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Matrine and glycyrrhizin are representative active ingredients of traditional Chinese medicine (TCM) used in clinical practice.
Studies have demonstrated that matrine has antitumor pharmacological effects and that glycyrrhizin protects liver function.
However, the potential bioactive compounds and mechanisms remain unknown, as well as whether they have synergistic
effects in killing cancer cells and protecting liver cells. To investigate the synergistic effects and mechanism of matrine
combined with glycyrrhizin in hepatocellular carcinoma (HCC) treatment, we used both network pharmacology and
bioinformatics analyses. First, the chemical gene interaction information of matrine and glycyrrhizin was obtained from the
PubChem database. The pathogenic genes of HCC were accessed from five public databases. The RNA sequencing data and
clinical information of HCC patients were downloaded from The Cancer Genome Atlas (TCGA). Next, the overlapping genes
among the potential targets of matrine and glycyrrhizin and HCC-related targets were determined using bioinformatics
analysis. We constructed the drug-target interaction network. Prognosis-associated genes were acquired through the univariate
Cox regression model and Lasso-Cox regression model. The results were verified by the International Cancer Genome
Consortium (ICGC) database. Finally, we predicted the immune function of the samples. The drug-target interaction network
consisted of 10 matrine and glycyrrhizin targets. We selected a Lasso-Cox regression model consisting of 3 differentially
expressed genes (DEGs) to predict the efficacy of the combination in HCC. Subsequently, we successfully predicted the overall
survival of HCC patients using the constructed prognostic model and investigated the correlation of the immune response.
Matrine and glycyrrhizin have synergistic effects on HCC. The model we obtained consisted of three drug-target genes by
Lasso-Cox regression analysis. The model independently predicted the combined effect of matrine and glycyrrhizin in HCC
treatment and OS, which will be helpful for guiding clinical treatment. The prognostic model was correlated with the immune
cells and immune checkpoints of patients, which had an adjuvant effect on HCC immunotherapy. Matrine and glycyrrhizin
can have therapeutic effects on HCC by promoting the production or enhancing the core gene activity in the drug network
and improving the immune system function of patients.
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1. Introduction

HCC is a malignant tumor that seriously threatens human
life and health. According to 2020 oncology epidemiology
data, the mortality rate of HCC is very high, and HCC has
become the second leading cause of cancer-related death
after lung cancer [1], and most patients are diagnosed and
treated at the clinical III or IV stage [2]. Thus, the treatment
of HCC has become a medical challenge worldwide. Treat-
ment approaches include radiation, transplant, and surgery.
In recent years, systematic therapies such as targeted and
immune therapy have made important progress in the treat-
ment of advanced liver cancer. Targeted therapy for HCC
mainly includes multikinase inhibitors (TKIs) and antiangio-
genic drugs, such as sorafenib, lenvatinib, donafenib, regoraf-
enib, and apatinib, while immune checkpoint inhibitors are
used in immunotherapy treatment [3]. With the wide appli-
cation of ICIs in the treatment of hepatocellular carcinoma,
the toxic side effects caused by ICI activation, namely,
immune-related adverse reactions (irAEs), have become a
major challenge in clinical practice [4]. Currently, the objec-
tive of therapy for liver cancer is to prolong overall survival.
However, the benefits of TCM treatments seem to be prom-
ising in liver cancer [2], breast cancer [5], etc. Thus, clarifying
the anticancer mechanism of action of TCM treatment is
important. Wu et al. investigated the mechanism of a
Bushen-Jianpi decoction (BSJPD) in liver cancer (LC) treat-
ment [6]. Correlation analysis revealed that BSJPD was an
independent protective factor for survival. They further
investigated the mechanism of action of BSJPD with network
pharmacology analysis and experimental verification. In this
work, they identified 143 compounds in the 9 herbs of BSJPD
and 249 related targets. In view of the results of the enrich-
ment analysis, we found that the liver cancer signaling path-
ways impacted by treatment with BSJPD mostly involved
tumor apoptosis and growth, such as the PI3K-Akt-mTOR,
p53, TNF, and VEGF pathways [7, 8]. Overall, this work
proves that BSJPD can prolong the survival of patients with
liver cancer and promote hepatoma cell apoptosis, which is
associated with its modulation of the PI3K-Akt-mTOR path-
way and the p53, CASP3, and Bcl-xL/BAD proteins. These
effects may be partly derived from licochalcone A, alisol B,
and hederagenin, which are the 3 major compounds in the
network pharmacology prediction.

Network pharmacology is the next paradigm in drug dis-
covery [9]. The dominant paradigm in drug discovery is the
concept of designing maximally selective ligands to act on
individual drug targets. However, many effective drugs act
via modulation of multiple proteins rather than single tar-
gets. Advances in systems biology are revealing a phenotypic
robustness and network structure that strongly suggests that
exquisitely selective compounds, compared with multitarget
drugs, may exhibit lower than desired clinical efficacy
[10–12]. This new appreciation of the role of polypharma-
cology has significant implications for tackling the two
major sources of attrition in drug development—efficacy
and toxicity. Integrating network biology and polypharma-
cology holds the promise of expanding the current opportu-
nity space for druggable targets [11, 13, 14].

CHM, an ancient treatment methodology popular in
China and surrounding areas, has been recognized as a phar-
maceutical area of TCM and holds promise for preventing
diseases in a holistic way [15, 16]. It has been used in clinical
practice for a long period, and it is known for its effective-
ness and beneficial contribution to public health and disease
control. However, the pharmacological mechanisms of
CHM have not been fully established. With increasing
knowledge of the network of genes and molecular interac-
tions, researchers have adopted network pharmacology for
their drug research and development.

Building a CHM database is critical for a network phar-
macology study [17]. The TCMGeneDIT database mainly
focuses on TCM-related gene and disease information [18].
The TCM Database@Taiwan is applied to CHM screening
[19]. There are also disease-drug-target databases used for
drug-target research on herbal compounds, such as Super-
Target, Matador [20], DrugBank [21], and Therapeutic Tar-
get Database [22]. Li proposed a methodology termed
“network target,” which is used to reveal the interactions
between herbal compounds/formulas and complex syn-
drome systems based on network pharmacology and sys-
tems biology [23]. Relevant technology can be used to
screen effective herbal substances and discover drug targets.
Such technology could also provide theoretical support for
detecting new pharmacological effects of Chinese compound
formulas [17]. Essentially, the network visualization of the
CHM literature examines the database to find modes or
rules [24], detects the literature information, analyzes the
selection data, and discovers the novel effects of CHM.

The NIMS approach could be beneficial for analyzing
the therapeutic effects of multicomponent CHM. To dis-
cover the relationship between Chinese herbal multicompo-
nent and potential pharmacological function, Li et al.
applied a network target-based identification of multicom-
ponent synergy (NIMS) algorithm to calculate the compo-
nents of CHM and demonstrate the synergistic correlation
of the multicomponent [25]. Fan et al. used the network
pharmacology method to reconstruct the network model to
describe the toxicological properties, which offered valuable
information to identify the toxic substances and potential
toxicity of known compounds in a complex system [26].

The characteristics of TCM theory involve the consider-
ation of organic wholeness and treatment based on TCM
syndrome differentiation. A diagram is proposed to describe
the research approach of network pharmacology for CHM.
This approach is a combination from the “disease-
syndrome-CHM” model, which comprises the core values
for reflecting disease and TCM syndrome as well as corre-
lates with CHM, TCM syndrome, and multitarget effects.
By integrating the chemical predictor, target predictor, and
network building, a system of TCM was constructed. It sys-
tematically revealed the potential mechanisms of TCM [27].
The appropriate cellular and animal models are conducive to
evaluating the effectiveness of TCM [28], which could be
used to verify the results of network analysis and mutual
authentication. However, the systemic characterization is
still unclear for the drug-target correlation of CHM. Net-
work pharmacology could be helpful to confirm the effective
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ingredients and promote drug discovery of CHM. Network
pharmacology has become a helpful tool in understanding
the fine details of drug-target interactions.

To broaden the idea of drug development, this study
investigated the mechanism of the combination of tradi-
tional Chinese herb Sophora flavescens extract (matrine)
and Glycyrrhiza uralensis extract (glycyrrhizin) against
HCC [29, 30]. To better explore the relationship between
multicomponent and target sites of TCM, we adopted the
concept of network pharmacology, which facilitated our
study of the complex network of TCM extracts. Matrine
injection is often used as a routine drug against hepatitis
virus, and glycyrrhizin is commonly used as a drug to pro-
tect liver function in clinical practice [31, 32]. The two drugs

are often combined in clinical practice. Previous studies have
shown that the combination of matrine and glycyrrhizin
enhances the drug’s efficacy and reduces the side effect of
glycyrrhizin, which causes sodium and water retention
[33]. However, the specific cellular pathways through which
the two drugs act have not been clarified. In this study, we
constructed a drug-targeting network of matrine and glycyr-
rhizin on hepatocarcinogenic genes by network pharmacol-
ogy and screened the core genes in the network. Based on
our study results, we can provide a better understanding of
the interaction between the two drugs and provide basic the-
oretical support for future research. A core drug-target net-
work consisting of 10 target genes was ultimately obtained.
We analyzed the differential expression of transcriptomic
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Figure 1: (a) Five disease gene databases combined with Venn diagrams. (b) Venn diagram of the intersection of drug targets and
hepatocellular carcinoma genes. (c) Drug target interaction network. (d) Protein–protein interaction. (e, f) Screening network core genes.
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Figure 2: (a, b) GO bubble and circle graphs of network core genes. (c, d) Bubble and circles of KEGG pathway of network core genes.
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genes in HCC and normal tissue specimens, to better predict
the survival of HCC patients treated with matrine and gly-
cyrrhizin and to facilitate clinical medication strategies. Uni-
variate Cox regression analysis was performed on 7 DEGs in
the drug-target network, and 4 DEGs with prognostic signif-
icance were finally obtained. The Lasso-penalized Cox
regression analysis algorithm was used to analyze the four
DEGs. Finally, we obtained a Lasso-Cox prognostic regres-
sion model composed of three differentially expressed
drug-target network genes, and a prognostic nomogram
was established to facilitate clinical guidance. Moreover,
gene set enrichment analysis (GSEA) was performed to
investigate the role of model core genes in tumorigenesis,
tumor progression, and immune response. In this study, to
investigate the immune-related effects of matrine and gly-
cyrrhizin, immune cells and immune checkpoints in HCC
specimens were predicted. In addition, we investigated the
correlation between risk values and immune cells and
immune checkpoints and further explored the effect of
matrine and glycyrrhizin on the immune response.

2. Materials and Methods

2.1. Data Collection. First, the chemical gene interaction
information of matrine and glycyrrhizin, including 27
matrine target information and 64 glycyrrhizin target infor-
mation, was downloaded from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov) [34]. Hepatocarcino-
genic genes were obtained from the GeneCards database
(https://www.genecards.org/), Online Mendelian Inheri-
tance in Man (OMIM) database (https://omim.org/), Phar-
macogenetics and Pharmacogenomics Knowledge Base
(PharmGkb) (https://www.pharmgkb.org/), DrugBank data-
base (https://www.drugbank.com/), and Therapeutic Target
Database (TTD) database (http://db.idrblab.net/ttd/). The
transcriptome data and clinical data of HCC samples origi-
nated from the TCGA GDC (https://portal.gdc.cancer.gov/)
database [35]. A total of 424 transcriptomic data and 377
clinical data were obtained. Transcriptomic data included
all gene transcription and expression level information of
the samples, and clinical data included overall survival time,
survival status, age, sex, clinical stage, and other clinically
relevant information. We obtained 442 transcriptome data
and clinical data of HCC samples provided by RIKEN and
JP from the ICGC database and the ICGC database [36].
Immunohistochemical section images of gene expression in
cancer and paracancerous tissues were obtained from the
Human Protein Atlas database (HPA database, https://
www.proteinatlas.org/).

2.2. Drug-Target Interactional Network Construction and
Screening. The action targets of matrine and glycyrrhizin
obtained from PubChem were combined as drug targets.
The HCC pathogenicity genes obtained from five disease
gene databases were combined as pathogenicity genes. A
protein–protein interaction (PPI) network was constructed
by the STRING (https://string-db.org/) database, using the
overlapping genes between the drug targets and pathogenic-
ity genes, with a confidence interval of 0.9, and isolated

genes that did not interact with other genes were eliminated.
Then, the PPI network was processed with Cytoscape ver-
sion 3.8.2 and screened twice using the CytoNCA plug-in
in Cytoscape. Finally, the network core genes were obtained.
The screening criteria were betweenness centrality (BC),
degree centrality (DC), closeness centrality (CC), eigenvec-
tor centrality (EC), local average connectivity (LAC), and
network centrality (NC). Both filters were based on all cri-
teria values greater than the median.

2.3. Drug-Target Network Gene Function and Functional
Enrichment Analysis. To explore which gene functions and
cellular pathways are enriched in network core genes, Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene
Ontology (GO) analyses were performed using the “cluster-
Profiler” R package [37]. The pathways were regarded to be
significantly enriched when P < 0:05.

2.4. Differentially Expressed Gene Analysis. The expression
levels of the network core genes were extracted from the
transcriptome data of the TCGA database. The gene expres-
sion level heatmap was plotted by tumor group and normal
group, and the gene expression association map was also
drawn.

2.5. Construction of the Lasso-Cox Regression Prediction
Model. The prognostic value of the network core genes was
determined by univariate Cox regression analysis, where P
< 0:05 was considered statistically significant. Least absolute
shrinkage and selection operator- (Lasso-) penalized Cox
regression analysis with the “glmnet” R package [38], was
used to further identify genes relevant to the prognosis of
HCC. Patients were divided into low-score and high-score
groups according to the median value. The Kaplan–Meier
survival curves were generated to evaluate the predictive per-
formance of related risk genes.

2.6. Validation of the Lasso-Cox Regression Prediction Model.
We validated this model by examining the hepatocellular
carcinoma transcriptome and clinical data from the ICGC
database of the RIKEN Institute of Japan (RIKEN, JP). We
established a receiver operating characteristic (ROC) curve
using the “timeROC,” “survival,” and “survminer” R pack-
ages to verify the model prediction performance. We gener-
ated the risk curve, risk and survival scatter plot, and
heatmap of model gene expression using the “pheatmap” R
package. We established a nomogram using the “rms” R
package to predict the survival of patients. Based on univar-
iate and multivariate Cox regression analyses, forest plots
were drawn.

2.7. Correlation between the Prognostic Model and Tumor
Immunity. To explore the effect of the risk score on the
immune response in the Lasso regression prediction model,
we downloaded the immune cell content data from the
TIMER2.0 online immune database and mapped box plots
and correlation plots of immune cell content. To explore
the correlation between the risk score and immune cells in
the Lasso regression prognostic model, we mapped the cor-
relation plots of risk scores and various immune cells. We
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also explored the relationship between the risk score and
immunotherapy, plotting the correlation plots between the
risk scores and immune checkpoints.

3. Results

3.1. Construction of Drug-Target Interaction Networks. The
mechanism by which the combination of matrine and gly-
cyrrhizin treats HCC is a complex multicomponent and
multitarget process. In this study, we used the research con-
cept of network pharmacology. We obtained the known
drug targets of matrine and glycyrrhizin from the PubChem
database, as well as the interactions and effects of the corre-
sponding drugs on the target.

Considering that obtaining data from a single disease
gene database may lead to gene data loss, in this study we
downloaded and combined disease-associated gene data
from five disease-associated gene databases (Figure 1(a)),
making the data more comprehensive and general. A total
of 16937 disease-causing gene data associated with liver can-
cer were obtained.

There were 93 overlapping genes between the targets of
matrine and glycyrrhizin and HCC pathogenicity genes
(Figure 1(b)). The overlapping genes represent targets for
the combined application of matrine and glycyrrhizin for
the treatment of hepatocellular carcinoma. Matrine and gly-
cyrrhizin produce specific pharmacological effects on patho-
genicity genes and thus are effective in the treatment of
HCC. We also created a drug-target interaction network dia-
gram (Figure 1(c)). with a confidence interval of 0.9, and iso-
lated genes that did not interact with other genes were
eliminated. We queried and screened the interaction rela-
tionships between target proteins by the STRING online
database to obtain a protein interaction network (PPI,
Figure 1(d)) containing 73 target proteins (CI = 0:90), hiding
independent proteins that have no interaction relationships
with other proteins. We generated the interaction network
of matrine and glycyrrhizin on target genes by importing

the interaction information into Cytoscape version 3.8.2
(Figure 1(e)).

The protein interaction network of 93 overlapped genes
was screened twice using the plug-in CytoNCA with the fol-
lowing criteria: BC (betweenness centrality), DC (degree
centrality), CC (closeness centrality), EC (eigenvector cen-
trality), LAC (local average connectivity), and NC (network
centrality). EC, LAC, NC, and both filters were based on
the condition that all criteria values were greater than the
median. We finally obtained a core drug-target interaction
network consisting of 10 core genes (Figure 1(f)): TP53,
CASP8, MAPK1, MAPK3, MYC, NFKB1, TNF, IL6, and
NFKBIA.

3.2. Gene Ontology (GO) and KEGG Pathway Enrichment
Analyses. To elucidate the underlying pathways that were
associated with the 10 core genes of the drug-target network,
GO gene function enrichment analyses and KEGG cellular
pathway enrichment analyses (Figures 2(c) and 2(d)) were
performed. This study suggests that matrine and glycyrrhi-
zin are enriched in the function of genes such as “cellular
response to biological stimuli,” “cellular response to tumor
necrosis factor,” “response to tumor necrosis factor,”
“response to lipopolysaccharide,” “response to a molecule
of bacterial origin,” “cellular response to lipopolysaccha-
ride,” “cellular response to molecule of bacterial origin,”
and “regulation of DNA-binding transcription factor activity
DNA” (Figures 2(a) and 2(b)). The results showed that the
10 network core genes primarily mapped to antiviral
infection-related KEGG terms, such as “hepatitis B,”
“human cytomegalovirus infection,” “hepatitis C,” “Kaposi
sarcoma-associated herpesvirus infection,” “lipid and ath-
erosclerosis,” “human T cell leukemia virus 1 infection,”
and “Salmonella infection.”

3.3. Construction and Validation of the Lasso Regression
Prediction Model. Then, the expression levels of 10 core
genes in the drug-target network were differentially analyzed
in normal and tumor cells. A heatmap (Figure 3(a)) and
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(k)

Figure 3: (a) Heatmap of network core gene expression in the TCGA database. (b) Violin diagram of differential expression of network core
genes. (c) Correlation diagram of network core gene expression level. (d) Unigenic Cox prognostic regression analysis of network core genes.
(e, f) Lasso prognostic regression model. (g) Survival curves in the TCGA database. (h) ROC curve to verify the accuracy of risk. (i) Risk
curve. (j) Risk and survival scatter plot. (k) Heatmap of model gene expression in the high- and low-risk groups.
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violin diagram (Figure 3(b)) of differential gene expression
were drawn. Seven of the target core genes showed differen-
tial expression: TP53 (P < 0:001),MAPK1 (P < 0:001), RELA
(P < 0:001), CASP8 (P < 0:001), MAPK3 (P < 0:001), MYC
(P < 0:001), and IL6 (P < 0:001), while the differences in
NFKBIA (P = 0:859) and NFKB1 (P = 0:312) expression
were not statistically significant.

We conducted a coexpression correlation study and
mapped the gene association (Figure 3(c)) to investigate
whether there was a coexpression correlation among the
seven differentially expressed drug-target network core
genes. The coexpression of RELA and MAPK1 was the
strongest, with a correlation coefficient of 0.58, showing a
significant positive correlation.

Then, we performed univariate Cox prognostic regres-
sion analysis of the core network genes (Figure 3(d)).
Among the 7 differentially expressed drug-targeting network
core genes, 4 genes were associated with prognosis: CASP8,
MAPK1, MAPK3 and RELA. The results showed that these
4 drug-targeting network core genes were associated with
prognosis. The remaining genes were not significantly asso-
ciated with prognosis (P > 0:05), and the differences were
not statistically significant. Next, the relationship between
the expression levels of the four core genes of the drug target
network and clinical survival was analyzed by the Lasso-Cox
prognostic regression model, to construct a prognostic pre-
diction model of multiple genes (Figures 3(e) and 3(f)).
When λ = −0:389, the Lasso-Cox prognostic regression
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Figure 4: (a) Survival curve in the ICGC database. (b) ROC curve to verify the accuracy of risk. (c) Risk curve. (d) Risk and survival scatter
plot. (e) Heatmap of model gene expression in the high- and low-risk groups. (f) Univariate prognostic regression test. (g) Multivariate
prognostic regression test. (h) Used to predict survival in patients with the nomogram. (i, j, k) Panel (i) shows the predicted binding
pattern of glycyrrhizin and CASP8 protein, and panels (j) and (k) show the predicted binding pattern of matrine to MAPK1 and
MAPK3 proteins.
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model had three prognostic model genes, namely, CASP8,
MAPK1, and MAPK3, with regression coefficients of Coefð
CASP8Þ = 0:04145626, CoefðMAPK1Þ = 0:05379257, and
CoefðMAPK3Þ = 0:05630515. Therefore, the risk score for-
mula for the sample was as follows: Risk score =
0:04145626 ∗ CASP8 + 0:05379257 ∗MAPK1 + 0:05630515
∗MAPK3.

The risk scores of all samples were calculated according
to the risk score formula and stratified into high-risk and
low-risk groups according to the median risk score, with a
median risk value of 1.03967214. The risk score was calcu-
lated jointly with the survival status and survival time of
the samples, and the high-risk and low-risk survival curves
were obtained (Figure 3(g)). Likewise, patients in the high-
risk group were more likely to encounter death earlier and
had a poorer survival status than those in the low-risk group.
The difference in prognosis between the two was statistically
significant (P < 0:001). We plotted the ROC curve
(Figure 3(h)) to verify the accuracy and reliability of the
Lasso-Cox prognostic regression model’s predictability. The
ROC curve showed an AUC value of 0.718 (AUC value >

0:70), proving that Lasso-Cox’s prognostic regression curve
is reliable. We generated a risk curve (Figure 3(i)), risk, and
survival scatter plot (Figure 3(j)). From the heatmap of model
gene expression (Figure 3(k)), we found that patients in the
high-risk group had a higher mortality probability and a
higher gene expression level than those in the low-risk group.
It is clear from the differential gene expression heatmap that
the risk score can divide the model genes of the Lasso-Cox
prognostic regression model into high- and low-risk groups.
Thus, the risk score can clearly distinguish the gene expres-
sion, survival time, and survival status of high-risk and low-
risk populations.

To validate the generality of the Lasso-Cox predictive
regression model, we downloaded 442 transcriptomic data
and clinical data of hepatocellular carcinoma samples from
the Institute of Physical and Chemical Research of Japan
(RIKEN, JP) in the ICGC database. Transcriptome data in
the ICGC database and TCGA database were normalized.
We combined gene expression and clinical data of tumor
samples to plot survival curves related to risk values for the
ICGC validation group, and the curves were divided into
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high- and low-risk groups (Figure 4(a)) (P < 0:05). The AUC
of the ROC curve >0.6 indicated that the model was accurate
(Figure 3(b)). The risk curve (Figure 4(c)), risk and survival
scatter plots (Figure 4(d)), and heatmap of model gene
expression in the high- and low-risk groups (Figure 4(e))
were significantly different. These results demonstrated the
generalizability and accuracy of this Lasso-Cox predictive
regression model. Both univariate prognostic analysis
(Figure 4(f)) and multifactorial prognostic analysis
(Figure 4(g)) were performed, and the risk values consis-
tently correlated highly with sample survival status across a
wide range of clinical data.

Both univariate prognostic analysis (Figure 4(f)) and
multivariate prognostic analysis (Figure 4(g)) were per-
formed, and the risk value consistently correlated highly
with sample survival status across a wide range of clinical
data.

A survival prognosis nomogram (Figure 4(h)) was plot-
ted combining the risk score formula with survival to predict
patient survival at 1-3 years in clinical practice.

We plotted the binding of glycyrrhizin to CASP8
(Figure 4(i)) and the binding of matrine to MAPK1 and
MAPK3 (Figures 4(j) and 4(k)), demonstrating the ability
of matrine and glycyrrhizin to bind to target proteins to pro-
duce pharmacological effects.

3.4. Enrichment Analysis of the Model Gene GSEA Cellular
Pathway. To investigate the positive correlation of genes of
tumor-associated and immune-associated pathways in the
Lasso-Cox prognostic regression model, we selected cellular
pathways associated with tumorigenesis, development, and
immune-related pathways for GSEA pathway-related enrich-
ment analysis, and all pathways were screened byP < 0:05 sig-
nificant difference (Figures 5(a)–5(c)). The CASP8 and
MAPK1 genes had a strong correlation with 9 tumor-

associated cellular pathways, but there was only one pathway
difference between the two. CASP8 was associated with the
“ubiquitin-mediated proteolysis” pathway, while MAPK1
was associated with the “transforming growth factor β signal-
ing pathway.” The MAPK3 gene was associated with four
tumor-related cellular pathways: “cell cycle,” “DNA replica-
tion,” “pathways in tumors,” and “ubiquitin-mediated
proteolysis.”

3.5. The Influence of Model Genes on Tumor Immunity.
Next, we determined whether genes in the Lasso-Cox prog-
nostic regression model influence the immune response.
Immunoprediction data of HCC samples from the TCGA
database were downloaded from the TIMER2.0 database.
We plotted the histogram (Figure 5(d)), which showed the
various immune cell contents in the samples, and the dia-
gram of correlations between the levels of various immune
cells (Figure 5(e)). The diagram of correlation showed that
macrophage M0 cells had the smallest correlation -0.7 with
T cells and CD8 cells. The correlation between memory
CD4+ T cells and CD8+ T cells was highest at 0.49. Second,
the correlation between the risk values and the content of
various types of immune cells was studied, and scatter plots
were drawn (Figures 5(f)–5(k)). As shown in the figure, six
immune types of cells, including B cells, CD4 T cells, CD8
T cells, macrophages, dendritic cells, and neutrophils, were
positively correlated with the risk score, and they were all
statistically significantly different (P < 0:001). We then ana-
lyzed the correlation between risk values and various
immune checkpoints (Figures 5(l)–5(q)). Risk values were
strongly correlated with immune checkpoints (Figure 6(a)),
and each immune checkpoint was also differentially
expressed between normal and tumor samples
(Figure 6(b)). Thus, it can be found that the risk score of
the Lasso-Cox prognostic regression model is positively
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Figure 6: (a) Graph of the correlation between expression levels of various immune checkpoints. (b) Box plot of expression differences of
various immune checkpoints between normal and tumor samples. (c, d) Immunohistochemical section images of CASP8 differentially
expressed in normal and hepatocellular carcinoma tissues from the HPA database. (f, g) Immunohistochemical section images of
MAPK1 differentially expressed in normal and hepatocellular carcinoma tissues from the HPA database. (i, j) Immunohistochemical
section images of MAPK3 differentially expressed in normal and hepatocellular carcinoma tissues from the HPA database. (e, h, k) The
boxplots of IOD differences of CASP8, MAPK1, and MAPK3 in normal tissues and tumor tissues, respectively.
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correlated with immune cells and is more strongly correlated
with immune checkpoints. Scientists have recently begun
investigating the function of nanoparticles in immunother-
apy, for example, silica nanoparticles. Nanoparticle applica-
tion in cancer is a field that is becoming increasingly
promising [39].

3.6. Immunohistochemical Expression in the HPA Database.
Immunohistochemical images downloaded from the HPA
Human Protein Database (Figures 6(c), 6(d), 6(f), 6(g),
6(i), and 6(j)) showed that the immunofluorescent anti-
bodies used in normal and tumor samples remained the
same. IOD values were low-moderately expressed in normal
tissues and moderately highly expressed in tumor tissues
among the three model genes (Figures 6(e), 6(h), and 6(k)).

4. Discussion

Current treatments for cancer include surgery, radiotherapy,
chemotherapy, targeted therapy, biotherapy, and comple-
mentary and alternative medicine (CAM) therapies such as
traditional Chinese medicine (TCM) [40]. However, none
of these approaches have achieved optimal efficacy without
adverse events. Traditional single-target drug applications
are insufficient to treat complex diseases such as cancer, car-
diovascular disease, and Alzheimer’s disease. TCM considers
the body as a single complex system that is treated with Chi-
nese herbal medicines (CHMs) and Chinese herbal formulas
(CHFs) under the guidance of TCM theory. Each CHM is a
mixture of multiple compounds. Many CHMs are biologi-
cally active, while individual substituents may not exhibit
bioactivity, suggesting that multiple components of an herb
have synergistic effects [41, 42]. In addition, in TCM, formu-
las are used more frequently. A formula usually consists of a
larger number of herbs, which are systematically arranged in
a hierarchical ranking. Therefore, synergistic combinations
of CHMs alone or in combination with chemotherapeutic
agents may be more suitable for the treatment of complex
pathologies such as cancer. CHM compounds are bioactive,
and studies on synergistic combinations of CHM com-
pounds for the treatment of cancer have focused on combi-
nations based on curcumin, quercetin, and resveratrol. For
example, curcumin acts on the expression of tumor suppres-
sor genes, apoptosis genes, oncogenes, and their respective
proteins and signaling pathways [43]. Several CHM com-
pounds have been combined with curcumin to enhance
therapeutic efficacy. In vitro and in vivo studies have shown
that the combination of curcumin and resveratrol enhances
the apoptotic effects of head and neck cancer cells, including
upregulation of PARP-1 cleavage and the Bax/Bcl-2 ratio
and downregulation of ERK1 and ERK2 phosphorylation.

CHM combinations represent the core of CHFs. TCM
physicians combine CHMs to enhance therapeutic effects
and alleviate toxicity and side effects. Yanhusuo (Rhizoma
corydalis) extract has been reported to weaken the invasive
and metastatic ability of breast cancer cells. Furanodiene iso-
lated from Ezhu (Rhizoma curcumae) has been shown to
inhibit proliferation and apoptosis in lung cancer cells [44,
45]. Further studies on the synergistic effects of Ezhu and

Yanhusuo showed that the 3 : 2 combination of Ezhu and
Yanhusuo reduced the proliferation and invasive capacity
of breast cancer cells more significantly than treatment with
Ezhu and Yanhusuo alone and induced more cytochrome c
release (initiation of apoptosis) [46]. The proper addition
of CHM compounds, CHMs or CHFs enhances immunity
and improves tolerance to chemotherapy, potentiates the
cytotoxicity induced by chemotherapeutic drugs, and largely
alleviates their side effects, ultimately improving patients’
quality of life and prolonging their lifespan [47]. CHM com-
pounds, CHMs or CHFs may significantly enhance the cyto-
toxic effects of chemotherapeutic agents. A prospective
phase II study in patients with regressive or refractory mul-
tiple myeloma showed improved efficacy with the combina-
tion of melphalan with ascorbic acid and arsenic trioxide
[48]. Alleviation of side effects is an important rationale for
the use of CHMs in chemotherapy. The addition of Astrag-
alus polysaccharide significantly alleviated the side effects of
fatigue, nausea and vomiting, pain, and loss of appetite asso-
ciated with the treatment of advanced NSCLC patients with
vinorelbine and cisplatin, greatly improving the quality of
life of patients [49].

Nevertheless, the concomitant use of CHM compounds,
CHMs, or CHFs with or without chemotherapy might fail to
achieve synergistic efficacy [50]. Moreover, not all combina-
tions lack harmful effects [51]. In terms of combinations of
CHM compounds, CHMs and CHFs, there is a large dis-
crepancy between experimental data and clinical use. More
efficient and reliable methods for researching and estimating
the synergistic effects of CHM-related combinations should
be optimized, such as the network-based approach and
pharmacological networks [52]. In addition, studies of high
quality, especially in the clinic, are needed. The role of the
tumor-promoting inflammatory microenvironment and
abnormal energy metabolism and its interference by herbs
or herbal combinations should be highlighted.

In this study, we obtained 10 core drug-target network
genes by analyzing the drug-target interaction network data
of two extracted compounds from Chinese medicine: TP53,
CASP8, MAPK1, MAPK3, MYC, RELA, NFKB1, IL6, and
NFKBIA. There are many genes and key genes that affect
tumor development, such as the NF-kappa B-cell pathway,
MAPK/ERK signaling pathway, TNF (tumor necrosis factor)
signaling pathway, IL-6 signaling pathway, TP53 signaling
pathway and MYC signaling pathway, which are important
cellular pathways in a variety of tumors.

Many studies have shown that matrine has anticancer
properties. It treats or delays the onset and progression of
tumors by inhibiting the cell division cycle, inducing
apoptosis, and inhibiting the metastasis and proliferation
of cancer cells. It can also reverse anticancer drug resistance
and reduce anticancer drug side effects. These effects have
enabled the widespread use of matrine for the treatment of
various cancers and common types of cancer, such as lung,
breast, stomach, esophagus, colon, liver, and pancreatic can-
cers. Matrine is often used as the main ingredient in injec-
tions to improve chemotherapy efficacy and reduce
chemotherapy toxicity [53]. Matrine treatment destroys liver
cancer cells through multiple ways. For example, matrine
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can promote apoptosis in HCC cells by triggering mitochon-
drial division and activating the Mst1-JNK signaling path-
way, thereby triggering endogenous apoptosis [54].
Matrine activates the AMP protein kinase (AMPK) signaling
pathway, inhibits p53 protein expression, and suppresses
autophagy. Matrine inhibits the AMPK signaling pathway
and converts autophagy into apoptosis [55]. When com-
bined with sorafenib, matrine inhibits miR-21 while upregu-
lating PTEN expression and inducing apoptosis in
hepatocellular carcinoma cells [56]. Studies have shown that
matrine and glycyrrhizin produce anticancer effects in vivo
and in vitro, respectively [57, 58]. Both have the ability to
protect the liver in cases of acute liver injury caused by var-
ious chemicals. Serological evidence [59, 60] suggested that
matrine and glycyrrhizin could inhibit the precancerous
stage of tumors and had a positive effect on tumor
prevention.

Matrine reduces the activity of the ERK pathway by pro-
moting the phosphorylation of MAPK1 and MAPK3 [61],
thereby reducing the aggressiveness of HCC [62]. In this
study, similar conclusions were also obtained through net-
work pharmacology and various bioinformatics methods.
Therefore, the anticancer effect of matrine may be closely
related to the two genes. Matrine inhibits pancreatic cancer
by inhibiting the NF-kappa B signaling pathway [61].
Matrine induces apoptosis of cancer cells by inhibiting the
invasion and metastasis of pancreatic, prostate, and osteo-
sarcoma tumors [62–64]. Matrine inhibits the expression
of the MYC signaling pathway and has a growth inhibitory
effect on human leukemia cells [65]. It inhibits the IL-6 cel-
lular pathway and suppresses the expression of TNF, which
has therapeutic effects on mouse colorectal cancer models.
Matrine also inhibits the migration and proliferation of lung
adenocarcinoma cells by upregulating TP53 expression
levels. We consider that this effect may also occur in the
treatment of hepatocellular carcinoma [66].

Studies have shown that glycyrrhizin has hepatoprotec-
tive, antiviral, anti-inflammatory, anti-immune, and antiul-
cer effects [67]. Research has also shown that glycyrrhizin
has a protective effect against acute liver failure [60]. In addi-
tion, diammonium glycyrrhizinate subdues the severe symp-
toms of COVID-19, such as dyspnea, high fever (above 38
degrees Celsius), and confusion [68]. Emerging evidence
has demonstrated that glycyrrhizin has potential antioxida-
tive stress activity in vitro and in vivo (Figure 3). This study
showed that glycyrrhizin could effectively inhibit the expres-
sion of CYP1A2 and CYP2E1 metabolic enzymes, thereby
reducing the generation of the strong electronic active prod-
uct trichloromethyl (·CC13) and inhibiting its occurrence
from the beginning of the damage mechanism [69]. CYP1A2
and CYP2E1 are the main enzymes of the liver CYP enzyme
system that metabolize exogenous substances [70], which are
important targets involved in the regulation of CCL4-
induced liver injury [71]. The increased expression of
CYP1A2 and CYP2E1 can lead to a significant increase in
the production of strong oxidative active metabolites by
CCl4, thereby aggravating liver injury [72]. Mitochondria
are the body’s energy supply centers. Mitochondrial dys-
function can lead to mitochondrial oxidative stress, further

amplifying its benefits, leading to the release of cytochrome
C in mitochondria into the cytosol, further promoting the
release of inflammatory factors, and then activating down-
stream molecular pathways, causing the occurrence of apo-
ptosis. GLDH mainly exists in the mitochondrial matrix of
hepatocytes. The significant increase in GLDH indicates that
the mitochondria of liver cells are damaged, and a large
amount of GLDH is released from mitochondria, leading
to a significant increase in its content in blood [73]. In this
study, matrine and glycyrrhizin were found to reduce the
content of GLDH in the model group (P < 0:05), and the
results indicated that both glycyrrhizin and matrine could
restore mitochondrial energy metabolism and protect mito-
chondrial function. In addition, the results of serological
tests also suggested that when the two drugs were combined,
the effect was significantly better than that of single drug
administration. In addition, glycyrrhizin, a commonly used
HMGB1 inhibitor, significantly inhibited the expression of
HMGB1 and thus c-MYC, thereby suppressing hepatocellu-
lar carcinoma [74].

Experimental studies in mice showed that the combina-
tion of matrine and glycyrrhizin significantly reduced the
hepatotoxicity of acetaminophen in mice (P < 0:05). Com-
pared with glycyrrhizin and matrine alone, the 48-hour
mortality rate in mice was reduced by 20% and 26.7%,
respectively, and the acetaminophen-induced increase in
hepatic body mass ratio was significantly reduced. These
results suggested that matrine and glycyrrhizin have protec-
tive effects on liver function. Moreover, the combination of
matrine and glycyrrhizic acid increased the content of CD4
+ and CD8+ immune cells in the peripheral blood of mice,
indicating that their combination has the effect of regulating
cellular immunity. The gut microbiota is important for the
host’s health and physiology. The gut microbiota and its
metabolites may activate the immune response and cellular
pathways that kill invading pathogens and initiate a
cancer-fighting immune response [75–78]. The combination
of matrine and glycyrrhizic acid can also enhance apoptosis
and immune function and weaken the immunosuppression
induced by cyclophosphamide (CTX). Combined applica-
tion is better than glycyrrhizic alone. Studies have shown
that the combination of matrine and glycyrrhizic acid can
reduce the absorption of glycyrrhizic acid and accelerate its
decomposition, thereby reducing the accumulation of gly-
cyrrhizic acid in the body and reducing side effects such as
sodium and water retention, hypertension, and hypokalemia
caused by glycyrrhizic acid [79]. At the same time, studies
have shown that the combined application has nonspecific
anti-inflammatory effects [33].

Through analysis and mining, we obtained the drug-target
interaction network of matrine and glycyrrhizin in the treat-
ment of HCC. Although the combination of matrine and gly-
cyrrhizin can enhance liver protection, anticancer, and
nonspecific immunity and reduce immunosuppressive effects,
side effects, and precancerous lesions, it is not clear whether
the combination of the two components can increase the effec-
tiveness and reduce the burden. The bioinformatics database
provides bioinformation on the biomolecular action pathways
and gene pathways of the two components of the core network
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of genes in vivo. In this study, we initially explored the molec-
ular interaction mechanism of the two components in the
treatment of HCC, which laid the foundation for further
research on the mechanism of biomolecular action. In this
study, we concluded that matrine and glycyrrhizin are effective
in the combined treatment of HCC through gene functions,
Gene Ontology such as “cellular response to biotic stimulus,”
“cellular response to tumor necrosis factor,” “response to
tumor necrosis factor,” “response to lipopolysaccharide,”
“response to molecule of bacterial origin,” “cellular response
to lipopolysaccharide,” “cellular response tomolecule of bacte-
rial origin,” “regulation of DNA-binding transcription factor
activity,” “interleukin-1-mediated signaling pathway,” and
“response to nicotine” as well as multiple KEGG cell pathways
such as “hepatitis B,” “human cytomegalovirus infection,”
“hepatitis C,” “Kaposi sarcoma-associated herpesvirus infec-
tion,” “lipid and atherosclerosis,” “human T cell leukemia
virus 1 infection,” “Salmonella infection,” “IL-17 signaling
pathway,” “Chagas disease,” “Toll-like receptor signaling
pathway,” “C-type lectin receptor signaling pathway,” “TNF
signaling pathway,” “apoptosis,” “influenza A,” “NOD-like
receptor signaling pathway,” “pathogenic Escherichia coli
infection,” and “Epstein–Barr virus infection.”

Matrine and glycyrrhizin have similar effects on many
molecular pathways and gene functions, such as inhibition
of the MAPK/ERK signaling pathway, IL-6 signaling path-
way, tumor necrosis signaling pathway, nuclear factor-
kappa B signaling pathway, TP53 signaling pathway, and
MYC signaling pathway. In addition, glycyrrhizin, a com-
mon inhibitor of HMGB1, could reduce the level of CASP8
by decreasing the level of HMGB1, which has been experi-
mentally shown to be an upstream gene of nuclear factor-
kappa B, further reducing the activity of the nuclear factor-
kappa B signaling pathway, thus demonstrating that glycyr-
rhizin could affect CASP8. Glycyrrhizin may exert effects
and further inhibit cancer development through the
CASP8-NF-kappa B pathway. It is noteworthy that glycyr-
rhizin affects CASP8, thus affecting the occurrence and
development of tumors. Although there is no direct evidence
yet, we look forward to follow-up pharmacological experi-
ments [80]. However, through the molecular docking pre-
diction diagrams of glycyrrhizin and CASP8, we also
suspect that glycyrrhizin may have a direct drug-target inter-
action with CASP8, which may become a new finding in this
study.

In addition, we performed Lasso-Cox regression analysis
to construct a Lasso-Cox regression prognostic analysis
model with risk scores for patients treated with two compo-
nents or planned to use two components for HCC. We
obtained the risk score and prognosis survival of the patients
by this model. We could interpret the risk score and prog-
nostic survival through the nomogram of this prognostic
model to guide the clinical treatment strategy.

By analyzing the biological information of matrine and
glycyrrhizin in the treatment of HCC, the risk value of
matrine and glycyrrhizin was positively correlated with 6
immune cells. In addition, the differential expression box-
plots were drawn by measuring the immunohistochemical
gene expression levels between the tumor group and the

normal group in the HPA database, which further verified
the basic conclusion that the three risk genes were highly
expressed in the tumor group (P < 0:05). Therefore, we
believe that this prediction model is accurate. This study
suggested that the same regimen of matrine combined with
glycyrrhizin in the treatment of HCC may have better effi-
cacy in patients with a higher risk value; that is, the level of
immune cells in high-risk HCC patients may be higher than
that in low-risk patients, and the expression of immune
checkpoints is more obvious. Therefore, the risk values
derived from this model may be useful to guide clinical
immunotherapy. In the HCC tumor microenvironment,
the immunosuppression of high-risk tumors may be stron-
ger than that of low-risk tumors. Matrine and glycyrrhizin
therapy may be beneficial for tumor immunotherapy in
patients with HCC in clinical application.

5. Conclusions

Overall, this study analyzed the interactions and molecular
mechanisms of the two drugs on HCC, confirming that the
two drug components of matrine and glycyrrhizin do have
synergistic effects. For example, both components have sim-
ilar effects and can affect the NF-kappa B-cell, MAPK/ERK
signaling, TNF signaling, IL-6 signaling, TP53 signaling,
and MYC signaling pathways. Therefore, it is reasonable to
believe that matrine and glycyrrhizin can synergize at the
molecular pathway level.

Compared with previous studies, we used modern net-
work pharmacology theory to analyze the molecular biological
mechanism of matrine and glycyrrhizin in HCC, innovatively
developed a Lasso-Cox prognostic regression model, and ana-
lyzed the immune effects of both drugs. These studies may be
helpful to guide clinical practice. In future studies, we hope to
verify the conclusions drawn from this study through pharma-
cological experiments and related molecular biology experi-
ments to make the conclusions more accurate and reliable.
There are still some areas to be improved upon in this study,
which are expected to be supplemented in future studies.
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