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Genomic selection in plants and animals has become a standard tool for breeding

because of the advantages of high accuracy and short generation intervals.

Implementation of this technology is hindered by the high cost of genotyping and other

factors. The aim of this study was to determine an optional marker density panel and

reference population size for using genomic selection of goats, with speculation on the

number of QTLs that affect the important economic traits of goats. In addition, the effect

of buck population size in the reference population on the accuracy of genomic estimated

breeding value (GEBV) was discussed. Based on the previous genetic evaluation results

of Inner Mongolia White Cashmere Goats, live body weight (LBW, h2 = 0.11) and fiber

diameter (FD, h2 = 0.34) were chosen to perform genomic selection in this study.

Reasonable genome parameters and generation transmission processes were set, and

phenotypic and genotype data of the two traits were simulated. Then, different sizes

of the reference population and validation population were selected from progeny. The

GEBVs were obtained by six methods, including GBLUP (Genomic Best Linear Unbiased

Prediction), ssGBLUP (Single Step Genomic Best Linear Unbiased Prediction), BayesA,

BayesB, Bayesian ridge regression, and Bayesian LASSO. The correlation coefficient

between the predicted and realized phenotypes from simulation was calculated and used

as a measure of the accuracy of GEBV in each trait. The results showed that the medium

marker density Panel (45K) could be used for genomic selection in goats, which can

ensure the accuracy of the GEBV. The reference population size of 1,500 can achieve

greater genetic progress in genomic selection for fiber diameter and live body weight

in goats by comparing with the population size below this level. The accuracy of the

GEBV for live body weight and fiber diameter was better when the number of QTLs was

100 and 50, respectively. Additionally, the accuracy of GEBV was discovered to be good
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when the buck population size was up to 200. Meanwhile, the accuracy of the GEBV for

medium heritability traits (FDs) was found to be higher than the accuracy of the GEBV for

low heritability traits (LBWs). These findings will provide theoretical guidance for genomic

selection in goats by using real data.

Keywords: genomic selection, marker density panel, reference population, number of QTLs, goats

INTRODUCTION

As one of the earliest domesticated species, goats are distributed
mainly in remote areas of some countries, including China,
Mongolia, Australia, India, Iran, Pakistan, and New Zealand.
Because of advantages of cashmere yield, fiber diameter, and
body weight, Chinese cashmere goats are well-known worldwide.
Inner Mongolia cashmere goats and Liaoning cashmere goats are
widely used as paternal lines of other breeds of goats in China.
Both breeds are prohibited from being exported abroad. Breeders
in China have begun to perform selection for cashmere goats
in 1980s. At first, it was selected according to cashmere color,
then it was selected by phenotype records, and the estimated
breeding value selection was implemented in 1998. Up to now,
the selection of superior goats was based on estimated breeding
value for liveweight and fleece traits in a large number of
cashmere goat breeds (1–3). The increasing trend observed in the
Chinese goat cashmere yield from 2001 to 2018 years reflects an
increasing economic importance.

The Chinese goat population size is gradually decreasing,
from 15.2 million in 2004 to 13.8 million in 2019. However, the
cashmere yield increased first and then was kept stable from 2004
to 2019. Therefore, it is necessary to use more advanced breeding
methods to improve the production performance of goats.

The idea of genomic selection was proposed and published by
(4), enabling selection decisions to be made early in the life of
animals. This approach is beneficial for traits that are difficult to
measure and traits with low heritability. This method has been
successfully applied to other livestock species, such as dairy cattle,
beef, pigs, chickens, and sheep (5–9). Due to the limited marginal
economic value of a goat breeding system, to the substantial
number of markers required for genomic selection and to the
high cost of sequencing, genomic selection in goats is still limited.
In recent years, breeding programs based on genomic selection
have been developed in dairy goats in France and the UK (10, 11),
but the reference population size is relatively small. To date,
genomic selection of cashmere goats has not been reported yet.

Meuwissen and Goddard used whole genome sequence data
for the prediction of the genetic values of individuals for complex
traits and obtained a prediction accuracy higher than 0.80 (12).
The accuracy of genomic predictions is affected by many factors,
including marker density, the level of linkage disequilibrium
(LD) between the markers and QTLs, reference population size,
heritability of the trait, and distribution of QTLs and GEBV
methods (13–15). Muir illustrated that the increase of marker
density and phenotype information can improve accuracy of
genomic selection (16). The average variance proportion of
each QTL decreases with the increase in number of QTLs.

When the number of QTLs is greater, it is more difficult to
accurately estimate the effect of markers around each QTL,
which can lead to an increase in estimation error rate. Ma
et al. showed that QTL markers improved the reliability of
genomic prediction. Additionally, this study illustrated that the
reference population including bulls that have more progeny can
increase GEBV predicted accuracy (17). Lillehammer et al. used
simulated data to perform genomic selection of maternal traits
in pigs, which illustrated that the genetic progress obtained by
the population size of 1,000 was found to be 75% of the genetic
progress of 5,000 (18). Anna Wolc et al. used simulated data to
perform genomic selection of laying chickens, and found that
the generation interval was shortened by half (19). Villumsen
et al. used simulated data to perform genomic selection, which
demonstrated that accuracy evaluation of genomic breeding
value improved nearly 17% when the heritability increases from
0.02 to 0.30 (20). Clark et al. compared the accuracy of GEBV
by using BLUP, GBLUP, and BayesB methods, which illustrated
that the prediction will be more accurate by using BayesB if
some important QTLs existed, no significant difference between
GBLUP and BayesB was observed when the QTL effect was
small (21).

Although the genomic selection has been well-applied to other
breeding animals, including cattle, pigs, and chicken, it has been
proved to obtain better selection accuracy. But the genomic
selection of Chinese goats has not been reported yet. The aim
of this study was to evaluate the potential effect of the density
of marker panels, reference population sizes, number of QTLs,
prediction methods, and buck population size in a reference
population on the accuracy of GEBV for the important economic
traits of goats.

MATERIALS AND METHODS

Records of 7,102 animals collected from 1988 to 2000 at the
Inner Mongolia White Cashmere goat breeding farm were used
by Zhou (1) to estimate genetic parameters of Cashmere fiber
diameter and live body weight. The results showed that their
heritability ranged from medium (0.34 for fiber diameter) to
low (0.11 for body weight). Based on these findings, both traits
were used as example traits in a successive simulation analysis.
Combining the genomic sequence information in goats published
in NCBI (https://www.ncbi.nlm.nih.gov/genome/?term=goats),
QMSim software was used to produce phenotype and genotype
data by simulation. Then, GEBV for both traits was obtained
with BGLR and HIBLUP packages in R (22). Then the related
factors affected accuracy of GEBV was evaluated by correlation
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coefficient between the predicted and realized phenotypes
from simulation.

Data Simulation
Using QMSim software (23), the populations were simulated
based on a forward in-time process (24). In the first simulation
step, 5,000 generations with a constant size of 1,000 (500 males
and 500 females) were simulated, followed by 500 generations
with a gradual increase in population size from 1,000 to 3,000
(400 males and 2,600 females) to create initial LD and establish
mutation-drift equilibrium in historical generations. In the
second step, an expansion of the population was created by
initially randomly selecting 40 founder males and 400 founder
females from the last generation of the historical population. To
enlarge the population, 10 generations were simulated with 5
offspring per dam. The mating system was based on the random
union of gametes with no selection. Subsequently, 40 males and
400 females from the last generation of the expanded population
were randomly mated to generate another 10 generations with
15, 30, 45, and 60K SNP markers, respectively. The parameters
used in recent generations mimicked a real production system
with one or two progeny per dam per year, 50% of male progeny,
selection for high values of EBV in live body weight (LBW, h2 =
0.11) and low values of EBV in fiber diameter (FD, h2 = 0.34),
then culling for individuals with a replacement rate of 80% for
sires and 30% for dams. Sires and dams were randomly mated.

The simulated genome consisted of 29 pairs of autosomes
with lengths identical to the real Capra hircus genome based
on de novo assembly (https://www.ncbi.nlm.nih.gov/genome/?
term=goats) (25) totaling 2,922 cM. In most reported simulation
studies, only one chromosome was simulated because of the
limitation of computing time and memory requirements. The
advantage of simulating a real number of autosomes with lengths
identical to the goat genome is to create a more realistic scenario.
The SNP markers were randomly distributed, and the initial
number of markers was chosen, such as 15, 30, 45, or 60K. A
total of 50, 100, and 150 QTLs were randomly distributed among
the markers. The effects of QTLs were sampled from a gamma
distribution with shape parameters of 0.40. The mutation rate
of the markers and QTLs was assumed to be 9.4 × 10−6 per
locus per generation. The crossover interference was set to 5.0
by referring to studies on other ruminants (26). The parameters
used for simulating population structure and genomes are given
in Table 1.

Reference and Validation Sets
Some reports have shown that reference population size has
a significant effect on the accuracy of GEBV (18, 27). Five
reference population sizes (500, 1,000, 1,500, 2,000, 3,000) and
one validation population size 1,000 were selected to perform
genomic selection in this study. The individuals in the reference
population were obtained by random sampling from the 2nd
to 7th generations. The individuals in the validation population
were obtained by random sampling from the 8–10th generations
(Figure 1). The individuals in the reference population and the
validation population were selected by the random sampling
method, and each population size was repeated 3 times. Reference

TABLE 1 | Parameters of the simulation process.

Population structure Populations

Step1: Historical generations (HGs)

Number of generations (size)-phase 1 5,000 (1,000)

Number of generations (size)-phase 2 500 (3,000)

Step 2: Expanded generations (EGs)

Number of founder males from HG 400

Number of founder females from HG 2,600

Number of generations 10

Number of offspring per dam 5

Step3: Recent generations

Number of founder males from EG 40

Number of founder females from EG 400

Number of generations 10

Number of offspring per dam 1, 2

Ratio of male 50%

Mating system Random

Replacement ratio of males 80%

Replacement ratio of females 30%

Selection EBV

Culling Age

BV estimation method BLUP animal model

Heritability of the traits 0.11, 0.34

Phenotypic variance 1.0

Genome

Number of chromosomes 29

Total of genome length 2922 cM

Number of markers 15,000/30,000/45,000/60,000

Marker distribution Random

Number of marker alleles 2

Number of QTLs 50/100/150

QTL distribution Random

Number of QTL alleles 2

QTL allele effect Gamma distribution (shape = 0.40)

Rate of recurrent mutation 9.4*10–6

Crossover interference 5.0

EBV, estimated breeding value; BLUP, best linear unbiased prediction; QTL, quantitative

trait loci; the whole simulation was repeated 10 times.

datasets with phenotypes and genotypes were used to predict
marker effects. The accuracy of genomic selection was evaluated
based on the selected reference group and validation group. After
qualifying the reference population size, different groups were set
according to different male content in the reference population,
and then the effects of different male content on the accuracy of
genomic selection were studied.

Methods of Estimating Genomic Breeding
Value
Many methods have been applied to estimate genomic breeding
value. However, the accuracy of GEBV among the different traits
varies among the methods. Using the genotype and phenotype
data produced from simulation, GEBV was obtained with
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FIGURE 1 | Genomic selection scheme.

GBLUP (Genomic Best Linear Unbiased Prediction), ssGBLUP
(Single Step Genomic Best Linear Unbiased Prediction), and
Bayesian series methods such as BayesA, BayesB, Bayesian ridge
regression (BRR), and Bayesian LASSO (BL). All models were
fitted using the BGLR (22) and HIBLUP (https://www.hiblup.
com/) R packages.

GBLUP is a method that utilizes genomic relationships to
estimate the genetic merit of an individual (28, 29). The genomic
relationship matrix defines the covariance between individuals
based on observed similarity at the genomic level, rather than
on expected similarity based on pedigree, so that more accurate
predictions of merit can be obtained. The GBLUPmethod assigns
the same variance to all loci and essentially treats them all
as equally important. However, a series of Bayesian methods
give more emphasis to some genomic regions by allowing the
variance to differ between SNP loci. The BayesAmethod assumes
that the effects of all SNPs on phenotype obey the normal
distribution gi ∼ N(0,α2

gi
), and the variance σ 2

gi
is subject to the

inverse chi-square distribution σ 2
gi
∼ χ−2(v, S), v is the degree of

freedom, and S is the scale parameter (30). Most of the markers

have very small effects on phenotype, while only a few have large
effects. The distribution of genetic variances across loci is that
some have no genetic variance, and a few have genetic variance.
However, the prior density of BayesA does not have a density
peak at σ 2

gi
= 0. In fact, its probability of σ 2

gi
= 0 is infinitesimal.

The BayesB method uses a prior that has a high density,π , at
σ 2
gi
= 0 and has an inverted chi-square distribution for σ 2

gi
> 0. In

the Bayesian Lasso (31), the prior assigned to marker effects is a
Laplace (double exponential, DE) distribution. All marker effects
are assumed to be independently and identically distributed as a
DE. These priors assign the same variance or prior uncertainty to
all marker effects, but they possess thicker tails than the normal
or Gaussian prior. No fixed effects were considered in this study,
and only additive genetic effects and standard deviation effects
were included in the model. Therefore, the statistical methods of
Bayes-Alphabet involved in this study can be written as:

y =

n∑

i=1

Ziai + e
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TABLE 2 | Variance analysis of different factors on the accuracy of GEBV for fiber diameter and live body weight.

Source DF SS MS F P-value

Fiber diameter Marker density panel 3 0.0111 0.0037 3.72 <0.05

Number of QTLs 2 0.0418 0.0209 21.05 <0.01

Reference population size 4 0.1693 0.0423 42.62 <0.01

Methods 5 0.2295 0.0459 46.21 <0.01

Error 201 0.1996 0.0010

Corrected Total 215 0.6512

Live body weight Marker density panel 3 0.1867 0.0621 36.42 <0.01

Number of QTLs 2 0.0518 0.0259 15.20 <0.01

Reference population size 4 0.5037 0.1259 73.92 <0.01

Methods 5 0.6424 0.1285 75.41 <0.01

Error 201 0.3424 0.0017

Corrected Total 215 1.5424

DF, degree of freedom; SS, St dev square; MF, mean square.

y is the phenotypic value vector of animals, Zi is the designmatrix
of genotype at the ith site, ai is the effect value of the i

th marker,
n is the number of markers.

∑n
i=1 Ziai is the breeding value of

animals, and e is the vector of residual effects. The hypothetical
distribution of all markers’ effects in different Bayes methods and
the formula of effect distribution are various.

The method of GBLUP involved in the current study was
as follow:

y = 1nµ + Za+ e

y is the phenotype vector of animals, 1n is a vector of ones,
µ is overall mean, Z is a design matrix corresponding to the
additive effect value, and a is the vector of the breeding value
for an individual. The covariance matrix of additive effects
is represented by Var (a) = Gσ 2

a , where G is the matrix
of relationships between individuals obtained from genomic
information, σ 2

a is the variance of additive genetic. e is a vector
of random normal deviates.

The single-step genomic BLUP (ssGBLUP) was provided by
Legarra et al. (32). The core idea of the ssGBLUP method is
to combine a pedigree relationship matrix (A) and a genomic
relationship matrix (G) to reconstruct a new relationship matrix
(H) (33–36). Excepting the relationship matrix, the theory and
method of ssGBLUP had no difference from the GBLUPmethod.

Accuracy of Genomic Estimated Breeding
Value
Each marker effect was estimated by using phenotype and
genotype information in the reference population with the
above model. Then, the GEBV for the validation population
was obtained by summing the effects of all the markers carried
by individuals. The phenotype for the validation populations
was computed by adding GEBV and residual error effects.
The correlation coefficient between the predicted and realized
phenotypes from simulation was calculated and used as a

measure of the accuracy of GEBV.

r =
Cov(P̂, P)

σP̂σP

Cov(P̂, P) is the covariance of the predicted and realized
phenotypes in the validation population, σP̂ is the standard
deviation of the predicted phenotype, and σP is the standard
deviation of the realized phenotype.

Finally, a generalized linear model was used to evaluate the
effect of marker density panel (15, 30, 45, and 60K), reference
population size (500, 1,000, 1,500, 2,000, 3,000), number of
QTLs (50, 100, 150), and the number of males in the reference
population (100M + 1,400 F, 200M + 1,300 F, 400M + 1,100 F,
800M + 700 F, 120M + 1,400 F, 1,500M) on the accuracy of
GEBV. Duncan’s test was used to compare differences between
various levels in each factor. The general linear model (GLM) was
established to perform a significance test with SAS software (37).
Duncan’s test was used to compare differences between various
levels in each factor.

RESULTS

In this study, the effect of marker density panel, reference
population size, number of QTLs, and buck population size in
the reference population on accuracy of GEBV were discussed,
which can guide the scientific and effective realization of genomic
selection in cashmere and meat goats. Based on the previous
genetic evaluation results, two important economic traits, fiber
diameter (FD) and live body weight (LBW), were selected for
analysis. Fiber diameter is a medium heritability trait, and live
body weight is a low heritability trait.

Variance Analysis of Factors on Accuracy
of GEBV
The results of variance analysis of marker density panel, reference
population size, number of QTLs, and methods is presented in
Table 2. For fiber diameter, marker density panel had significant
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effect on accuracy of GEBV (P < 0.05), other factors in this study
had highly significant effect on accuracy of GEBV (P < 0.01). For
live body weight, all the factors in this study had highly significant
effect on accuracy of GEBV (P < 0.01).

Effect of Marker Density Panel on
Accuracy of GEBV
Controlling other factors at the same level, the accuracy of GEBV
in four marker density panels (15, 30, 45, and 60K) with the
GBLUP, ssGBLUP, and Bayes methods is shown in Table 3. The
results obtained by GLM using the least square means method
demonstrated that the marker density panel had a significant
effect on the accuracy of GEBV for both traits. For FD, the
accuracy of GEBV at 45K is significantly higher than the accuracy
of GEBV at 15 and 30K. The results obtained at 45 and 60K
were not significantly different for FD. However, the accuracy of
genomic selection for low heritability traits at 45K was obviously
higher than the accuracy of genomic selection at 15, 30, and 60K.
In general, an increasing trend was observed for the accuracy of
GEBV with the marker density panel from 15 to 45K in both
traits (Figure 2). However, it is interesting that the accuracy of
GEBV at 60K for LBW is significantly lower than the accuracy
of GEBV at 45K (Figure 2B). Under the best marker density
panel, the correlation coefficients between the predicted and
realized phenotypes for the validation population with medium
and low heritability traits reached 66.7 and 52.7% under the
BayesB method, respectively. The accuracy of GEBV for medium
heritability traits was discovered to be higher than the accuracy
of GEBV for low heritability traits.

Effect of Reference Population Size on
Accuracy of GEBV
Similarly, the effects of reference population size on the accuracy
of GEBV were analyzed by controlling other factors at the same
level. The results are shown in Tables 4, 5. Reference population
size had a significant effect on the prediction accuracy of FD and
LBW. The accuracy of GEBV with reference population sizes of
1,500, 2,000, and 3,000 was significantly higher than the accuracy
of GEBV with the reference populations of 500 and 1,000 for
both traits. No significant difference in prediction accuracy was
discovered among the 1,500, 2,000, and 3,000 training sets.
Increasing trends of GEBV accuracy were observed in FD and
LBW (Figure 3). The average genomic accuracy ranged from
55.27 to 67.4% for the medium heritability trait (Table 4) and
from 40.39 to 59.09% for the low heritability trait with the
ssGBLUP method (Table 5). Meanwhile, the accuracy value with
the ssGBLUP methods was found to be higher than the accuracy
value with the GBLUP methods.

Effect of Number of QTLs on Accuracy of
GEBV
In this study, three levels of QTLs (50, 100, and 150) were
considered for analysis. For FD, the accuracy of GEBV in QTLs
of 100 was significantly lower than the accuracy of GEBV in the
other two levels, and the value was best when the number of QTLs
was 50 (Table 6). Similarly, except for the ssGBLUP method, the
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FIGURE 2 | The change trends of accuracy of GEBV with increasing marker density panel with GBLUP and Bayes method.

TABLE 4 | Accuracy of GEBV in five reference population sizes with heritability of fiber diameter under different models.

Methods Reference population size (h2
= 0.34)

500 1,000 1,500 2,000 3,000

BA 0.5061 ± 0.0351c 0.5427 ± 0.0545bc 0.5703 ± 0.0328bc 0.6205 ± 0.034ab 0.6734 ± 0.0185a

BB 0.5292 ± 0.0307b 0.5514 ± 0.0574b 0.6493 ± 0.0175a 0.6527 ± 0.0247a 0.6876 ± 0.0108a

BL 0.5190 ± 0.0378b 0.5455 ± 0.064ab 0.5767 ± 0.0266ab 0.5885 ± 0.0197ab 0.6312 ± 0.0135a

BRR 0.5272 ± 0.0426b 0.5502 ± 0.0594b 0.5757 ± 0.0272ab 0.5829 ± 0.0208ab 0.6262 ± 0.0108a

GBLUP 0.5080 ± 0.0328b 0.5483 ± 0.0330ab 0.5718 ± 0.0221ab 0.5641 ± 0.0190ab 0.6044 ± 0.0113a

ssGBLUP 0.5527 ± 0.0655b 0.6575 ± 0.0488a 0.6623 ± 0.0309a 0.6459 ± 0.0250a 0.6740 ± 0.0108a

BA, BayesA; BB, BayesB; BL, Bayesian Lasso; BRR, Bayesian Ridge Regression; GBLUP, Genomic Best Linear Unbiased Prediction; ssGBLUP, Single Step Genomic Best Linear

Unbiased Prediction. a,b represent significant differences. The difference is significant with different letters.

trend of accuracy of GEBV with the number of QTLs showed
that it decreased first and then increased (Figure 4A). For LBW,
the accuracy of GEBV in QTLs of 100 was significantly higher
than the accuracy of GEBV in the other two levels, and the value
was up to 59.09% with the ssGBLUP method (Table 6). A first
increasing and then decreasing trend was observed for the effect
of the number of QTLs on the accuracy of GEBV (Figure 4B).
The accuracy of GEBV with the number of QTLs in the GBLUP
method was relatively lower than the accuracy of GEBV with
the number of QTLs in the Bayesian methods. The accuracy of
GEBV for medium- and low-heritability traits was better when
the number of QTLs was 50 and 100, respectively.

Effect of the Number of Males in the
Reference Population on the Accuracy of
GEBV
The variance analysis of the number of males in the reference
population is presented in Tables 7, 8. For fiber diameter and live
body weight, the number of males in the reference population
had highly significant effect on accuracy of GEBV in goats (P
< 0.01). The multiple comparative analysis demonstrated that
the higher the number of males size in the reference population,
the more effective information can be provided, and the higher
the accuracy of GEBV. Results from the effect of the reference
population size have shown that 1,500 individuals were optimal

to obtain significant genetic progress in both FD and LBW traits.
Therefore, six groups were classified based on the ratio male (M)
to female (F) in reference population (100M + 1,400 F, 200M
+ 1,300 F, 400M + 1,100 F, 800M + 700 F, 1,200M + 300 F,
1,500M). The effect of buck population size in the reference
population on prediction accuracy was analyzed. The results
indicated that the accuracy of GEBV was the highest when the
buck population size was up to 400 (400M + 1,100 F), which
was significantly higher than the buck population size in other
groups for FD (Table 9). The results indicated that the accuracy
of GEBV was the highest when the buck population size was up
to 100 (100M+ 1,400 F), which was significantly higher than the
buck population size in other groups for LBW (Table 10). The
accuracy values of GEBV in FD and LBW are 70.91 and 58.21%,
respectively. In general, for FD and LBW, the trend of accuracy of
GEBV with buck population size first increases and then remains
stable (Figure 5). The trend for LBW was found to be basically
consistent in each method. However, the trend for FD is irregular
by BayesB method.

DISCUSSION

Previous studies illustrated that the genetic evaluation for fiber
diameter in Inner Mongolia White Cashmere goats by using
phenotype records of 1- and 2-year-olds could ensure the
accuracy of EBV (38, 39). Considering the prohibitive cost
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TABLE 5 | Accuracy of GEBV in five reference population sizes with heritability of live body weight under different models.

Methods Reference population size (h2
= 0.11)

500 1,000 1,500 2,000 3,000

BA 0.3171 ± 0.0870c 0.4082 ± 0.0321b 0.4543 ± 0.0344ab 0.4929 ± 0.0212ab 0.5269 ± 0.0340a

BB 0.3190 ± 0.0915b 0.4545 ± 0.0213ab 0.4757 ± 0.0342ab 0.4875 ± 0.0274a 0.5270 ± 0.0249a

BL 0.3103 ± 0.1020b 0.4003 ± 0.0330ab 0.3990 ± 0.0459ab 0.4427 ± 0.0153ab 0.4919 ± 0.0307a

BRR 0.3078 ± 0.1020b 0.3976 ± 0.0312ab 0.3902 ± 0.0399ab 0.4340 ± 0.0170ab 0.4696 ± 0.0304a

GBLUP 0.2983 ± 0.0862b 0.3780 ± 0.0273ab 0.4048 ± 0.0773ab 0.4204 ± 0.0246ab 0.4658 ± 0.0206a

ssGBLUP 0.4039 ± 0.0763c 0.4875 ± 0.0389bc 0.5308 ± 0.0658ab 0.5597 ± 0.0216ab 0.5909 ± 0.0071a

BA, BayesA; BB, BayesB; BL, Bayesian Lasso; BRR, Bayesian Ridge Regression; GBLUP, Genomic Best Linear Unbiased Prediction; ssGBLUP, Single Step Genomic Best Linear

Unbiased Prediction. a,b represent significant differences. The difference is significant with different letters.

FIGURE 3 | The change trends of accuracy of GEBV with increasing reference population size with GBLUP and Bayes methods.

and long duration of performance testing, genomic selection is
gradually applied to animal breeding. The greatest advantage
of genomic selection is that early selection can be achieved
by collecting DNA samples at an early stage and genotyping
individuals. The accuracy of genomic selection was influenced by
many factors, such as SNP chip marker density, QTL numbers,
genomic selection model, and so on. Therefore, it is necessary
to discuss the factors affecting the accuracy of genomic selection
in goats.

When more markers were distributed on the chromosome
with a certain length, more favorable information could be
provided. Detection of markers that are in linkage disequilibrium
with QTLs is easier. Generally, a higher accuracy of genomic
selection would be obtained with greater marker density.
However, when marker density reaches a certain number, the
accuracy of genomic selection will not increase significantly to
some extent, or the growth rate will slow down. Increasing
marker density from 24 to 728K SNPs resulted in a small increase
in the accuracy of GEBV in three cow breeds with the GBLUP
method, and the values of 24 and 728K were 0.22 and 0.24,
respectively (40). The cost of genotyping is closely related to
the marker density panel. However, some studies have shown
that the accuracy of GEBV by using genotype information with
high-density chips is higher than the accuracy of GEBV by
using genotype information with low-density chips (41, 42). The
excessive cost of genotyping limited the realization of genomic

selection in low-income species, such as goats. In production
practice, the goal of breeders is to achieve equivalent effects using
low-density SNP chips, as well as high-density chips, which can
reduce sequence cost and improve the accuracy of selection.
The results obtained from our study were similar to the results
from previous reports. The prediction accuracy increased with
increasing marker density chips. For both traits, the medium
marker density chip was most effective in genomic selection
of goats. Solberg et al. reported that the accuracy of genome
estimation breeding value increased significantly with increasing
marker density by simulation (43). The linkage disequilibrium
between adjacent SNP markers was positively correlated with
the accuracy of genomic breeding value. The degree of linkage
disequilibrium depends on the marker density (44).

Many studies have reported that the influence of reference
population size has an effect on genomic selection accuracy.
Generally, a higher GEBV prediction accuracy was obtained with
a larger reference population size. When the population size
is small, the genomic relationship matrix cannot hold enough
genomic information (independent chromosome segments).
Therefore, the accuracy can be lower with the smaller size.
Therefore, the number of individuals in the reference group
should be increased as much as possible when genomic selection
is performed. However, the optimal reference population size
must be considered because of high sequencing costs. Zengting
Liu et al. estimated the genomic breeding value of milk yield
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TABLE 6 | Accuracy of GEBV in three QTLs with heritability of fiber diameter and live body weight under different methods.

Methods Number of QTLs (h2
= 0.34) Number of QTLs (h2

= 0.11)

50 100 150 50 100 150

BA 0.6117 ± 0.0216a 0.5583 ± 0.0045b 0.5703 ± 0.0328ab 0.4636 ± 0.0251a 0.5269 ± 0.0340a 0.4360 ± 0.0062a

BB 0.6173 ± 0.0137ab 0.5568 ± 0.0262b 0.6493 ± 0.0175a 0.4619 ± 0.0250ab 0.5270 ± 0.0249a 0.4217 ± 0.0263b

BL 0.6032 ± 0.0156a 0.5290 ± 0.0191b 0.5767 ± 0.0266ab 0.4341 ± 0.0190a 0.4919 ± 0.0307a 0.4257 ± 0.0200a

BRR 0.6015 ± 0.0136a 0.5231 ± 0.0192b 0.5757 ± 0.0272ab 0.4259 ± 0.0215a 0.4696 ± 0.0304a 0.4241 ± 0.0148a

GBLUP 0.5850 ± 0.0121a 0.5190 ± 0.0165a 0.5718 ± 0.0221a 0.3932 ± 0.0462a 0.4658 ± 0.0206a 0.4264 ± 0.0041a

ssGBLUP 0.6623 ± 0.0309a 0.5877 ± 0.0344a 0.6799 ± 0.0240a 0.5954 ± 0.0193a 0.5909 ± 0.0071a 0.6489 ± 0.0154a

BA, BayesA; BB, BayesB; BL, Bayesian Lasso; BRR, Bayesian Ridge Regression; GBLUP, Genomic Best Linear Unbiased Prediction; ssGBLUP, single step Best Linear

Unbiased Prediction. a,b represent significant differences. The difference is significant with different letters.

FIGURE 4 | The change trends of accuracy of GEBV with increasing number of QTLs with GBLUP and Bayes methods.

TABLE 7 | Variance analysis of the ratio of male to female on the accuracy of

GEBV for fiber diameter.

Source DF SS MS F P-value

The ratio of male to female 5 0.0196 0.0039 3.67 <0.01

Methods 5 0.3438 0.0688 64.32 <0.01

Error 97 0.1037 0.0011

Corrected Total 107 0.4671

DF, degree of freedom; SS, St dev square; MF, mean square.

in dairy cattle, which indicated that the additive effect variance
increased five times when the size of the reference population
increased from 734 to 5,025 (45). In our study, when the
reference population increased from 500 to 3,000, the accuracy
of GEBV in the medium and low heritability traits increased
by 15 and 20%, respectively. (46) evaluated the effect of
reference population size on genomic selection in dairy goats.
The population size was demonstrated to have an important
effect on GEBV accuracies, from 2 to 31% with the reference
population from 1,966 to 2,651 (46). However, Moser et al.
reported the genomic selection of milk protein in Holstein cattle,
which explained that the GEBV accuracy showed no obvious
change for the reference population from 1,239 to 1,822 (47). All

TABLE 8 | Variance analysis of the ratio of male to female on the accuracy of

GEBV for live body weight.

Source DF SS MS F P-value

The ratio of male to female 5 0.0399 0.0080 5.50 <0.01

Methods 5 0.3263 0.0653 44.91 <0.01

Error 97 0.1409 0.0015

Corrected Total 107 0.5071

DF, degree of freedom; SS, St dev square; MF, mean square.

these results indicated that the accuracy of genomic selection can
be effectively ensured when the reference population reaches a
certain level.

Generally, the genetic variance was assumed to be one
regardless of the number of QTLs. When the number of QTLs
is large, the variance proportion of each QTL decreases. That is,
the contribution of each QTL to phenotypic value decreases, and
the probability of the effect (or variance) of each QTL correctly
estimated will be relatively low, which will lead to an increase
in deviation and a decrease in the accuracy of GEBV. When
the number of QTLs is small, it will be hard to estimate the
additive genetic variance or heritability, assuming no polygenic
effects, especially for a small data size. The results from our
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TABLE 9 | Accuracy of GEBV in six levels ratio of male to female with heritability of fiber diameter under different models.

Methods The ratio of male to female (h2
= 0.34)

A 100M + 1,400 F B 200M + 1,300 F C 400M + 1,100 F D 800M + 70 0F E 1,200M + 300 F F 1,500 M

BA 0.6239 ± 0.0147b 0.6740 ± 0.0117a 0.6676 ± 0.0139ab 0.6477 ± 0.0171ab 0.6518 ± 0.0240ab 0.6591 ± 0.0026ab

BB 0.6416 ± 0.0205b 0.6867 ± 0.0161a 0.5550 ± 0.0089c 0.6569 ± 0.0184ab 0.6647 ± 0.0265ab 0.6761 ± 0.0029a

BL 0.5312 ± 0.0352b 0.5939 ± 0.0132a 0.5472 ± 0.0115b 0.5620 ± 0.0359ab 0.5580 ± 0.0280ab 0.5669 ± 0.0049ab

BRR 0.5216 ± 0.0330b 0.5862 ± 0.0140ab 0.6535 ± 0.0155a 0.5523 ± 0.0368b 0.5449 ± 0.0273b 0.5611 ± 0.0030b

GBLUP 0.5096 ± 0.0366b 0.5635 ± 0.0110a 0.5330 ± 0.0115ab 0.5422 ± 0.0432ab 0.5377 ± 0.0386ab 0.5552 ± 0.0129ab

ssGBLUP 0.6930 ± 0.0423ab 0.6932 ± 0.0129ab 0.7091 ± 0.0136a 0.7063 ± 0.0136ab 0.6868 ± 0.0172ab 0.6671 ± 0.0228b

BA, BayesA; BB, BayesB; BL, Bayesian Lasso; BRR, Bayesian Ridge Regression; GBLUP, Genomic Best Linear Unbiased Prediction; ssGBLUP, Single Step Genomic Best Linear

Unbiased Prediction; M, male; F, female. a,b represent significant differences. The difference is significant with different letters.

TABLE 10 | Accuracy of GEBV in six levels ratio of male to female with heritability of live body weight under different models.

Methods The ratio of male to female (h2
= 0.11)

A 100M + 1,400 F B 200M + 1,300 F C 400M + 1,100,F D 800M + 700 F E 1,200M + 300 F F 1,500 M

BA 0.3866 ± 0.0185b 0.4628 ± 0.0524ab 0.4503 ± 0.0506ab 0.4698 ± 0.0243a 0.4460 ± 0.0590ab 0.4565 ± 0.0406ab

BB 0.4325 ± 0.0131a 0.4796 ± 0.0262a 0.4829 ± 0.0393a 0.4757 ± 0.0152a 0.4665 ± 0.0422a 0.4394 ± 0.0313a

BL 0.3732 ± 0.0137a 0.4042 ± 0.0287a 0.4248 ± 0.0372a 0.4171 ± 0.0366a 0.3803 ± 0.0610a 0.3705 ± 0.0271a

BRR 0.3687 ± 0.0144ab 0.3997 ± 0.0306a 0.4211 ± 0.0414a 0.4084 ± 0.0382a 0.3676 ± 0.0518ab 0.3363 ± 0.0138b

GBLUP 0.3619 ± 0.0249a 0.4090 ± 0.0383a 0.4033 ± 0.0423a 0.3906 ± 0.0363a 0.3605 ± 0.0598a 0.3455 ± 0.0436a

ssGBLUP 0.5821 ± 0.0384a 0.5622 ± 0.0263ab 0.5393 ± 0.0334ab 0.5340 ± 0.0338ab 0.4988 ± 0.0722b 0.4884 ± 0.0369b

BA, BayesA; BB, BayesB; BL, Bayesian Lasso; BRR, Bayesian Ridge Regression; GBLUP, Genomic Best Linear Unbiased Prediction; ssGBLUP, Single Step Genomic Best Linear

Unbiased Prediction; M, male; F, female. a,b represent significant differences. The difference is significant with different letters.

FIGURE 5 | The change trends of accuracy of GEBV with increasing ratio of males to females with GBLUP and Bayes methods.

study were consistent with this point of view. Zhang et al.
reported that the accuracy of GEBV decreased with the increase
in the number of QTLs from 50 to 1,000. The BayesB methods
seemed to be more sensitive to the number of QTLs than the
GBLUP method (48), which is similar to our study. Daetwyler
et al. compared the genomic selection accuracy between the
GBLUP and BayesB methods, which demonstrated that the
prediction accuracy with the BayesB method was greatest at
low NQTLs and decreased with increasing NQTLs. However,
as NQTL increased, the difference between the two methods

decreased, and eventually, both approaches achieved very similar
accuracy (49).

Sex chromosomes play a significant role in key evolutionary
processes such as speciation and adaptation (50). The male to
female ratio could affect accuracy of GEBV because it changes
the effective population size as well as LD. Previous studies have
shown that the accuracy of genomic selection can be improved
by increasing male size in reference populations. Avendano (51)
reported that the accuracy of GEBV decreased with an increase
in the ratio of males to females in chickens, and the values
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increased from 0.33 to 0.5 (51). Céline (46) showed that the
GEBV accuracies with increasing male size in the reference
population were not improved (46). Our results demonstrated
that the accuracy of GEBV showed no significant change when
the buck population size was up to 200. The obvious results
in different studies were explained by breeds, methods, and
other factors.

Genomic selection is an effective way to accelerate the genetic
improvement of traits with low heritability and unmeasurable
traits. In our study, two traits with medium and low heritability
were used for analysis. The results showed that the GEBV
accuracy for medium heritability traits was higher than the
GEBV accuracy for low heritability traits, which is consistent
with previous reports. Villumsen et al. evaluated the effects of
heritability on genomic estimated breeding value. The accuracy
of the genomic estimated breeding value was found to increase
from 0.69 to 0.86 when heritability increased from 0.02 to 0.30
(20). Zhang et al. reported the accuracies of GEBV by different
methods and various heritability traits (48). By decreasing the
heritability from 0.90 to 0.05, the prediction accuracies with
all methods decreased significantly. The accuracy of GEBV for
heritability of 0.1 and 0.3 was slightly higher than the accuracy of
GEBV in our study, with heritability traits of 0.11 and 0.34.

Many methods, including GBLUP, ssGBLUP, and Bayes
methods, have been used to perform genomic selection in
plants and animals. To some extent, the methods affected the
accuracy of the prediction accuracy. Gao et al. compared the
efficiency of four Bayesian models and the GBLUP model on
the GEBV accuracy, which indicated that the superiority of the
Bayesian models over the GBLUP model was more profound
(52). Sun et al. compared the accuracy of GEBV obtained by
BayesB, RRBLUP, and GBLUP using simulated datasets. The
prediction accuracy with BayesB was found to be higher than
the prediction accuracy with RRBLUP and GBLUP. There were
no significant differences among the methods (53). Clark et al.
(21) compared the impact of ABLUP, GBLUP, and BayesB on
the accuracy of genetic evaluation. For the ABLUP method, the
numeric relationship matrix (NRM) was calculated by pedigree.
The results showed that the BayesB method would be more
accurate if important QTLs had an effect on the traits. However,
Clark et al. reported that Bayes and GBLUP methods had
similar prediction accuracy when each QTL had a small effect
(21).The ssGBLUP method used both genotype information and
pedigree information to construct the relationship matrix when
GEBV was obtained, which is an ideal alternative for genomic
genetic evaluation compared with other methods. Lourenco et
al. reported that predictive ability of genomic EBV for growth
traits and calving ease when using single-step genomic BLUP
(ssGBLUP) in Angus cattle was higher than that in using
BLUP (54). Teissier et al. illustrated that the accuracy of GEBV
for milk production traits, udder type traits, and somatic cell
scores in French dairy goats was higher than that using other
methods. Similarly, the accuracy of GEBV in ssGBLUP for FD
and LBW was higher than that with other methods in our

study (55). In addition, the computation efficiency for ssGBLUP
was also relatively good by comparing with the Bayes methods.
Therefore, the ssGBLUP method was suggested to perform
genomic selection in goats.

CONCLUSIONS

All the results in this study determined the optional level of
factors influencing the accuracy of genomic estimated breeding
value of FD and LBW in goats. The medium marker density
panels were designed for genotyping, which can effectively ensure
the accuracy of genomic selection of goats. When the reference
population size was up to 1,500, genomic selection of cashmere
and meat goats was performed. The accuracy of GEBV for FD
and LBW was better when the number of QTLs was 50 and 100,
respectively, indicating that both traits were controlled by minor
genes. Meanwhile, the accuracy of GEBV was discovered to be
good when the buck population size in the reference population
was up to 200. All these factors will make a reasonable judgement
on the factors affecting genomic selection and lay a foundation
for the subsequent realization of genomic selection in cashmere
and meat goat breeding.
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