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Abstract: Our previous research demonstrated that calponin-immunoreactivity was localized in myofibroblasts of the 
periglomerular region of human kidney specimens obtained at the time of transplantation from organ recipients. In the 
present study we examined calponin expression in two chronic nephropathy models, puromycin aminonucleoside (PAN) 
nephropathy and subtotal nephrectomy (SNx), to investigate the role of calponin in chronic renal injury.  Male Sprague-
Dawley rats were used, and both nephropathy models were established at 1, 2, 4, and 8 weeks after surgery. There were no 
periglomerular calponin-positive cells in sham, PAN 1 and 2 week, and SNx 1, 2, and 4 week groups. In SNx 8 week and PAN 
4 and 8 week groups, only a few glomeruli with periglomerular calponin-reactivity, which covered half or a very small part 
of the periglomerular space, were observed. All glomeruli with periglomerular calponin-reactivity showed sclerotic changes, 
especially thickening of parietal epithelial cells (PECs).  In conjunction with our previous report, this data represents the fi rst 
documentation of the expression of calponin in renal myofi broblasts. We suggest that interactions between PECs and calponin-
positive myofi broblasts may play a key role in the late stage of glomerulosclerosis.
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cells, myofibroblasts have a major role in mediating 
tubulointerstitial fibrosis as they are the source of several 
components of extracellular materials and many cytokines 
that contribute to renal damage (Stahl & Felsen, 2001).

Myofibroblasts are usually immunostained using several 
specifi c markers, such as alpha-smooth muscle actin (ASMA), 
vimentin, and calponin in several tissues (Frangogiannis et 
al., 2000; Chen et al., 2009; Ferguson et al., 2009) However, to 
the authors' knowledge there has been no report of calponin 
expression in renal myofi broblasts, while calponin expression 
in the renal vessels, mesangial cells, and renal tumor cells has 
been reported (Islam et al., 2004a & b).

We recently reported for the first time that calponin-
immunoreactivity was localized in the myofi broblasts of the 
periglomerular region of human kidney specimens obtained 
from kidney transplant recipients at the time of surgery but 
not from normal specimens obtained from kidney segments 

Introduction

Progressive renal diseases lead to a common histological 
and functional end point referred to as end-stage renal 
disease. Histologically, end-stage renal disease manifests as 
glomerulosclerosis, vascular sclerosis, and tubulointerstitial 
fibrosis, with tubulointerstitial fibrosis having consistently 
been shown to be the most accurate histological predictor 
of disease progression (Bohle et al., 1987). During the 
development of tubulointerstitial fibrosis many types of 
cells accumulate in the renal interstitium. Among those 
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of patients undergoing nephrectomy surgery for renal tumors 
despite the presence of ASMA-positive myofibroblasts in 
the periglomerular region (Choi et al., 2008). Th ese fi ndings 
suggest that calponin may be expressed and play a role at the 
very fi nal stage of glomerular damage.

Th erefore, we hypothesized that renal myofi broblasts may 
also express calponin, especially in the periglomerular region, 
at the very end stage of disease in an experimentally induced 
animal model of chronic renal failure. Th us, in this study we 
aimed to examine calponin expression in two experimental 
models, puromycin aminonucleoside (PAN) nephropathy 
and subtotal nephrectomy (SNx), to investigate the role of 
calponin in chronic renal injury.

Materials and Methods

Animal preparation
All experimental procedures performed on animals 

were conducted with the approval of the Catholic Ethics 
Committee of the Catholic University of Korea. 

Male Sprague-Dawley rats (Orient Bio Co., Korea) 
weighing approximately 180 to 200 g, were housed under a 
12-h light/dark cycle with food and water available ad libitum. 
Rats were divided into sham control, PAN nephropathy, and 
SNx groups. During the experimental procedures, animals 
were anesthetized with an intravenous injection of Zoletil (30 
mg/kg; Virbac Korea, Korea) and Rompun (10 mg/kg; Bayer 
Korea, Korea) and placed on a temperature-regulated table. 
Aft er surgery animals were returned to their cages once they 
recovered from anesthesia. All surgical tools were sterilized 
with 70% ethyl alcohol.

Puromycin aminonucleoside (PAN) nephropathy 
model

In order to establish the nephropathy model by reducing 
the renal mass, the left  kidney was exposed via fl ank incision 
and a complete subcapsular nephrectomy performed under 
anesthesia. Aft er closing the incision, PAN nephropathy was 
induced by a single intravenous injection to the femoral vein 
of PAN (5 mg/100 g) (Sigma Chemicals, St. Louis, Mo., USA) 
diluted in 0.9% saline. Sham animals underwent the same 
operation but received only 0.9% saline. On weeks 1, 2, 4, and 
8 aft er PAN injections, rats (n=5 in each group at each time 
point) were euthanized. All sham rats were euthanized aft er 8 
weeks (n=5). 

Subtotal nephrectomy (SNx) model
Rats were subjected to subtotal nephrectomy under 

anesthesia in two operations performed 1 week apart. In the 
fi rst operation the left  kidney was exposed via fl ank incision 
and both superior and inferior poles of the kidney were 
excised with scissors leaving approximately 2/3 of the single 
kidney mass. Spongostan (Johnson & Johnson Medical, 
UK) was applied to the cut surface to control bleeding. One 
week later under anesthesia the right kidney was completely 
removed through a fl ank incision during a second operation. 
On weeks 1, 2, 4, and 8 after the second surgery, rats (n 
=5 in each group at each time point) were euthanized. A 
control group which underwent sham operations without 
nephrectomy were euthanized aft er 8 weeks (n=5).

Analysis of renal function
One day before the end of the study period, rats were 

individually housed in metabolic cages for 24 hr for 
subsequent determination of urine protein excretion using the 
3% sulfosalicylic acid method. Blood samples were collected 
from the abdominal aorta at euthanasia. Serum creatinine 
was determined by the Jaff e´ method using creatinine reagent 
(BCS Co., South Korea). Blood urea nitrogen (BUN) was 
measured by the Urease-Indophenol method using urea-
nitrogen reagent (BCS Co.)

Histological analysis
Kidneys were fixed by perfusion with 2% paraformal-

dehyde, 125 mM lysine, and 10 mM periodate, pH 7.4 (PLP 
solution) for 10 min through the abdominal aorta. The 
kidneys were then removed and cut into sagittal slices 1- to 
2-mm thick and postfi xed overnight in PLP solution at 4oC. 
Th e fi xed kidney slices were routinely processed, embedded in 
paraffi  n, and 4-um sections prepared for histological staining.

Hematoxylin-eosin and Masson’s trichrome stains were 
performed to examine histopathological changes. To examine 
calponin expression and structural changes of periglomerular 
calponin-positive glomeruli, five serial tissue sections were 
stained with periodic acid-methenamine silver (PAMS), 
alpha-smooth muscle actin (ASMA) antiserum, calponin 
antiserum, vimentin antiserum, and the periodic acid-Schiff  
(PAS) method. 

PAMS staining was performed using an ACCUSTAIN 
Silver Stain kit (Sigma Chemicals) according to the 
manufacture’s protocol. For immunohistochemistry, 
deparaffi  nized sections were incubated with 3% H2O2 solution 
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for 30 min to inactivate the endogenous peroxidase then 
washed with PBS three times. Nonspecifi c binding sites were 
blocked with normal donkey serum diluted 1 : 10 in PBS 
for 60 min and incubated overnight at 4oC with primary 
antiserum. After rinsing in PBS, sections were incubated 
in peroxidase-conjugated donkey anti-mouse IgG (Jackson 
ImmunoResearch Laboratories Inc., West Grove, PA, USA) 
for 1 h. For coloration, sections were incubated with a mixture 
of 0.05% 3,3-diaminobenzidine containing 0.01% H2O2 at 
room temperature until a brown color was visible, aft er which 
they were washed with PBS, counterstained with hematoxylin, 
and observed with light microscopy. The primary antisera 
were as follows: mouse monoclonal antibodies against ASMA 
at 1 : 2,000 (Sigma Chemicals), calponin at 1 : 500 (Dako Inc., 
Carpinteria, CA, USA), and vimentin at 1 : 2,000 (Biogenex, 
CA, USA). 

Th e number of glomeruli was determined from each of the 
fi ve diff erently stained serial sections. In each section of those 
stained with the PAS method, half of the cortical area was 
examined and the percentage of glomeruli with sclerosis was 
analyzed under 100X magnification. In the same area from 
serial sections stained with calponin-antiserum, glomeruli 
with calponin-positive periglomerular cells were counted.

Statistical analysis
Data are expressed as mean ± SEM. Multiple comparisons 

among groups were performed by one-way analysis of 
variance with the posthoc Bonferroni test (SPSS software 
version 9.0, SPSS Inc., Chicago, IL, USA). Statistical 
signifi cance was assumed at P<0.05.

Results

Functional parameters
Th e functional parameters of the animal groups are shown 

in Table 1. From 1 to 8 weeks aft er surgery, serum creatinine 
and BUN levels were significantly increased in both SNx 
and PAN groups compared with the sham group indicating 
deterioration of renal function. All experimental PAN groups 
exhibited significantly elevated urinary protein excretion 
compared to the sham group. SNx animals also demonstrated 
a progressive increase in urinary protein excretion which only 
became signifi cant at 4 weeks aft er surgery.

Histological renal damage
After surgery, histological renal damage of the renal 

cortices progressed with time in both SNx and PAN rats. 
At 1 week there was little morphological change observed 
except proteinaceous casts in some tubuli. From 2 weeks 
after surgery, mild histopathological f indings were 
detected, including tubular expansion, tubulointerstitial 
and periglomerular fibrosis, and mononuclear leukocyte 
infiltration. Sclerotic glomerular lesions were evident from 
4 weeks and were more severe at 8 weeks after surgery in 
both SNx and PAN rats (Figs. 1 and 2). Th e kidneys of sham 
animals showed no distinct nephritic changes.

Table 2 shows the percentage of glomeruli with sclerosis 
in both experimental animal models. In sham animals no 
glomeruli with sclerotic changes were detected. At 1 and 
2 weeks, only a very low percentage of glomeruli showed 
sclerotic changes (~1% in both SNx and PAN groups); 
thereaft er, glomerulosclerosis progressed more rapidly in both 
SNx and PAN groups (24.74 % and 59.41%, respectively) at 8 
weeks post-surgery.

Table 1. Functional parameters in chronic renal injury models

Group
Subtotal nephrectomy Puromycin

UPE (mg/24 hr) Scr (mg/dl) BUN (mg/dl) UPE (mg/24 hr) Scr (mg/dl) BUN (mg/dl)

        Sham (n=5) 13.17±2.13 0.76±0.02 11.87±1.10 5.76±1.38 0.81±0.06 15.57±1.51

1 week (n=5)  20.64±10.91   1.28±0.17*  35.47±3.24* 502.51±57.89* 1.25±0.12*   47.39±6.09*

2 week (n=5)  68.19±38.44   1.60±0.17*  38.54±2.34* 525.52±46.80* 1.17±0.03*   26.57±1.43*

4 week (n=5)   165.44±31.40*   1.53±0.05*  42.73±3.54*   419.82±104.62* 1.07±0.05*   40.46±3.29*

8 week (n=5)   252.76±66.72*   1.77±0.09*  44.05±1.56* 393.26±77.35* 1.70±0.32*   44.59±7.54* 

UPE, urine protein excretion; Scr, serum creatinine; BUN, blood urea nitrogen. *P<0.05 vs. sham group.
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Periglomerular expression of calponin
Table 3 shows the number of glomeruli with peri-

glomerular calponin-positive cells. There were no periglo-
merular calponin-positive cells in the sham, PAN 1 and 2 
week, and SNx 1, 2, and 4 week groups (data not shown), 

despite the presence of calponin-positivity in the renal vessels 
of the same groups (Fig. 3C). In the SNx 8 week and PAN 4 
and 8 week groups, only a few glomeruli with periglomerular 
calponin-reactivity, which covered half or a very small 
part of periglomerular space, were observed. No cases of 

Fi g .  1 .  L i g ht  m i c r o s c o p i c  f i n d-
ings of glomeruli representing glo-
meruloscrelosis lesions at each time 
point of disease rat. (A) SNx model 
sham, (B) SNx model 8 weeks, (C) 
PAN model sham, (D) PAN model 
8 weeks. Note perig lomerular and 
tubulointerstitial fibrosis in blue (B & 
D) with Masson’s trichrome stain. Scale 
bar is 200 um.

Fi g .  2 .  L i g ht  m i c r o s c o p i c  f i n d-
ings of glomeruli representing glo-
meruloscrelosis lesions at each time 
point of disease rat. (A) SNx model 
sham, (B) SNx model 8 weeks, (C) PAN 
model sham, (D) PAN model 8 weeks. 
Glomeruli in B & D show segmental 
glomerulosclerotic change. Arrows 
indicate the infiltrated cells. Masson’s 
trichrome stain. Scale bar is 100 um.
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Table 2. Percentage of glomerulosclerosis in chronic renal injury models

Group
Subtotal nephrectomy Puromycin

Glomerulosclerosis (%)

1 week 1.09±1.01 0.57±0.08

2 week 1.08±0.43 1.15±0.47

4 week 5.16±0.73 2.91±0.42

8 week   24.74±10.47*  59.41±6.26*

*P<0.01 vs. 1, 2 and 4 weeks.

Table 3. Number of glomeruli in chronic renal injury models

Group All glomerular
count (No.)

Periglomerula coverage with 
calponin-positivity (No.)

100% About 50% <30%

Subtotal
    Nephrectomy
    8 week

203 0 11 4

Puromycin
    4 week

245 0 11 11

Puromycin
    8 week

316 0 19 18

periglomerular calponin-positivity covering the entire 
periglomerular space were detected. As shown in Tables 2 and 
3 for glomeruli in PAN rats at 8 weeks, approximately 59.4% 
glomeruli were sclerotic and approximately 11.7% (37/316) 
were calponin-positive, so around 19.7% (11.7%/59.4%) 
sclerotic glomeruli were calponin-positive.

Th e periglomerular calponin-positive cells were also both 
ASMA- and vimentin-positive, but not vice versa. All the 
glomeruli with periglomerular calponin-reactivity showed 
sclerotic changes, especially thickening of parietal epithelial 
cells (PECs) known as Bowman’s capsule. PAMS staining 
showed that basement membranes of PECs covered by 
periglomerular calponin-positive cells were still intact. Weak 
calponin-immunostaining was detected in some glomeruli 
(Fig. 3).

Discussion

The models of SNx and PAN in experimental animals 
have been widely used to investigate the progressive nature 
of chronic renal disease in humans (Grond et al., 1988; 
Ardiles et al., 2003). We used functional parameters and 
general histochemical results to confi rm the reliability of the 
animal models. In the present study we tested the hypothesis 
that renal myofibroblasts in the periglomerular region may 

Fig. 3. Five serial sections (A to E, F to J) stained with periodic acid-
methenamine silver method (A, F), alpha-smooth muscle actin 
(ASMA) antiserum (B, G), calponin antiserum (C, H), periodic acid-
Schiff  method (D, I) and vimentin antiserum (E, J) from the subtotal 
nephrectomy and puromycin model 8 weeks after operation. Almost 
basement membrane of Bowman’s capsules (arrows in A, F) was 
intact. Calponinpositive cells (arrows in C, H) were also ASMA- and 
vimentin positive. Note the thickened membrane (arrows in D, I) 
covered by calponin-positive cells compared with the thin membrane 
of the glomerulus (G in H) without periglomerular calponin-positivity. 
Focal segemental glomerulosclerosis is shown (open arrowhead in D). 
Scale bar is 100 um.
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express calponin at the very end stage of chronic renal failure 
in the experimental animal kidney. Our previous study had 
shown that calponin-immunoreactivity was localized in the 
myofi broblasts of the periglomerular region of human kidney 
specimens obtained from recipients at the time of kidney 
transplantation (Choi et al., 2008 Abstract). Results from 
the present study are consistent with our previous study and 
imply that animals with chronic glomerulosclerotic injury 
may be useful models for examining the role of calponin in 
chronic renal damage.

Calponin was fi rst purifi ed from chicken gizzard smooth 
muscle as troponin-T like protein, named to refl ect its ability 
to bind calmodulin, and to cross-react with anti-troponin T 
antibodies (Takahashi et al., 1986). Th ree isoforms of calponin 
(h1, h2, and acidic) have been identifi ed in higher vertebrates 
as products of three homologous genes. H1-calponin is basic 
(pH 9.4), h2-calponin is near neutral (pH 7.5), whereas acidic 
calponin has a low pH of 5.2. H1-calponin is the predominant 
isoform specifi cally expressed in diff erentiated smooth muscle 
cells as well as other cell types including myofibroblasts in 
the context of diverse pathological situations (for review, 
Rozenblum & Gimona, 2008). The calponin antibody 
used in the present study is reported to detect h1-calponin 
(Yanagisawa et al., 2008).

Myofibroblasts express the mesenchymal marker ASMA 
and share features of both fibroblasts and smooth muscle 
cells. Known to be a major source of extracellular matrix 
proteins in fibrotic lesions in the kidney and other tissues, 
these cells are involved in wound healing and contraction 
as well as scarring (Högemann et al., 1993; Zhang et al., 
1996; Tang et al., 1997; Badid et al., 2000).  A prominent 
feature in the development of renal fibrosis and fibrotic 
lesions in general is the accumulation of myofi broblasts. Th e 
appearance of interstitial ASMA-positive myofibroblasts is 
the best prognostic indicator of disease progression in human 
and experimental glomerulonephritis (Alpers et al., 1994; 
Goumenos et al., 1994; Zhang et al., 1995; Essawy et al., 1997; 
Roberts et al., 1997; Badid et al., 1999).

Calponin is a specific marker for myofibroblasts in 
many tissues. To our knowledge, the present study is the 
first report of calponin expression in the myofibroblasts 
of animal kidneys. Our previous report detailed calponin 
expression in the myofi broblasts of human kidneys (Choi et 
al., 2008).  In the present study, calponin was induced in some 
periglomerular myofi broblasts. 

The function of calponin in the periglomerular myo-

fibroblasts, especially around the sclerotic glomeruli, is 
obscure. Th e functional diff erence between calponin-positive 
and calponin-negative periglomerular myofi broblasts remains 
unknown and further investigation is required. There are 
some reports of calponin-positive and calponin-negative 
myofibroblasts; however, they only describe that some 
myofibroblasts within lesions were focally immunostained 
for calponin suggesting a functional heterogeneity of 
myofibroblasts (Lazard et al., 1993; Prasad et al., 1999; 
Barbareschi et al., 2001).

We observed a thickening of the PECs covered by 
calponin-positive myofi broblasts. PECs are known to play an 
active role in the progression of some renal diseases (Boucher 
et al., 1987; Goumenos et al., 1998; Asano et al., 2005). PECs 
also produce several bioactive substances in periglomerular 
and intraglomerular spaces (Cockwell et al., 1998; Cockwell 
et al., 1999; Nakamura 2005). Taken together with the active 
role of PECs in renal disease, we propose that interactions 
between PECs and calponin-positive myofi broblasts may play 
a key role in the late stage of glomerulosclerosis.
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