexity is reflected in the diversity of hygroscopicity measurements previously 

reported in the marine boundary layer (MBL) and free troposphere (FT). For instance, 

average κ values reported from MBL measurements have varied from ~0.2–0.3 (Moore et 

al., 2012; Roberts et al., 2010) to ~0.5–0.7 (Royalty et al., 2017; Yakobi-Hancock et al., 

2014). Measurements in the FT, while sparse, have been even more variable (κ ~0.05–1.0) 

(Roberts et al., 2006, 2010). While these measurements could largely be reconciled 

assuming various mixtures of continental (0.27 ± 0.2) and marine (0.72 ± 0.2) aerosol, 

determining the major emissions sources and meteorological patterns dictating these 

changes is important for improving model representation of the region (Pringle et al., 2010). 

CCN-based measurements of aerosol hygroscopicity and the resulting information about 

small particle composition can be especially useful in this regard, as knowledge of small 

particle composition can provide substantial insight into particle sources.

While hygroscopicity and mixing state characterization are important components of 

understanding the CCN activity of ambient aerosol, the dynamic processes controlling 

supersaturation, droplet nucleation, and droplet growth within clouds lead to nonlinear 

relationships between aerosol properties and CDNC. As a result, aerosol-cloud parcel 

modeling is instrumental to fully understand the role of aerosol hygroscopicity and mixing 

state on CDNC. Reutter et al. (2009) used such a model to distinguish three regimes of 

aerosol activation, defined as the aerosol-limited, updraft-limited, and transitional regimes, 

based on the ratio of updraft velocity to aerosol number concentration at the cloud base. The 

dependence of CDNC on aerosol hygroscopicity, while limited relative to other parameters 

such as particle number concentration and updraft velocity, was found to vary substantially 

between regimes. Additional modeling revealed that CDNC sensitivity to aerosol 

hygroscopicity is highly dependent on the below-cloud aerosol size distribution, with 

sensitivity increasing substantially with smaller median radii (Ward et al., 2010). Sanchez et 

al. (2016) concluded that modeled stratocumulus albedo is insensitive to the assumed 
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hygroscopicity of the organic aerosol fraction; however, the sensitivity of CDNC to bulk 

hygroscopicity has yet to be fully evaluated in this environment.

The present study uses measurements of aerosol composition and CCN activity collected 

during the Marine Aerosol Cloud and Wildfire Study (MACAWS), combined with an 

aerosol-cloud parcel model, to gain insight into near-coastal aerosol hygroscopicity and its 

influence on prediction of CCN and MSc CDNC. Hygroscopicity measurements are 

combined with airmass backward trajectories and meteorological parameters to attribute 

observed particle characteristics to distinct sources when possible. CCN closure analyses are 

performed to investigate the impact of compositional and mixing state assumptions on CCN 

predictions. Finally, aerosol-cloud parcel model simulations constrained with MSc 

microphysical measurements are used to directly investigate the sensitivity of stratocumulus 

CDNC to aerosol hygroscopicity, mixing state, and size distribution properties.

2. Methodology

2.1. MACAWS Field Mission

The 2018 Marine Aerosol Cloud and Wildfire Study (MACAWS) consisted of 16 research 

flights operated out of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies 

(CIRPAS) in Marina, California, during June and July. Measurements were performed on-

board the CIRPAS Navy Twin Otter aircraft (Coggon et al., 2012, 2014; Russell et al., 2013; 

Sorooshian et al., 2019; Wang et al., 2016). The scientific objectives of individual flights 

included characterization of marine aerosols and clouds, sampling of shipping vessel exhaust 

plumes, and investigation of nearby wildfire emissions. The present study focuses on seven 

research flights primarily aimed at characterization of the relationship between marine 

aerosol and the overlying stratocumulus cloud deck. Paths of these seven flights are depicted 

in Figure 1. Flight strategies typically involved a series of level legs at varying altitudes 

within the MBL and overlying FT. Slant or spiral soundings were generally performed 

before and after a series of level legs.

2.2. Twin Otter Instrumentation

The navigational and meteorological instrumentation utilized by the Twin Otter aircraft is 

described in detail by Sorooshian et al. (2018). Ambient aerosol was sampled using a 

forward-facing sub-isokinetic inlet (Hegg et al., 2005). Aerosol and cloud droplet number 

concentrations were characterized using a variety of instruments, including multiple 

condensation particle counters (CPC, TSI 3010, Dp > 10 nm; ultrafine CPC, TSI UFCPC, Dp 

> 3 nm), a passive cavity aerosol spectrometer probe (PCASP, Dp ~0.11–3.4 μm), and 

forward scattering spectrometer probe (FSSP, Particle Measuring Systems [PMS], Dp ~1.6–

45 μm). Cloud liquid water content was measured using a PVM-100A probe (Gerber et al., 

1994), and a threshold value of 0.02 g m−3 was used to distinguish in-cloud sampling 

(Dadashazar et al., 2018; MacDonald et al., 2018).

Cloud condensation nuclei (CCN) number concentrations were measured at four 

supersaturations (SS) (0.1%, 0.3%, 0.43%, and 0.57%) using a Droplet Measurement 

Technologies (DMT) dual-column streamwise thermal-gradient cloud condensation nuclei 
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counter (CCNC) (Lance et al., 2006; Roberts & Nenes, 2005). The CCNC operates by 

applying a linear temperature gradient to a cylindrical sampling tube with continuously 

wetted walls. As the thermal diffusivity of water vapor exceeds the diffusivity of air, 

supersaturated conditions are produced along the sampling column centerline. For this study, 

activated droplets grown to sizes larger than 0.75-μm diameter were counted and sized by an 

optical particle counter. The sheath and sample flows of each column were maintained at 

0.45 and 0.05 L min−1, respectively. Instrument pressure was maintained at 750 mb using a 

flow orifice and active pressure control system at the instrument inlet. Each column of the 

CCNC was calibrated using ammonium sulfate particles following standard methods as 

described in Rose et al. (2008). Calibrations were performed before and after the campaign, 

and observed deviations in applied SS for a given temperature gradient imply uncertainties 

of ~6%, similar to the 5% value typical of field campaigns, as reported by Rose et al. (2008).

Aerosol size distributions and number concentrations for Dp between ~15 and 800 nm were 

measured with a custom-built scanning mobility particle sizer (SMPS) consisting of a 

differential mobility analyzer (DMA, TSI 3081) coupled to a condensation particle counter 

(TSI 3010). The DMA is operated in a closed-system configuration with a recirculating 

sheath and excess flow of 2.67 L min−1 and an aerosol flow of 0.515 L min−1. The column 

voltage was scanned from 15 to 9,850 V over a ~2-min interval.

Aerosol chemical composition was measured using a high-resolution time-of-flight aerosol 

mass spectrometer (HR-ToF-AMS, Aerodyne Research Inc., hereafter referred to AMS) 

(DeCarlo et al., 2006). Incoming air enters the AMS through a 100-μm critical orifice, after 

which an aerodynamic lens produces a particle beam that is accelerated under high vacuum. 

The particle beam is flash-vaporized on a resistively heated surface (600°C), and the 

resulting gases are ionized by electron impaction (70 eV). Individual ion identity is 

determined using a high-resolution time-of-flight mass spectrometer. Due to the limited 

amount of aerosol mass present over the MBL, data were collected in high-sensitivity V-

mode. The ionization efficiency (IE) of the AMS was calibrated using dry, 350-nm 

ammonium nitrate particles before each flight. Data were averaged over 1-min intervals, and 

all data were analyzed using standard AMS software (SQUIRREL v1.57 and PIKA v1.16l) 

within Igor Pro 6.37. The collection efficiency (CE) was determined using the composition-

dependent calculator within the SQUIRREL and PIKA software packages (Middlebrook et 

al., 2012). Elemental H:C and O:C ratios were calculated using the “Improved-Ambient” 

elemental analysis method for AMS mass spectra (Canagaratna et al., 2015). Positive matrix 

factorization (PMF) analysis (Paatero & Tapper, 1994) was performed on the high-resolution 

AMS mass spectra in order to distinguish major classes and transformation processes of 

measured OA. Three factors were extracted, two of which factors correspond to OA 

subtypes characteristic of the MBL and above-cloud organic aerosol layer (AC-OAL), 

respectively, and resemble low-volatility oxygenated organic aerosol (LV-OOA). The third 

factor, which was rarely observed, is likely a result of primary anthropogenic emissions and 

resembles hydrocarbon-like organic aerosol (HOA). Further discussion of PMF data 

preparation and factor interpretation is included in the supporting information.
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2.3. Determination of Aerosol Hygroscopicity

Aerosol hygroscopicity was calculated using two distinct methods based on measurements 

with the CCNC and AMS, respectively. Assuming a particle population is internally mixed, 

the critical activation diameter (Dp,c) (the diameter at which all larger particles will activate 

into cloud droplets) produced by a given SS can be determined by integrating the particle 

size distribution until the total CN concentration is equivalent to the measured CCN 

concentration:

NCCN = ∫Dp, c

∞
nCNdDp (1)

Knowledge of the critical diameter can then be used to calculate a single parameter 

representation of aerosol hygroscopicity from Köhler theory (Petters & Kreidenweis, 2007):

s = Dwet
3 − Dp, c

3

Dwet
3 − Dp, c

3 1 − κCCN
exp 4σMw

RTρwDwet
(2)

where s is the equilibrium supersaturation, Dp,c is the critical activation diameter, Dwet is the 

droplet diameter, R is the universal gas constant, T is the absolute temperature, ρw is the 

molar density of water, Mw is the molecular weight of water, and σ is the surface tension of 

the droplet at the point of activation. Following Rose et al. (2010), κ was determined by 

applying the observed activation diameter and varying both Dwet and κ until s is equivalent 

to the applied supersaturation of the CCNC and the maximum of a Köhler curve of CCN 

activation. The droplet surface tension is assumed equal to that of water for comparison with 

other studies (Collins et al., 2013; Petters & Kreidenweis, 2007; Roberts et al., 2010; 

Yakobi-Hancock et al., 2014). Hygroscopicity values calculated using this method are 

referred to as “CCN-derived.” Since the likelihood of particle activation at a given SS tends 

to be a stronger function of size than composition (Dusek et al., 2006), κCCN values 

correspond to particles with diameters near the calculated critical diameter.

A Monte Carlo approach was used to estimate the uncertainty in CCN-derived kappa values 

(Wang et al., 2019). A detailed description is provided in the supporting information. For a 

given measurement of the aerosol size distribution and CCN number concentration, the 

distribution of possible κCCN values calculated by varying these input parameters (i.e., CCN 

number concentration and size distribution) within their respective uncertainties is 

lognormally distributed. As a result, uncertainties attributed to κ CCN are not symmetric 

about the geometric mean values. In general, we estimate 1σ uncertainties of +55%/−40% 

for κCCN calculated at SS = 0.3%, ~+75%/−45% at SS = 0.43%, and +100%/−50% to values 

calculated at SS = 0.57%. Due to the low CCN number concentrations observed at SS = 

0.1% (<100 cm−3) and possibility of counting unactivated particles (expected to only be a 

few per cm−3), κCCN at SS = 0.1% are not reported, as small absolute deviations in particle 

number concentration measured by the CCNC and DMA due to differential inlet losses 

could strongly influence the resulting κCCN estimates.
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Hygroscopicity estimates can also be made using component volume fractions measured by 

the HR-ToF-AMS using the following equation (Petters & Kreidenweis, 2007):

κAMS = ∑
i

N
ϵiκi (3)

where ϵi and κi represent the volume fraction and hygroscopicity of the ith NR-PM1 

component, respectively. While this calculation cannot capture the contribution of refractory 

components (sea salt, mineral dust, etc.), further analysis suggests their contribution is 

minor, as discussed in the supporting information. Organic aerosol density was assumed to 

be 1.4 g cm−3 for volume fraction calculations given the remote nature of the environments 

sampled and the oxidized character of the measured organic aerosol (e.g., O:C ratios of 

MBL and AC-OAL PMF factors were 0.91 and 0.76, respectively) (Hallquist et al., 2009; 

Roberts et al., 2010). The hygroscopicity of individual inorganic components is calculated 

using

κi = Mw
ρw

ρi
Mi

vi (4)

where Mw and ρw are the molar mass and density of water, respectively, and Mi, ρi, and vi 

are the molar mass, density, and van’t Hoff factor of the inorganic component. Inorganic 

aerosol was dominated by sulfate and ammonium. The relative abundances of ammonium 

sulfate, ammonium bisulfate, and sulfuric acid were calculated using the molar ratio of 

ammonium to sulfate (Asa-Awuku et al., 2011; Nenes et al., 1998). Ammonium sulfate and 

bisulfate were assigned van’t Hoff factors of 2.5, while sulfuric acid was assigned κ = 0.9 to 

align with previous measurements (Petters & Kreidenweis, 2007). Modifying the van’t Hoff 

factors of ammonium sulfate and ammonium bisulfate and assumed κ of sulfuric acid within 

reasonable limits had a negligible influence on the presented results. Chloride measured by 

the AMS was assumed to represent sodium chloride and was assigned a hygroscopicity of 

1.28 (Petters & Kreidenweis, 2007). AMS-measured nitrate aerosol was assumed to be 

ammonium nitrate with a hygroscopicity of 0.67 (Petters & Kreidenweis, 2007). The 

hygroscopicity of the organic component (κorg) was assumed to be either 0 (non-

hygroscopic), 0.1 (slightly-hygroscopic), or a function OA composition using a 

parameterization based on bulk O:C ratios developed in the literature (Lambe et al., 2011). 

Comparisons of κCCN and κAMS values, analysis of PMF factor composition, and evaluation 

of CCN-closure calculations are used to evaluate these different κorg estimates.

An uncertainty analysis similar to that described for κCCN values was performed for κAMS 

values and is described in detail in the supporting information. For median conditions in the 

MBL and FT, the relative uncertainty in κAMS is estimated to be ~10–20%, due primarily to 

uncertainty in the estimated hygroscopicity of the organic component (κorg). In the AC-

OAL, the dominant contribution of organic aerosol increases the relative uncertainty to 

~50%; however, due to the low absolute κAMS values observed in the AC-AMS OAL, the 

absolute uncertainty is only ~0.1 or less.
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2.4. Aerosol-Cloud Parcel Model

The aerosol-cloud parcel model used in this study employs a user-specified updraft velocity 

to induce adiabatic cooling of an air parcel, leading to water vapor supersaturation. The 

predicted parcel supersaturation at each time step is determined by the relative rates of 

production through adiabatic cooling and loss through condensation of water vapor onto 

activated cloud droplets (Pruppacher & Klett, 1997; Seinfeld et al., 2016). In the present 

study, meteorological parameters such as ambient pressure, temperature, and lapse rate are 

obtained from MACAWS aircraft measurements and are specified before model execution. 

The below-cloud dry size distribution is assumed to contain Aitken and accumulation 

modes, the characteristics of which (i.e., number concentration, geometric mean diameter, 

hygroscopicity) are set by the user. Particles within each mode can be specified as either 

internally or externally mixed. Each compositional class, 1 per size mode if internally mixed 

or 2 per size mode if externally mixed, contains 300 lognormally spaced bins ranging from 1 

nm to 3 μm. Droplet activation is assumed to occur when the ambient supersaturation of the 

parcel exceeds the critical supersaturation of the particles in a given size bin, as determined 

from κ-Kohler theory (Petters & Kreidenweis, 2007). Following activation, the growth of 

individual cloud droplet bins due to water vapor diffusion is explicitly represented. 

Additional physical processes such as droplet coagulation, coalescence, and deposition are 

not included, as previous parcel model studies have demonstrated that these processes have 

little influence on model predictions for typical marine stratocumulus conditions (Sanchez et 

al., 2016). Model execution proceeds until a user-specified liquid water content (0.4 g m−3 in 

this study) has been reached. Activated particle size bins larger than 1 μm are considered 

cloud droplets; however, using an alternative size threshold of 2 μm or 0.75 μm has a 

negligible influence on the results.

2.5. Air Mass Backward Trajectories

Air mass backward trajectories (120 hr) were calculated in the MBL for each flight using the 

NOAA HYSPLIT v4.2 model with the global data assimilation system (GDAS) 1° × 1° 

meteorological data set (Draxler & Hess, 1997, 1998; Stein et al., 2015). The higher spatial 

resolution EDAS 40 km × 40 km meteorological data set was not used due to its limited 

spatial range over the Pacific Ocean. The ending altitude of each trajectory was the 

approximate midpoint of the MBL during each flight.

3. Results and Discussion

3.1. Aerosol Characteristics Over the N.E. Pacific

Results from the seven flights analyzed in this study are summarized in Figure 2 and Tables 

1–3. In the subsequent analyses, “all flights” refers to these seven. Typical flight patterns 

included sampling within the MBL, FT, and, when present, the above-cloud organic aerosol 

layer (AC-OAL). The AC-OAL is operationally defined as the narrow altitude band 

(generally <200 m) directly above the marine stratocumulus cloud decks where OA mass 

loadings were relatively large (>1.5 μg m−3) and a distinct AC-OAL PMF factor contributed 

>80% of total OA mass (Figure S6). This region occupies a similar location as the 

commonly referenced entrainment interface layer (EIL) above cloud decks (Dadashazar et 

al., 2018; Wood, 2012), but is defined by the aerosol characteristics described above rather 
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than by turbulence and buoyancy characteristics, as is common for the EIL (Carman et al., 

2012). Median aerosol properties are reported in Tables 1–3 for each of these three regions, 

while Figure 2 displays vertical profiles of aerosol and meteorological properties.

Distinct differences in particle properties were observed within each vertical region. Median 

aerosol number concentrations observed in the MBL (754 cm−3) exceeded those in the FT 

(333 cm−3), as expected. Observed particle concentrations were maximized within the AC-

OAL (1,662 cm−3), where intense actinic fluxes and elevated concentrations of the hydroxyl 

radical may drive new particle formation (Dadashazar et al., 2018; Mauldin et al., 1999). For 

all measured SS > 0.1%, observed CCN concentrations were also largest within the AC-

OAL, rather than the MBL or FT, underscoring the importance of understanding the 

hygroscopicity of above-cloud CCN-active particles (Coggon et al., 2014; Sorooshian, Lu, et 

al., 2007; Sorooshian et al., 2007; Wang et al., 2008).

Observed aerosol composition in the MBL was relatively evenly divided between organic 

aerosol (OA) (43%) and sulfate (SO4) (48%), with a minor contribution from ammonium 

(NH4) (~10%) and negligible nitrate (NO3) (≤1%). Prabhakar et al. (2014) have 

demonstrated that nitrate is preferentially distributed in super-micron particles in this marine 

environment, in agreement with the minor contribution observed with the AMS in this study. 

Using the “clean” versus “perturbed” threshold introduced by Coggon et al. (2012) for this 

region (where “clean” is defined by aerosol mass concentrations <1 μg m−3), average MBL 

conditions were “perturbed” by shipping vessel emissions or other anthropogenic sources 

such as continental outflow. A distinct, highly oxidized MBL PMF factor was extracted from 

the data set (Figure S6). The oxidized nature of the MBL factor (O:C = 0.91) precludes the 

use of marker ions to distinguish individual sources; however, potential sources include 

shipping and biogenic emissions, as well as oxidized continental outflow aerosol (Coggon et 

al., 2012; Hegg et al., 2010; Sorooshian et al., 2009). In the AC-OAL, observed aerosol 

composition was dominated by organics (80%), as has been previously reported (Coggon et 

al., 2014; Hersey et al., 2009; Sorooshian et al., 2007; Sorooshian, Ng, et al., 2007; Wang et 

al., 2008). A second, distinct factor displayed large mass loadings (up to 8 μg m−3) within 

the AC-OAL (Figure S6) (O:C = 0.76), and the mass ratio of the AC-OAL to the MBL PMF 

factor is used as a tracer of AC-OAL entrainment into the MBL, as discussed in section 

3.3.2. Possible aerosol production mechanisms in the AC-OAL include oxidation and 

transport of biogenic volatile organic compounds emitted by forested regions in the 

northwest United States, cloud droplet evaporation, and oxidation of sparingly soluble 

organics vented through the stratocumulus layer (Coggon et al., 2014; Heald et al., 2005; 

Sorooshian, Lu, et al., 2007). While large eddy simulations (LES) have demonstrated that 

the altitude of the top of the stratocumulus cloud deck can undergo diurnal variations of 10–

100 m, providing a potential mechanism for AC-OAL aerosol production through droplet 

evaporation (Chen et al., 2011; Sorooshian, Lu, et al., 2007), the substantially larger mass 

fraction of organic aerosol in the AC-OAL than the MBL suggests that particle production is 

primarily a result of continental biogenic sources (Coggon et al., 2014). Observed aerosol 

mass loadings in the FT were the lowest sampled (1.5 μg m−3) but agree well with previous 

aircraft measurements by Wang et al. (2008) off the coast of Pt. Reyes, CA, at a similar time 

of year (June–July).
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3.2. Overview of Observed Aerosol Hygroscopicity

Figure 3 displays median aerosol number size distributions, κAMS, and κCCN values 

observed within the MBL, AC-OAL, and FT during each flight. For these comparisons, 

κAMS values are calculated assuming κorg = 0.1, as is typical for non-urban regions (Mei et 

al., 2013; Moore et al., 2011, 2012). However, we note that using the parameterization 

developed by Lambe et al. (2011), the calculated κorg values for the MBL and AC-OAL 

PMF factors are 0.19 and 0.17, respectively, due to their highly oxidized nature (Figure S6), 

suggesting the true κorg values for large particles may be greater than 0.1.

Within the MBL, observed hygroscopicity values appear to cluster into three relatively 

distinct groups that span the range of values previously observed in this environment 

(Roberts et al., 2010; Royalty et al., 2017; Yakobi-Hancock et al., 2014). The strong 

temporal variation observed in both particle number size distributions and hygroscopicities 

underscores the complexity involved in accurately modeling CCN in coastal environments 

influenced by continental and marine sources. This is further demonstrated in Table 4, which 

depicts estimated organic and inorganic volume fractions of Aitken mode particles derived 

from MBL κCCN values. Assuming inorganic aerosol is entirely ammonium sulfate for these 

calculations, estimated organic fractions vary from effectively zero, as median κCCN during 

RF13 are larger than that of ammonium sulfate (κ = 0.61) to as high as 84%. The low 

hygroscopicities and subsequently large estimated organic fractions observed during flights 

RF9 and RF15 are uncharacteristic of remote marine environments and imply a continental 

influence on particle characteristics. κAMS values calculated during these flights are ~50–

100% larger than κCCN values, implying addition of particle mass during growth that is 

more hygroscopic than the Aitken mode particles. While the difference between κAMS and 

κCCN values during these flights are nearly within the uncertainty range of the κCCN 

calculation, these observations align with those in many continental locations, where 

addition of inorganic mass to organic-rich Aitken mode particles growth is thought to lead to 

a positive relationship between particle hygroscopicity and size (Ervens et al., 2010; Kawana 

et al., 2016; Levin et al., 2014; Moore et al., 2012; Rose et al., 2011). On the other hand, 

κAMS and κCCN are quite similar during the other five flights, with relative deviations on the 

order of ~25% or less, which is well within the uncertainty of the κCCN measurements. A 

compilation of data reported by Royalty et al. (2017) suggests that minor variation of 

particle hygroscopicity with size is a common feature of remote marine aerosol, which 

generally exhibits elevated Aitken mode hygroscopicity. Four individual flights (RF4, RF5, 

RF13, and RF15) provide specific insight into the combined roles of aerosol sources and 

meteorological processes in determining aerosol hygroscopicity in the MBL, and these are 

discussed in further detail in section 3.3.2.

Within the AC-OAL, observed aerosol hygroscopicity is remarkably similar from flight-to-

flight, and little difference is observed between κCCN and κAMS values. The combination of 

reduced hygroscopicity (i.e., κ ~0.2) and little variation with particle size suggests that 

within the AC-OAL, Aitken mode particles are organic-rich and grow through condensation 

of additional organic vapors, rather than addition of inorganic mass. Even under the 

assumption that the organic species in Aitken mode AC-OAL particles are entirely insoluble, 

total particle volume must be at least 66% organic to produce a hygroscopicity of 0.2 
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(assuming ammonium sulfate as the inorganic component). Chamber studies of monoterpene 

aerosol often observe κorg of ~0.1–0.15 for Aitken mode particles (Alfarra et al., 2013; Zhao 

et al., 2015), which increases the estimated organic volume fraction to 80–89%. While the 

peak in the AC-OAL size distribution varies considerably between flights, the presence of a 

dominant Aitken mode in three out of four observations suggests particle formation may 

have occurred recently.

Coggon et al. (2014) first demonstrated that expansive dry air masses originating over the 

northwestern United States loft biogenic organic aerosol over the MBL and act as the main 

particle source to the AC-OAL. Our measurements support this conclusion; however, an 

additional contribution from organic gases vented through the stratocumulus layer cannot be 

ruled out. Comparing AC-OAL and MBL Aitken mode hygroscopicity suggests cloud 

droplet evaporation is at most a minor particle source to the AC-OAL, as during three of the 

four flights in which the AC-OAL was sampled, average MBL Aitken mode particles were 

substantially more hygroscopic than those in the AC-OAL (κMBL ~0.4; κAC-OAL ~0.2). As 

the most hygroscopic particles in an air mass are likely to activate into cloud droplets, and as 

addition of inorganic mass is common during cloud processing in marine environments 

(Faloona, 2009; Seinfeld et al., 2016), it is unlikely that residual aerosol formed from 

evaporated cloud droplets would be less hygroscopic than the MBL aerosol population. 

Observations during RF15, discussed further in section 3.3.2, suggest entrainment during 

precipitation events can lead to a major AC-OAL signature in the MBL, directly 

demonstrating the importance of understanding the source of these particles.

Due to the low aerosol number concentrations in the FT, observed κCCN values vary widely 

between flights and exhibit large variability within individual flights. As a result, we hesitate 

to draw definitive conclusions based on these data. Other than RF13, average κAMS values 

from each flight are near or below 0.4, implying a substantial organic contribution to free 

tropospheric aerosol. In the absence of continental influence, observation of aerosols of such 

low hygroscopicity is unexpected, given that particle formation in the upper FT over tropical 

oceans is driven primarily by sulfuric acid nucleation and growth (Clarke, 1993; Clarke et 

al., 1998, 1999, 2013). Long range transport of organic aerosol layers from the Asian 

continent have been noted previously (Roberts et al., 2006, 2010), but estimates of aerosol 

hygroscopicity in such layers have varied dramatically. For instance, during the CIFEX 

experiments (Roberts et al., 2006), average κ attributed to aged aerosol layers were only 

~0.04, whereas our measurements suggest a more moderate value of ~0.4, while 

observations by Roberts et al. (2010) indicated a value of 0.93 was more appropriate. While 

the substantial difference in particle concentrations in the MBL and FT observed during this 

campaign suggests FT aerosol plays a minor role in dictating MBL CCN activity on average, 

in remote marine environments, entrainment from the FT is the dominant source of MBL 

particles (Clarke, 1993; Clarke et al., 1996, 1998, 2013; Raes, 1995), and as such further 

research into the variability of FT aerosol composition is warranted.

3.3. Observation of Distinct Influences on MBL Particle Characteristics

Observations shown in Figure 3 indicate highly variable flight-averaged hygroscopicities in 

the MBL, suggesting that temporal variations in regional meteorology and/or particle source 
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strengths can strongly influence CCN characteristics in this environment. Further analysis 

suggests that in four of the seven flights discussed in this study, specific meteorological 

patterns and emissions sources influencing particle characteristics can be identified. We 

discuss these observations to provide insight into the level of physicochemical detail (both in 

terms of emissions and atmospheric dynamics) required for atmospheric models to simulate 

MBL CCN concentrations with high fidelity.

3.3.1. Shipping Emissions—Aerosol properties measured during RF4 and RF5 

suggest a prominent influence of regional shipping emissions on particle characteristics and 

hygroscopicity in this environment. During these flights, the dominance of an Aitken mode 

near ~50–60 nm with much larger concentrations than in the FT suggests relatively recent 

formation from an MBL-based particle source. While such size distributions could 

hypothetically result from continental outflow (Moore et al., 2012), air mass backward 

trajectories remained over the ocean and near or within the MBL (<1,000 m) for the 

previous 5 days (Figure 4). Furthermore, trajectories transited primarily within the major 

shipping corridor along the coast, as observed for flights “perturbed” by shipping vessel 

emissions by Coggon et al. (2012), rather than recently arriving from the remote ocean (e.g., 

RF13). Downward mixing of AC-OAL particles is also ruled out as an Aitken mode particle 

source during these flights due to the distinctly different hygroscopicities observed in the 

MBL and AC-OAL (Figure 3). Finally, average wind speeds within the MBL were ~12 m s
−1 and ~9 m s−1 during RF4 and RF5, respectively. Modini et al. (2015) previously noted 

that primary sea spray emissions produced particle concentrations of only 12 cm−3 during 

periods with similar windspeeds (12 m s−1) in the same marine environment (equivalent to 

~2% of particle number concentrations in the MBL during RF4 and RF5).

Shipping emissions have been previously noted as major contributors to aerosol and cloud 

properties in the N.E. Pacific environment (Cappa et al., 2014; Coggon et al., 2012; Lack et 

al., 2011; Murphy et al., 2009). Coggon et al. (2012) demonstrated that 70% of cloud 

residual particles measured in the California shipping lanes were impacted by nearby 

shipping emissions. Available compositional data further suggest that shipping emissions 

could be expected to produce Aitken mode hygroscopicities observed during RF4 and RF5. 

For instance, Lack et al. (2011) observed an effective κ value of 0.68–0.73 from exhaust 

produced by a large (96,500 ton) container vessel, while the smaller Research Vessel 

Atlantis sampled during the same study produced a value of ~0.2. Hygroscopic growth 

factor measurements of shipping exhaust emitted by another large (90,000 ton) container 

vessel by Murphy et al. (2009) suggest an effective κ = 0.1–0.5.

Direct measurements of a large container vessel exhaust plume during RF7 provide further 

support for the attribution of aerosol characteristics to shipping emissions in RF4 and RF5. 

As shown in Figure 5, the strong Aitken mode peak in the size distribution measured directly 

within the plume aligns well with those measured in RF4 and RF5, while the total 

magnitude of the flight-median size distributions agree well with those measured in the 

diluted plume more than 20 km downwind. As the plume was relatively narrow directly 

behind the ship, κCCN values are not available, but κAMS measurements agree well with 

those in RF4 and RF5 (Figure 5c). However, given the variability in the measured κ values 

of particulate shipping exhaust just discussed, this agreement cannot be viewed as definitive. 
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Ultimately, while the insights provided by the size distributions, backward trajectories, and 

κAMS values would not be definitive on their own, taken together they support a shipping 

emission signature on aerosol characteristics during these flights. This influence highlights 

the importance of accurate physicochemical representation of shipping vessel emissions 

within the California coastal zone. As an example, the implementation of recent regulations 

on the sulfur content of shipping fuel within coastal waters of the United States (up to 200 

miles off the coast) should increase the organic:inorganic ratio of particulate shipping 

emissions in major shipping lanes over time (Cappa et al., 2014; Lack et al., 2011). 

Assuming, as a strictly upper limit estimate, that all Aitken mode particles observed during 

RF4 and RF5 are derived from shipping vessel emissions, changing the assumed 

hygroscopicity of these emissions from the value observed during ambient measurements in 

this study (~0.4–0.5) to a value of 0.1 (purely organic, partially hygroscopic), would change 

the CCN concentration at SS = 0.3% by 15–36%.

3.3.2. Entrainment From the AC-OAL—The observation of a single, dominant Aitken 

mode with reduced hygroscopicity during RF15 suggests an influence of the AC-OAL on 

MBL particle properties. According to Figure 4, the air mass sampled during RF15 had not 

recently transited over the continent or within the FT, which has previously shown to 

occasionally contain distinct layers of reduced hygroscopicity aerosol (Roberts et al., 2006, 

2010). Clear evidence of entrainment from the AC-OAL is provided in Figure 6, which 

contrasts size distributions and κAMS values observed during RF15 and RF4, another flight 

with a prominent Aitken particle mode and relatively similar backward trajectory. During 

RF15, the MBL and AC-OAL size distributions are remarkably similar, exhibiting peak 

diameters at ~55 nm and lacking a larger accumulation mode. Liquid water contents 

measured within the MBL during RF15 demonstrate a fully developed stratocumulus layer 

encompassing roughly half of the MBL. κAMS values vary linearly with altitude from ~0.4 

near the ocean surface to ~0.15–0.2 at the top of the cloud layer, aligning with the 

hypothesis of downward mixing of AC-OAL particles into the MBL. These observations are 

in stark contrast to those from RF4, where the Aitken mode diameter of the MBL and AC-

OAL aerosol differ by ~20–25 nm, and importantly, the Aitken mode diameter in the MBL 

is smaller than the AC-OAL, suggesting a distinct particle source in each location. Finally, 

as the AC-OAL and MBL PMF factors are clearly distinguished in each flight where the 

AC-OAL layer was observed, the AC-OAL: MBL PMF factor mass ratio acts as a tracer for 

entrainment mixing. During RF15, the median AC-OAL: MBL PMF factor mass ratio was 

0.81 in the MBL, in contrast to a value of 0.36 measured during RF4 and a median value of 

0.42 in all flights other than RF15 where the AC-OAL was observed. The information 

obtained from the aerosol size distribution (no accumulation mode) and hygroscopicity 

(similar to the AC-OAL) in the MBL suggests that the distinct AC-OAL signature may result 

from entrainment following precipitation scavenging of the preexisting MBL aerosol. As 

typical AC-OAL particle concentrations are ~5 times as large as those in the overlying FT, 

failure to simulate this layer will result in underprediction of MBL particle concentrations 

during such distinct precipitation/entrainment events.

3.3.3. Transport From the Remote Pacific Ocean—Hygroscopicity measurements 

made during RF13 are notably larger than those from the other six flights, indicating a lack 
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of organic aerosol across the particle size distribution. As expected, backward trajectories 

calculated within the MBL during this flight indicate recent arrival from the remote Pacific 

Ocean, rather than extended transport through the major shipping lanes along the coast. The 

boundary layer was substantially compressed (<300 m) and cloud-free during the flight, 

suggesting ongoing subsidence of free tropospheric air masses (Figure 7a). As new particle 

formation through sulfuric acid nucleation is known to be a notable source of CCN 

throughout the marine boundary layer (Clarke, 1993; Clarke et al., 1998, 2013), 

downwelling and entrainment of such nucleated particles is a possible explanation for the 

elevated Aitken mode hygroscopicities observed. While low number concentrations in the 

FT make κCCN estimates less reliable, the values observed in RF13 are relatively similar to 

those in the MBL, supporting entrainment. While aerosol size distribution measurements in 

the FT suggest such entrainment was not responsible for increases in Aitken mode particles 

locally, as concentrations directly above the MBL are substantially lower than those in the 

MBL, the elevated aerosol concentrations at ~1,000 m suggest entrainment may have 

produced MBL Aitken mode particles during transport (Figure 7b). Furthermore, the vertical 

profile of the aerosol size distribution in the FT is consistent with past observations of 

growth of nucleation-produced Aitken mode particles during large-scale subsidence (Clarke 

et al., 1999).

Due to the compressed height of the MBL during RF13, the potential contribution of 

primary sea spray aerosol to MBL particle characteristics is also enhanced. However, using 

the size distribution fitting technique established by Modini et al. (2015), the calculated 

concentration of primary sea spray aerosol is only 18 cm−3 or ~4% of the average MBL 

particle concentration during the flight, suggesting sea spray provides at most a minor 

contribution.

3.4. CCN Closure Analysis

Figure 8 shows CCN closure results for the three sampled environments using six different 

assumptions regarding aerosol composition and mixing state. Three cases assume internally 

mixed aerosol components with composition determined by AMS measurements. These 

cases are differentiated by their assumptions regarding organic aerosol hygroscopicity, with 

κorg increasing from 0 (first case), to 0.1 (second case), and finally to values predicted from 

time-varying measured OA O:C ratios according to the relationship developed by Lambe et 

al. (2011) (third case). The final three cases are similar to the internally mixed cases in their 

treatment of κorg; however, the organic and inorganic aerosol components are assumed to be 

externally mixed. Bulk aerosol mass loadings were too low to obtain robust estimates of 

size-resolved composition, precluding more detailed treatment of composition in CCN 

closure calculations. Closure was assessed in terms of the normalized mean bias (NMB = ∑ 

(CCNpred,i − CCNmeas,i)/ ∑ CCNmeas), similarly to Asa-Awuku et al. (2011), which provides 

a representation of the average CCN prediction error observed for each flight. Data for the 

MBL and FT are shown for individual flights, while data from the AC-OAL are aggregated 

from all flights where the layer was observed, as fewer size distributions were obtained from 

the AC-OAL during each flight (and the AC-OAL was not observed at all during three 

flights).

Schulze et al. Page 15

Earth Space Sci. Author manuscript; available in PMC 2020 November 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



For the majority of analyzed flights (five out of seven), closure is obtained within 20% using 

AMS-measured bulk composition and an assumption of either insoluble (κorg = 0) or 

slightly hygroscopic organics (κorg = 0.1). While the assumption of insoluble organics 

disagrees with observed O:C ratios (e.g., the O:C ratio of the MBL PMF factor is 0.85), 

CCN closure studies often find this assumption is ideal when assuming internal mixing 

(Chang et al., 2007; Lance et al., 2009; Moore et al., 2011; Wang et al., 2008). The lack of 

strong dependence on κorg suggests that in non-urban areas, regional models may be able to 

assign a single value to organic aerosol rather than attempt to dynamically model changes in 

organic aerosol hygroscopicity with aging (Wang et al., 2008). This is further highlighted by 

the fact that closure results assuming a constant κ org value (0.1) are generally more 

accurate than those produced by parameterizing κorg based on the observed O:C ratio 

(Lambe et al., 2011). As larger aerosols are more likely to have undergone cloud-processing, 

parameterizing organic hygroscopicity based on bulk measurements of the organic O:C ratio, 

which is biased by the largest particles, may also overpredict the oxidation state of particles 

near the critical diameter of CCN activation. Without size-resolved compositional data, it is 

difficult to definitively conclude whether the overprediction observed when κorg is 

parameterized based on the organic O:C ratio is due to such variability with size or is the 

result of a different relationship between O:C and κorg for organic aerosols in this 

environment. However, other published parameterizations between O:C and κorg in the 

literature either agree well with the Lambe parameterization (Chang et al., 2010; Massoli et 

al., 2010; Thalman et al., 2017) or predict more hygroscopic particles at the same O:C ratio 

(and as a result would lead to further overprediction if implemented in the CCN closure 

analysis) (Mei et al., 2013). The overprediction in CCN observed here when incorporating 

the Lambe parameterization therefore suggests that small particles near the critical activation 

diameter are less hygroscopic than larger particles that dominate the mass size distribution 

and thereby dictate AMS-measured composition.

Overall, generally good closure is expected in a semi-remote environment such as the 

California coastal zone, as previous studies have noted that closure is likely to be achieved 

within 20% when the bulk aerosol κ exceeds 0.1 (Wang et al., 2010). Furthermore, it is 

expected that aerosol in this coastal environment can be modeled as internally mixed, 

regardless of its true mixing state, due to the substantial contribution of inorganic 

constituents and distance from emission sources (Ervens et al., 2010; Fierce et al., 2016; 

Moore et al., 2012). Fierce et al. (2016) have demonstrated that in semi-remote 

environments (i.e., non-urban locations), initially externally mixed aerosol becomes 

internally mixed on a time scale of about 1 day, while the conversion is even faster (on the 

order of hours) in urban environments, in agreement with the results of Wang et al. (2010). 

Notable underpredictions (i.e., >20%) of CCN concentrations are produced when assuming 

externally mixed aerosol with insoluble organics, in agreement with the aged nature of the 

aerosol in this environment, which should lead to both oxidized organic aerosol and an 

appreciable amount of internal mixing.

CCN are strongly overpredicted in the MBL during RF9 (37%) and RF15 (57%) when 

assuming an internal mixture with hygroscopic organics. Aerosol composition during these 

flights was dominated by organic species in the MBL (59% and 58% of AMS-derived 

aerosol mass, respectively), indicative of a continental influence on aerosol properties. 
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AMS-derived hygroscopicities are substantially larger than those derived from CCN 

measurements (Figure 3), suggesting that size-dependent composition may lead to the 

observed overprediction of CCN concentrations when using bulk AMS measurements of 

aerosol composition. Comparison of CCN closure results when assuming internal versus 

external mixing suggests that organic and inorganic components are externally mixed, 

implying either distinct particle sources or a lack of significant aging prior to measurement. 

In the case of RF15, this external mixing aligns with the hypothesis of downward mixing 

from the organic-rich AC-OAL. Figure S7 depicts the CCN closure normalized mean bias 

resulting from an assumption of internally mixed aerosols with hygroscopic organics as a 

function of the CCN-derived hygroscopicity. In general, CCN closure error increases rapidly 

as κCCN decreases past ~0.25, suggesting that detailed mixing state and/or size resolved 

compositional information is critical for accurate CCN prediction in this coastal 

environment during periods of intense organic aerosol intrusion into the MBL. As the 

aerosol hygroscopicity calculation used in this study relies on an assumption of internal 

mixing of organic and inorganic aerosol components, it is difficult to determine whether 

CCN closure error when assuming internal mixing during this flights is a result of externally 

mixed organic and inorganic aerosol or a result of variable composition with size. 

Ultimately, as these atypical organic aerosol-dominated marine conditions are the least likely 

to be accurately reproduced by regional models, further investigation of their frequency, 

particle characteristics, and resulting impact on cloud properties is warranted.

The analysis presented in Figure 8 implies that for typical conditions in the MBL (5 out of 7 

flights in this study), mixing state and organic hygroscopicity have relatively little influence 

on CCN number concentrations. Additional closure analyses were performed assuming a 

constant κ equivalent to values attributed to average continental (κ = 0.27) and marine (κ = 

0.72) environments (Pringle et al., 2010) (Figure 9). These results highlight the fact that 

assuming coastal aerosols have a strictly marine character leads to substantial errors in CCN 

prediction (>20% for 8 out of 9 flights) even if size distribution parameters are well 

characterized. Furthermore, for five out of the seven analyzed flights (RF4, RF5, RF9, RF13, 

RF16), assuming a constant marine κ (0.72) results in CCN prediction error similar to or 

larger than the error produced by assuming a constant aerosol size distribution derived from 

the median value measured in the MBL during this study. This underscores the importance 

of capturing organic contributions to coastal MBL aerosol, whether due to continental 

outflow, downwelling from the AC-OAL, shipping emissions, or marine biota.

3.5. Sensitivity of Stratocumulus CDNC to Below-Cloud Aerosol Hygroscopicity

In order to directly investigate the sensitivity of N.E. Pacific stratocumulus CDNC to below-

cloud aerosol properties, droplet activation was simulated using an aerosol-cloud parcel 

model constrained with detailed below-cloud aerosol measurements obtained from three 

cloud sampling passes performed during the campaign. While a number of previous cloud 

parcel modeling studies have assumed unimodal size distributions (Chen et al., 2016; 

Reutter et al., 2009 ; Ward et al., 2010), observed aerosol size distributions over the N.E. 

Pacific were frequently bimodal (Figure 3). As many current aerosol modules incorporated 

within global atmospheric chemistry models involve multiple aerosol size modes (Liu & 

Wang, 2010; Pringle et al., 2010; Rothenberg et al., 2018), we carried out parcel model runs 
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to analyze CDNC sensitivity to properties of the Aitken and accumulation modes separately. 

Sensitivities were calculated following McFiggans et al. (2006), where S (Xi) = δlnNCDNC/
δlnXi and Xi is the parameter under investigation. Standard linear regressions of lnNCDNC 

versus lnXi were used to determine S (Xi) values, as is convention (Reutter et al., 2009; 

Sánchez-Gácita et al., 2017; Ward et al., 2010). Measured aerosol and meteorological 

properties utilized as model constraints are summarized in Table 5. Sensitivity to 

hygroscopicity was computed across the range of κ = 0.2–0.6. Initial results confirmed that 

for observed MSc updraft velocities (w = 0.15–0.3 m s−1), below-cloud particle number 

concentrations (~500–800 cm−3), and typical hygroscopicities (κ ~ 0.2–0.4), properties of 

the Aitken mode have a minor impact on stratocumulus properties (S (Xi) < 0.05), as 

minimum simulated activation diameters exceed 100 nm. Therefore, Figure 10 depicts the 

sensitivity of stratocumulus CDNC to properties of the accumulation mode and the 

simulated updraft velocity.

The average sensitivity of CDNC to aerosol hygroscopicity (0.19), while smaller than the 

sensitivity to size distribution parameters, is 39% as large as the sensitivity to the geometric 

mean diameter of the accumulation mode. This agrees with the consensus that particle size 

distribution properties have a larger influence on CCN concentration than particle 

composition (Dusek et al., 2006; McFiggans et al., 2006; Reutter et al., 2009), but also 

suggests accurate hygroscopicity reproduction should be included in future model 

improvement efforts. Observed below-cloud particle number concentrations and updraft 

velocities suggest that CCN activation occurs in the transitional regime according to the 

designations defined by Reutter et al. (2009), and simulated sensitivity to hygroscopicity 

agrees well with those previously reported for the transition regime (0.17–0.2) (Reutter et 

al., 2009; Ward et al., 2010).

Aging processes during transport likely lead to internally rather than externally mixed 

aerosol in the MBL. The simulated error in predicted CDNC when assuming fully externally 

mixed components is only 7.6–8.7% for the three modeled cases. This aligns with the 

observation of similarly accurate CCN closure results for the MBL when assuming 

internally or externally mixed components and a κorg of 0.1 or larger. As the volume fraction 

of inorganic aerosol in the accumulation mode is likely to increase with increasing distance 

from the coast, this predicted mixing-state-related error may be an upper bound for marine 

conditions in general.

Previous aerosol-cloud parcel modeling studies have demonstrated that the sensitivity of 

predicted CDNC to aerosol hygroscopicity tends to decrease as bulk hygroscopicity 

increases, especially for the aerosol-limited and transitional aerosol activation regimes 

(Reutter et al., 2009; Sánchez-Gácita et al., 2017). If this is the case, accurate hygroscopicity 

characterization in marine regions subject to organic aerosol inputs, which contain aerosol 

with lower-than-average κ values, may be more important for global CDNC prediction 

accuracy than accurate hygroscopicity characterization in remote regions subject to aerosol 

sources with different, but elevated, hygroscopicities (e.g., ammonium sulfate [κ = 0.61] vs. 

sodium chloride [κ = 1.28]). To investigate this possibility, we calculated local CDNC 

sensitivity to aerosol hygroscopicity for four hypothetical marine aerosol size distributions. 

Rather than performing a linear regression on data obtained from a broad range of 

Schulze et al. Page 18

Earth Space Sci. Author manuscript; available in PMC 2020 November 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



hygroscopicities, as was done for the data shown in Figure 10, local sensitivities refer to 

calculations performed on incremental variations in κ (e.g., κ = 0.1 vs. 0.2). Figure 11 

displays the size distributions used as well as the sensitivity results. In order to span the 

likely range of size distributions observed in marine environments, the “Coastal” distribution 

is similar to median distributions observed during RF4 and RF5. A “Remote” distribution 

was generated using reported size distribution parameters from measurements over the 

remote subtropical N. Pacific by Ueda et al. (2016). Two additional size distributions were 

produced by interpolating between the “Coastal” and “Remote” distributions. Total particle 

concentrations in the simulations varied between 300 and 800 cm−3 depending on the size 

distribution used. Five different updraft velocities were simulated (w = 0.1–0.5 m s−1), 

corresponding to the range typically observed within MSc over the Pacific (Zheng et al., 

2016).

A few notable trends are evident in the results shown in Figure 11. As has been previously 

reported, CDNC sensitivity to aerosol hygroscopicity tends to decrease as hygroscopicity 

increases. However, even at low hygroscopicities, calculated sensitivities never exceed 0.3, 

suggesting that at a maximum, a 50% error in marine aerosol hygroscopicity should lead to 

an error of only 15% in predicted CDNC. Sensitivity slightly increases as the assumed 

particle concentration increases, and therefore, hygroscopicity is slightly less important in 

remote marine environments than in more polluted, coastal locations, as expected. In typical 

remote marine conditions (κ ≈ 0.6) for instance, a 50% error in hygroscopicity is associated 

with only a ~2.5–7.5% error in predicted CDNC, while in coastal environments (κ ≈ 0.35) 

the error is estimated to be ~7.5–15%.

When simulating certain combinations of updraft velocity and aerosol size distribution, the 

sensitivity of predicted CDNC to aerosol hygroscopicity does not decrease monotonically as 

hygroscopicity increases. Furthermore, at a given hygroscopicity value shown in Figure 11, 

CDNC sensitivity is a non-monotonic function of updraft velocity. Here, we demonstrate 

that these phenomena are a result of activation of the distinct Aitken aerosol mode. Variation 

in CDNC sensitivity to hygroscopicity with increasing updraft velocity is shown in Figure 

12 for κ = 0.6–0.8. Local CDNC sensitivity to hygroscopicity initially decreases with 

increasing updraft velocity before increasing again at updraft velocities >0.2–0.3 m s−1. This 

trend is consistent regardless of κ range analyzed; however, the shape of the curve becomes 

“stretched” horizontally as κ values decrease (Figure 12). Using a unimodal size 

distribution, Reutter et al. (2009) demonstrated that moving from the transitional to the 

aerosol-limited regime caused CDNC sensitivity to hygroscopicity to decline for all κ > 

0.05. For the four marine size distributions simulated in this study, increasing the updraft 

velocity from 0.1 to 1.0 m s−1 shifts activation from the transitional regime to the aerosol-

limited regime, implying CDNC sensitivity to hygroscopicity should subsequently decline. 

Our observation of the opposite phenomenon is due to the fact that at low (w = 0.1 m s−1) 

and high (w = 1–1.5 m s−1) updraft velocities, critical diameters produced within the rising 

air parcel occur near the peak of the accumulation and Aitken aerosol modes, respectively 

(Figure 12b). As the size distribution is peaked at these locations, subtle changes in aerosol 

hygroscopicity that induce small changes in the critical diameter result in a relatively large 

change in computed CDNC—hence elevated sensitivity to hygroscopicity. In contrast, for 

moderate (w ~ 0.2–0.3 m s−1) updraft velocities, minimum critical diameters occur between 
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the peaks of the Aitken and accumulation modes, and for very strong updraft velocities (w > 

1.5–2 m s−1) minimum critical diameters occur at sizes smaller than the peak of the Aitken 

mode, leading to lowered sensitivity (Figure 12b). This implies that in aerosol-limited 

environments with bimodal aerosol size distributions, the sensitivity of CDNC to 

hygroscopicity cannot necessarily be assumed to be negligible based solely on the ratio of 

the updraft velocity to particle number concentration. Ultimately, our results suggest that the 

sensitivity of marine CDNC to hygroscopicity is maximized in weak updraft conditions 

occurring in MSc (w < 0.2 m s−1), where hygroscopicity of the accumulation, rather than the 

Aitken, mode is most relevant to accurate CDNC prediction, and in relatively strong updraft 

conditions (0.5 < w < 2 m s−1) in either MSc or marine cumulus (Clarke et al., 1996), where 

Aitken mode hygroscopicity has a larger influence on CDNC than that of the accumulation 

mode.

4. Summary and Conclusions

Measurements of aerosol properties obtained over the N.E. Pacific Ocean during the 

MACAWS campaign in June and July 2018 were combined with results from an aerosol-

cloud-parcel model to gain insight into aerosol hygroscopicity and its influence on CCN and 

MSc CDNC prediction in this environment. Three characteristic vertical regions were 

characterized, corresponding to the MBL, FT, and AC-OAL. Within the MBL, flight-

averaged hygroscopicities varied from values typical of continental environments (κ = 0.27), 

to those representative of remote marine locations (κ = 0.72) (Pringle et al., 2010). Distinct 

influences on MBL particle characteristics, including shipping emissions, entrainment from 

the AC-OAL, and transport from the remote Pacific, were identified through analysis of 

hygroscopicity data. In the AC-OAL, observed hygroscopicity suggests a dominant 

contribution of organic aerosol in both the Aitken and accumulation mode size ranges.

For the majority of flights, measured CCN concentrations could be reproduced within 20% 

using measurements of the aerosol size distribution, bulk hygroscopicity, and an assumption 

of either internally or externally mixed organic and inorganic components, in agreement 

with past results in non-urban locations (e.g., Ervens et al., 2010). Notably, for five of the 

seven flights, MBL CCN were better predicted when assuming a constant aerosol number 

size distribution derived from the median value measured in the MBL than when assuming a 

constant κ typical of remote marine locations (0.72).

Results from an aerosol-cloud-parcel model confirm that the sensitivity (S (Xi) = δlnNCDNC/
δlnXi) of predicted CDNC to accumulation mode aerosol hygroscopicity (0.19) is 

substantially smaller than sensitivity to size distribution parameters, such as the 

accumulation mode geometric diameter (0.49) and standard deviation (−0.64). Simulations 

using a variety of possible MBL aerosol size distributions and hygroscopicities suggest that 

a 50% error in predicted hygroscopicity should rarely produce a CDNC error greater than 

15%. However, model results further suggest that CDNC sensitivity to hygroscopicity does 

not monotonically decrease with increasing updraft velocity. Rather, sensitivity appears to 

decrease or remain constant with increasing updraft velocities from low to moderate values 

(e.g., 0.1–0.3 m s−1) and then increase as updraft velocities increase further (>0.4 m s−1) due 

to activation of the distinct Aitken mode of the aerosol size distribution. This phenomenon is 

Schulze et al. Page 20

Earth Space Sci. Author manuscript; available in PMC 2020 November 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



observed despite the fact that at large updraft velocities (>0.4–0.5 m s−1), marine conditions 

generally occupy the aerosol-limited regime of cloud droplet activation. Ultimately, CDNC 

sensitivity to hygroscopicity is predicted to be maximized in weak updraft conditions 

occurring in MSc (<0.2 m s−1) and in strong updraft conditions (>0.5 m s−1) expected to 

occur in either MSc or marine cumulus.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points:

• Aerosol hygroscopicity exhibited substantial temporal variability in the MBL

• Errors in predicted MBL CCN concentrations produced by assuming a 

constant aerosol size distribution or hygroscopicity are discussed

• Sensitivity of simulated CDNC to hygroscopicity is maximized in marine 

clouds with either very weak or relatively strong updraft velocities
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Figure 1. 
(a) Trajectories of the seven MACAWS research flights analyzed in this study. (b) Relative 

vertical locations of the marine boundary layer, the above-cloud organic-aerosol layer (AC-

OAL), and the free troposphere.
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Figure 2. 
Vertical profiles of (a) RH and LWC, (b) CCN and CN concentrations, and (c) non-

refractory (NR) PM1 component mass loadings for the seven RFs in Figure 1. Markers 

represent median values, while horizontal bars span the interquartile range. (d) Vertical 

contour plot of median size distributions measured during the seven RFs. The dark grey 

region in panels a–c represents the average stratocumulus cloud depth (avg. cloud top height 

≈ 570 m; avg. cloud bottom height ≈ 300 m). The lighter grey region represents the standard 

deviation of cloud top and bottom heights (e.g., avg. cloud top + cloud top height S.D. ≈ 680 

m).
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Figure 3. 
Median aerosol size distributions (a–c) and hygroscopicities (κCCN and κAMS) (d–f) 

measured in the marine boundary layer (MBL), above-cloud organic aerosol layer (AC-

OAL), and free troposphere (FT), during the seven RFs. κAMS values are calculated 

assuming κorg = 0.1 and are plotted at the median of the cumulative aerosol volume 

distribution. Vertical bars represent the interquartile range of hygroscopicity measurements. 

Previously observed values in the MBL are included for reference in (d), as are typical 

values for continental and marine environments from Pringle et al. (2010).
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Figure 4. 
(a) 120-hr air mass backward trajectories calculated using the HYSPLIT model (Stein et al., 

2015) from the approximate midpoint of each flight path at an altitude representative of the 

marine boundary layer. For six of the seven flights, the starting altitude was 300 m, while the 

starting altitude for the RF13 trajectory was 150 m due to the shallow height of the boundary 

layer. (b) Air mass altitude during the 120-hr transit to the measurement site.
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Figure 5. 
(a) Map of the Twin Otter trajectory during repeated sampling of the exhaust plume from a 

330-m shipping vessel during RF7. Points are colored by the particle concentration 

measured by the CPC, and individual segments of the flight path are labeled. (b) Aerosol 

size distributions measured during the labeled segments in (a) compared to median 

distributions measured during RF4 and RF5. (c) Comparison of κ values derived from CCN 

and AMS measurements in RF4 and RF5 with those derived from AMS measurements 

during the flight segments shown in (a).
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Figure 6. 
(Top) Median aerosol size distributions measured in the marine boundary layer (MBL) and 

above-cloud organic aerosol layer (AC-OAL) during RF4 (a) and RF15 (b). (Bottom) 

Vertical profile of AMS-derived hygroscopicity (κAMS) and liquid water content (LWC) 

during each flight. Values of κAMS are colored by the organic volume fraction measured by 

the AMS to aid interpretation of the figure.
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Figure 7. 
(a) Measured relative humidity vertical profile during each flight, demonstrating the reduced 

marine boundary layer (MBL) height during RF13. (b) Vertical profile of aerosol number 

size distributions during RF13. (c) Individual aerosol size distributions at different altitudes 

during RF13.
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Figure 8. 
Normalized mean bias resulting from CCN closure analysis performed on data from each 

flight. A value of 0.2 is equivalent to an average overprediction of 20%. Int. indicates 

aerosol were assumed internally mixed, while Ext. indicates organic and inorganic aerosol 

were assumed to be externally mixed. κorg represents the assumed hygroscopicity of the 

organic aerosol component, and f(O:C) indicates κorg was calculated based on the bulk 

aerosol O:C ratio using the parameterization derived by Lambe et al. (2011).
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Figure 9. 
Normalized mean bias resulting from additional CCN closure analyses performed on data 

from each flight. κCont and κMarine refer to analyses assuming a constant κ equivalent to 

values representative of continental (0.27) and marine (0.72) environments (Pringle et al., 

2010). The Constant S.D. case assumes a constant aerosol number size distribution 

equivalent to the median value observed in the MBL during the campaign. Blacked dashed 

lines indicate closure error of ±20%. Marker size corresponds to the R2 value computed 

from a linear fit of observed and predicted CCN from each flight. Note the split in the y-

axis.
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Figure 10. 
Sensitivity of calculated CDNC to accumulation mode aerosol hygroscopicity (κ), below‐
cloud aerosol particle number concentration (NCN), accumulation mode geometric mean 

diameter (Dpg), accumulation mode standard deviation (σ), and updraft velocity (w). Data 

obtained during three cloud sampling passes were used as model constraints and are listed in 

Table 5. Numbers near each group of symbols represent average values from simulations in 

this study. Green symbols correspond to values reported by Reutter et al. (2009) for the 

transitional activation regime, while those in black correspond to values reported by 

McFiggans et al. (2006).
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Figure 11. 
(Left) Aerosol number size distributions used as aerosol‐cloud‐parcel model inputs and 

(right) local CDNC sensitivities to aerosol hygroscopicity calculated using five updraft 

velocities. NCN refers to the aerosol number concentration represented by each aerosol size 

distribution.
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Figure 12. 
(a) Simulated local CDNC sensitivity to aerosol hygroscopicity in the range κ = 0.6–0.8 and 

κ = 0.2–0.4 as a function of updraft velocity. (b) Critical diameters (markers) calculated at 

the maximum supersaturation predicted by the aerosol‐cloud‐parcel model for five different 

updraft velocities assuming κ = 0.6.
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Table 1

Median Aerosol Number (N) and Cloud Condensation Nuclei (CCN) Concentrations Measured in the Marine 

Boundary Layer (MBL), Above-Cloud Organic Aerosol Layer (AC-OAL), and Free Troposphere (FT)

Location N (cm−3) CCN: 0.1% (cm−3) CCN: 0.3% (cm−3) CCN: 0.43% (cm−3) CCN: 0.57% (cm−3)

MBL 754 (509–978) 75 (33–106) 194 (146–285) 302 (187–410) 410 (229–522)

AC-OAL 1,662 (1,303–1,959) 58 (41–84) 363 (260–537) 574 (403–876) 781 (539–1,051)

FT 333 (296–555) 21 (14–35) 115 (89–145) 144 (102–194) 162 (118–240)

Note. Values in parentheses represent the interquartile range. CCN concentrations are provided as a function of the instrument supersaturation (%).
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Table 2

Median Mass Loadings of Total Non-Refractory PM1 (NR-PM1), and Organic (Org.), Sulfate (SO4), 

Ammonium (NH4), and Nitrate (NO3) Aerosol Components in the Marine Boundary Layer (MBL), Above-

Cloud Organic Aerosol Layer (AC-OAL), and Free Troposphere (FT)

Location NR-PM1 (μg m−3) Org. (μg m−3) SO4 (μg m−3) NH4 (μg m−3) NO3 (μg m−3)

MBL 2.8 (2.3–2.5) 1.1 (0.8–1.4) 1.5 (0.9–2.0) 0.2 (0.2–0.3) 0.0 (0.0–0.1)

AC-OAL 5.5 (4.5–7.5) 4.4 (3.2–6.1) 0.7 (0.6–1.1) 0.2 (0.2–0.3) 0.1 (0.0–0.1)

FT 1.5 (1.2–2.1) 0.7 (0.5–1.0) 0.6 (0.4–0.7) 0.1 (0.1–0.2) 0.0 (0.0–0.0)

Note. Values in parentheses represent the interquartile range.
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Table 3

Median Values of the AMS-Derived (κAMS) and CCN-Derived (κCCN) Hygroscopicity Factor Measured in the 

Marine Boundary Layer (MBL), Above-Cloud Organic Aerosol Layer (AC-OAL), and Free Troposphere (FT)

Location κAMS κCCN: 0.3% κCCN: 0.43% κCCN: 0.57%

MBL 0.45 (0.35–0.52) 0.39 (0.20–0.61) 0.35 (0.24–0.50) 0.40 (0.27–0.54)

AC-OAL 0.19 (0.17–0.25) 0.13 (0.08–0.20) 0.19 (0.14–0.25) 0.17 (0.12–0.27)

FT 0.37 (0.30–0.43) 0.32 (0.18–0.65) 0.50 (0.29–0.88) 0.37 (0.21–0.72)

Note. Values in parentheses represent the interquartile range. κCCN are provided as a function of the instrument supersaturation (%).

Earth Space Sci. Author manuscript; available in PMC 2020 November 19.



N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript

Schulze et al. Page 45

Table 4

Calculated Aitken Mode Organic (forg) and Inorganic (finorg) Volume Fractions Based on Median κCCN Values 

Derived From CCN Measurements at SS = 0.43% for MBL Measurements During Each Flight

Inorg. = (NH4)2SO4 Inorg. = H2SO4

Flight κCCN − SS = 0.43% forg finorg forg finorg

RF4 0.41 0.39 0.61 0.61 0.39

RF5 0.46 0.29 0.71 0.55 0.45

RF9 0.18 0.84 0.16 0.90 0.10

RF12 0.50 0.22 0.78 0.50 0.50

RF13 0.76 ~ ~ 0.18 0.82

RF15 0.18 0.84 0.16 0.90 0.10

RF16 0.28 0.65 0.35 0.78 0.22

Note. Values of forg and finorg are calculated assuming the inorganic aerosol component is either ammonium sulfate ((NH4)2SO4) or sulfuric acid 

(H2SO4). Note that the hygroscopicity measured during RF13 cannot be reproduced assuming the inorganic component is entirely (NH4)2SO4.
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Table 5

Below-Cloud Aerosol and Meteorological Data Used as Aerosol-Cloud-Parcel Model Constraints for 

Calculation of CDNC Sensitivities Depicted in Figure 10

Parameter RF5–1 RF5–2 RF16

NCN, Aitken (cm−3) 296 301 128

Dpg, Aitken (nm) 55 57 70

σAitken 1.27 1.27 1.24

κAitken 0.36 0.42 0.21

NCN, Accum. (cm−3) 492 465 406

Dpg, Accum. (nm) 104 109 124

σAccum. 2.21 2.20 1.96

κAccum. 0.37 0.34 0.28

w (m s−1) 0.22 0.26 0.25

w/NCN (m s−1 cm−3) 2.8 × 10−4 3.4 × 10−4 4.7 × 10−4

Activation Regime Trans. Trans. Trans.

Note. “Activation Regime” refers to the classifications of cloud droplet formation environments developed by Reutter et al. (2009). “Trans.” = 
transitional.
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