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Abstract: Marked physiological changes in pregnancy are essential to support foetal growth; however,
evidence on the role of specific maternal metabolic traits from human studies is limited. We integrated
Mendelian randomisation (MR) and metabolomics data to probe the effect of 46 maternal metabolic
traits on offspring birthweight (N = 210,267). We implemented univariable two-sample MR (UVMR)
to identify candidate metabolic traits affecting offspring birthweight. We then applied two-sample
multivariable MR (MVMR) to jointly estimate the potential direct causal effect for each candidate
maternal metabolic trait. In the main analyses, UVMR indicated that higher maternal glucose was
related to higher offspring birthweight (0.328 SD difference in mean birthweight per 1 SD difference
in glucose (95% CI: 0.104, 0.414)), as were maternal glutamine (0.089 (95% CI: 0.033, 0.144)) and
alanine (0.137 (95% CI: 0.036, 0.239)). In additional analyses, UVMR estimates were broadly consistent
when selecting instruments from an independent data source, albeit imprecise for glutamine and
alanine, and were attenuated for alanine when using other UVMR methods. MVMR results supported
independent effects of these metabolites, with effect estimates consistent with those seen with the
UVMR results. Among the remaining 43 metabolic traits, UVMR estimates indicated a null effect
for most lipid-related traits and a high degree of uncertainty for other amino acids and ketone
bodies. Our findings suggest that maternal gestational glucose and glutamine are causally related to
offspring birthweight.

Keywords: Mendelian randomisation; offspring; birthweight; genetics; maternal; metabolites;
glucose; amino acids; lipids; nuclear magnetic resonance

1. Introduction

Birthweight is frequently used as a proxy of foetal growth in population studies.
Babies born with low or high birthweight are at increased risk of neonatal morbidity and
mortality, and birthweight is inversely associated with risk of long-term adverse health
outcomes, such as neurodevelopmental disorders and cardiometabolic diseases [1–9].

During pregnancy, the mother experiences marked physiological changes including
substantial changes in maternal metabolism [10–12]. These changes are necessary to supply
nutrients and oxygen to the foetus, enabling and sustaining healthy foetal growth and
development. It is well known that maternal circulating glucose is transferred across the
placenta to the foetus via facilitated diffusion and plays a vital role in supporting foetal
growth [13–17]. Numerous other maternal metabolites, such as amino acids, fatty acids,
ketone bodies, cholesterol, and glycerol, can cross the placenta and, therefore, potentially
affect foetal growth directly [18]. In addition, some maternal metabolic traits may affect
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foetal growth indirectly (e.g., maternal triglycerides do not cross the placenta but are
substrates for free fatty acids and ketone bodies) [17].

Previous observational epidemiological studies have suggested that maternal metabolic
traits other than glucose (e.g., amino acids, triglycerides, cholesterol) are associated with
birthweight [18–27]. For example, multiple studies have established a biologically plausi-
ble association between maternal lipids and foetal birthweight, independent of maternal
glucose [18–20,26]. However, whether these findings reflect a causal effect of the ma-
ternal metabolite on birthweight is unclear since they are likely to suffer from residual
confounding by multiple maternal lifestyle and health factors [28].

Mendelian randomisation (MR) is an instrumental variable analysis that uses ge-
netic variants, usually single-nucleotide polymorphisms (SNPs), as instruments to infer
causality in the presence of confounding [29–31]. MR has previously been used to explore
the effects of a restricted set of maternal metabolic traits on offspring birthweight [32,33],
which confirmed the causal effect of higher maternal glucose on higher mean offspring
birthweight [32] but did not provide support for a role of maternal cholesterol in low-
and high-density lipoprotein (HDLc and LDLc, respectively) or triglycerides on birth-
weight [32,33]. Recently a large MR study of 19 maternal circulating amino acids on foetal
birthweight found evidence that glutamine and serine may have birthweight-increasing
effects, alongside evidence that leucine and phenylalanine may have birthweight-lowering
effects [34].

Recent technological advances in nuclear magnetic resonance (NMR) have enabled
the metabolic profiling of large-scale population-based studies, including quantification of
glucose, amino acids, ketone bodies, lipids, and many other metabolic traits [35,36]. This
provides a unique opportunity to systematically explore the role of numerous maternal
metabolic traits on birthweight. In this study, we integrated MR and NMR data to conduct
a much broader interrogation of the effect of maternal metabolic traits on birthweight,
using data from up to 210,267 individuals.

2. Results
2.1. Univariable MR

UVMR results obtained using SNPs selected from two independent genome-wide as-
sociation studies (GWAS), i.e., the UK Biobank (UKBB) and Kettunen GWAS, are displayed
in Figure 1; full results are given in Table S1.

Using the SNPs selected from UKBB GWAS (K = 264 SNPs), UVMR of 46 metabolic
traits identified three metabolic traits that fit our criteria and were included in MVMR (i.e.,
p < 0.05 in UVMR); higher maternal alanine (0.137 SD difference in birthweight per 1 SD
difference in alanine (95% CI: 0.036, 0.239)), glutamine (0.089 (95% CI: 0.033, 0.144)), and
glucose (0.328 (95% CI: 0.219, 0.436)) were associated with higher offspring birthweight.
Estimates for ketone bodies were imprecise and had wide confidence intervals (CI). Most
lipoprotein-related traits and fatty acids were precisely estimated around the null (Figure 1).

In the Kettunen GWAS (K = 40 SNPs), four metabolic traits were missing from these
data and no SNPs were selected for another, leaving 41 out of the 46 metabolic traits. UVMR
estimates using SNPs selected from Kettunen GWAS were largely consistent with the UKBB
GWAS (Figure 1), although less precise, due to the lower sample size; hence, fewer SNPs
were selected as instruments for most metabolites (Table S2). Here, four metabolic traits
met our criteria to be included in the MVMR analyses: higher maternal glucose (0.259 SD
difference in birthweight per 1 SD difference in glucose (95% CI: 0.104, 0.414)), isoleucine
(−0.127 (95% CI: −0.226, −0.029)), pyruvate (−0.135 (95% CI: −0.239, −0.031)), and 3-
hydroxbutyrate (0.273 (95% CI: 0.144, 0.403)). We note that the birthweight-increasing effect
of alanine observed in the UKBB GWAS was substantially attenuated when using Kettunen
GWAS-selected SNPs. Additionally, there was a notable difference in the effect estimate for
3-hydroxybutyrate using SNPs selected from Kettunen compared to UKBB GWAS.
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Figure 1. UVMR effect estimates, with 95% confidence interval (CI), for the relation of maternal 
metabolic traits with offspring birthweight using SNPs selected from UKBB and Kettunen GWAS. 
Effect estimates (with 95% CI) are expressed as standard deviation (SD) units of offspring birth-
weight per SD unit change in metabolic trait using the Wald ratio (no. SNPs = 1) or IVW (no. SNPs 
> 1). The number of SNPs selected from UKBB and Kettunen GWAS for each metabolic trait is avail-
able in Table S2. Solid circles identify the metabolic traits that were taken forward to MVMR on the 
basis of having some evidence for statistical association with birthweight in UVMR (p < 0.05). CI: 
confidence interval, GWAS: genome-wide association study, MVMR: multivariable Mendelian ran-
domisation, SNP: single-nucleotide polymorphism, UKBB: UK Biobank, UVMR: univariable Men-
delian randomisation. 

The mean F-statistics were calculated for each metabolic trait included in the UVMR 
analyses, as displayed in Table S3. Mean F-statistics for each univariable model ranged 
from 54.863 (creatinine) to 296.941 (glycine) when using UKBB GWAS-selected SNPs and 

Figure 1. UVMR effect estimates, with 95% confidence interval (CI), for the relation of maternal
metabolic traits with offspring birthweight using SNPs selected from UKBB and Kettunen GWAS.
Effect estimates (with 95% CI) are expressed as standard deviation (SD) units of offspring birthweight
per SD unit change in metabolic trait using the Wald ratio (no. SNPs = 1) or IVW (no. SNPs > 1). The
number of SNPs selected from UKBB and Kettunen GWAS for each metabolic trait is available in Table
S2. Solid circles identify the metabolic traits that were taken forward to MVMR on the basis of having
some evidence for statistical association with birthweight in UVMR (p < 0.05). CI: confidence interval,
GWAS: genome-wide association study, MVMR: multivariable Mendelian randomisation, SNP:
single-nucleotide polymorphism, UKBB: UK Biobank, UVMR: univariable Mendelian randomisation.
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The mean F-statistics were calculated for each metabolic trait included in the UVMR
analyses, as displayed in Table S3. Mean F-statistics for each univariable model ranged
from 54.863 (creatinine) to 296.941 (glycine) when using UKBB GWAS-selected SNPs and
from 31.871 (lactate) to 100.951 (total lipids in very large HDL) for each univariable model
when using Kettunen GWAS-selected SNPs.

When conducting leave-one-out analyses using UKBB-selected SNPs, we did not
observe that any single SNP was driving UVMR estimates (Figure S1a–f).

2.2. Multivariable MR

We selected putative causal metabolic traits to be included in MVMR: alanine, glucose,
glutamine, isoleucine, pyruvate, and 3-hydroxybutyrate. MVMR results including all six
maternal traits in a singular model are shown on Figure 2 and Tables S4 and S5.
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Figure 2. UVMR and MVMR effect estimates, with 95% confidence interval (CI), for six maternal 
metabolic traits (alanine, glucose, glutamine, isoleucine, pyruvate, and 3-hydroxybutyrate) on birth-
weight in SNPs selected from UKBB (a) and Kettunen (b) GWAS. UVMR estimates were calculated 
using the Wald estimate (no. SNPs = 1) or IVW (no. SNPs > 1). All MVMR estimates were calculated 
using IVW. CI: confidence interval, GWAS: genome-wide association study, IVW: inverse variance 
weighting, MVMR: multivariable Mendelian randomisation, SNP: single-nucleotide polymor-
phism, UKBB: UK Biobank, UVMR: univariable Mendelian randomisation. 

First, we consider the results using UKBB-selected SNPs. Of the six selected candi-
date maternal metabolic traits in UVMR, MVMR analyses provided evidence of a direct 
causal effect on offspring birthweight for glucose (0.291 SD difference in birthweight per 
1 SD difference in glucose (95% CI: 0.193, 0.389)), glutamine (0.074 (95% CI: 0.019, 0.130)), 
and possibly alanine (0.083 (95% CI: −0.016, 0.181)), although estimates for the latter were 
partly attenuated and less precise in MVMR compared to UVMR. The magnitude of the 
effects demonstrated was typically slightly larger in UVMR estimates than MVMR esti-
mates, except for pyruvate. 

We then consider the results using Kettunen-selected SNPs. Of the six selected can-
didate maternal metabolic traits in UVMR, MVMR analyses provided evidence of a direct 
causal effect on offspring birthweight for glucose (0.377 SD difference in birthweight per 

Figure 2. UVMR and MVMR effect estimates, with 95% confidence interval (CI), for six maternal
metabolic traits (alanine, glucose, glutamine, isoleucine, pyruvate, and 3-hydroxybutyrate) on birth-
weight in SNPs selected from UKBB (a) and Kettunen (b) GWAS. UVMR estimates were calculated
using the Wald estimate (no. SNPs = 1) or IVW (no. SNPs > 1). All MVMR estimates were calculated
using IVW. CI: confidence interval, GWAS: genome-wide association study, IVW: inverse variance
weighting, MVMR: multivariable Mendelian randomisation, SNP: single-nucleotide polymorphism,
UKBB: UK Biobank, UVMR: univariable Mendelian randomisation.

First, we consider the results using UKBB-selected SNPs. Of the six selected candidate
maternal metabolic traits in UVMR, MVMR analyses provided evidence of a direct causal
effect on offspring birthweight for glucose (0.291 SD difference in birthweight per 1 SD
difference in glucose (95% CI: 0.193, 0.389)), glutamine (0.074 (95% CI: 0.019, 0.130)), and
possibly alanine (0.083 (95% CI: −0.016, 0.181)), although estimates for the latter were partly
attenuated and less precise in MVMR compared to UVMR. The magnitude of the effects
demonstrated was typically slightly larger in UVMR estimates than MVMR estimates,
except for pyruvate.

We then consider the results using Kettunen-selected SNPs. Of the six selected candi-
date maternal metabolic traits in UVMR, MVMR analyses provided evidence of a direct
causal effect on offspring birthweight for glucose (0.377 SD difference in birthweight per
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1 SD difference in glucose (95% CI: 0.093, 0.661)). The estimated magnitude of effect was
slightly attenuated relative to its corresponding UVMR estimate. The precision of estimates
for higher maternal alanine (0.115 (95% CI: −0.231, 0.462)) and higher maternal glutamine
(0.076 (95% CI: −0.106, 0.257)) was reduced in this dataset.

The conditional F-statistics were calculated for each of the MVMR selected models to
test for the presence of weak instrument bias, Table 1.

Table 1. The conditional F-statistics for the metabolic traits included in MVMR main analysis.

Metabolite
Conditional F-Statistics
(UKBB-Selected SNPs,

K = 84)

Conditional F-Statistics
(Kettunen-Selected SNPs,

K = 12)

Alanine 20.292 21.723

3-Hydroxybutyrate 12.986 10.823

Glutamine 48.678 12.603

Glucose 20.179 32.213

Isoleucine 11.406 7.011

Pyruvate 22.916 6.120
K is the number of selected SNPs (K). The conditional F-statistics for both analyses were calculated using summary
genetic data for metabolic traits from UK Biobank. CI: confidence interval.

The conditional F-statistics were calculated for the MVMR-selected models for both
instrument selection approaches (Table 1). For the UKBB GWAS-selected SNPs, conditional
F-statistics ranged from 11.406 (isoleucine) to 48.678 (glutamine), while, for Kettunen GWAS-
selected SNPs, conditional F-statistics ranged from 6.120 (pyruvate) to 32.213 (glucose).

There was strong evidence of between-SNP heterogeneity in both MVMR models,
p = 1.370 × 10−23 and p = 2.415 × 10−11 for the Q-statistic for the UKBB and Kettunen
SNP sets, respectively.

2.3. Other Mendelian Randomisation Methods

For the six selected metabolites (i.e., alanine, glucose, glutamine, isoleucine, pyruvate,
and 3-hydroxybutyrate), we compared our main UVMR estimates using IVW to from
other UVMR methods (i.e., MR-Egger, weighted median, and weighted mode) that rely
on different assumptions about the genetic instruments (Table 2 and Figure S2d). We
performed these additional analyses using UKBB-selected SNPs only (nine to 47 SNPs were
selected for each metabolite) as the number of SNPs selected using Kettunen GWAS was
often insufficient for such analyses (one to six SNPs selected for each metabolite). A similar
pattern of results was found across the UVMR methods for glucose, with estimates found to
be in the same direction as and of similar magnitude to those found using IVW. Estimates
for the effect of glutamine and pyruvate were also found to be in the same direction (Table 2
and Figure S2c,f), although estimates from the weighted median and mode approaches
were attenuated for glutamine. For other metabolites (i.e., alanine, 3-hydroxybutyrate, and
isoleucine) our main UVMR estimates were inconsistent with estimates of one or more of
the alternative UVMR methods, although, in several instances, estimates were imprecise
and their 95% confidence intervals were wide and overlapped (Table 2 and Figure S2a,b,e).
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Table 2. UVMR estimates obtained from a range of estimation methods as a sensitivity test to explore
the presence of horizontal pleiotropy.

MR-Egger
Weighted
Median Weighted

Mode MR-Egger
Weighted
Median

Metabolite Effect Estimate
(95% CI) p Effect Estimate

(95% CI) p Effect Estimate
(95% CI) p

Alanine 0.003
(−0.255, 0.261) 0.982 0.009

(−0.073, 0.091) 0.837 −0.051
(−0.139, 0.037) 0.267

3-
Hydroxybutyrate

0.207
(−0.075, 0.489) 0.171 −0.058

(−0.164, 0.049) 0.287 −0.147
(−0.371, 0.077) 0.217

Glutamine 0.079
(−0.007, 0.165) 0.079 0.037

(−0.004, 0.079) 0.078 0.026
(−0.015, 0.067) 0.220

Glucose 0.279
(0.034, 0.524) 0.037 0.379

(0.297, 0.461) <0.001 0.374
(0.289, 0.458) <0.001

Isoleucine −0.179
(−0.545, 0.187) 0.371 −0.023

(−0.139, 0.093) 0.697 0.042
(−0.137, 0.221) 0.656

Pyruvate −0.061
(−0.171, 0.049) 0.294 −0.048

(−0.115, 0.02) 0.167 −0.063
(−0.138, 0.012) 0.118

3. Discussion

Our findings support a causal effect of some maternal metabolites on offspring birth-
weight. Taken together, our results confirm a causal effect of higher maternal glucose on
offspring birthweight and suggest potential causal effects of higher glutamine. UVMR
and MVMR results were supportive of an effect of higher maternal glutamine on higher
offspring birthweight when using SNPs selected from UKBB GWAS, although results were
less certain when using SNPs selected from Kettunen GWAS due to high imprecision re-
sulting from the small number of SNPs being selected from the latter GWAS. This is in line
with findings from a recent MR study probing the effect of 19 amino acids using large-scale
data from a cross-platform metabolomics GWAS and from the same birthweight GWAS
included in our study [34]. Glutamine is considered a conditionally essential amino acid in
situations of physiological stress, such as pregnancy, when the (foetal) demand may exceed
(maternal) synthesis [37]. The provision of amino acids from the maternal circulation to the
foetus depends on placental amino-acid transporters, which are downregulated in preg-
nancies, resulting in foetal growth restriction [14,37–39]. Further glutamine is an important
source of nitrogen and carbon to the foetus for protein synthesis and energy metabolism, as
well as a precursor for the synthesis of other molecules needed to support foetal growth,
such as nucleotides and glucosamines [40]. Initial UVMR analyses also suggested higher
maternal alanine contributed to higher offspring birthweight; however, this effect was
attenuated when using other UVMR methods in sensitivity analyses or when using SNPs
selected from the Kettunen GWAS. UVMR analysis also identified isoleucine, pyruvate,
and 3-hydroxbutyrate as putative causal metabolites; however, estimates were attenuated
in MVMR or when using SNPs selected from UKBB.

In addition to prioritising putative metabolites influencing foetal growth, our study
indicates that maternal lipid traits did not seem to contribute substantially to variations
in offspring birthweight in this well-nourished population. This is supported by UVMR
results, which estimated a null effect for most of lipid- and lipoprotein-related traits on
birthweight. These findings are in line with previous MR studies of conventional clini-
cal chemistry lipid traits (total HDL and low-density lipoprotein (LDL) cholesterol, and
triglycerides [32,33]), but in disagreement with previously hypothesised effects of maternal
triglycerides on offspring birthweight based on human observational studies and labora-
tory animal studies [19,20,26]. Furthermore, our study was unable to confirm the effects of
maternal leucine and phenylalanine on decreasing birthweight and of serine on increasing
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birthweight as reported by a recent MR study [34], given that these were not picked up as
causal in the UVMR metabolic trait selection procedure (i.e., leucine and phenylalanine) or
were unavailable in our dataset (i.e., serine).

To our knowledge, this is the first study to integrate MR and high-throughput metabolomics
data to (de)prioritise putative maternal metabolic factors influencing foetal growth. These
findings could contribute to better understanding of key maternal molecular mechanisms
influencing foetal growth.

One key challenge is determining which risk factors to include in the model. Including
all available causal risk factors without careful consideration can be problematic due to the
potential for bias due to the inclusion of highly similarly genetically predicted exposures
or low power to identify the relevant risk factors when many risk factors which do not
have a causal effect are included in the model [41]. We addressed such a challenge using
a two-step procedure. First, we reduced the redundancy in the data by excluding highly
related molecular traits and traits that were almost perfectly genetically correlated; thus,
the genetically predicted values of the traits are indistinguishable. Second, we selected
candidate metabolic traits for MVMR according to the results from UVMR, which is
important to avoid diluting the predictive power of the underrepresented metabolite
instruments through the inclusion of many strongly instrumented metabolic traits that
were found to have no univariable relationship with the outcome. Although it is possible
that bias in the UVMR due to pleiotropy could act in the opposite direction to a true causal
effect to mask the effect of the metabolite on birthweight, such pleiotropy would have to be
similar in magnitude to the causal effect. As our main concern in this analysis is pleiotropy
acting through similar metabolic traits to the exposure, we consider it to be unlikely that
such pleiotropy would act to mask a causal effect. MVMR analyses are generally of lower
power than UVMR analyses; therefore, where no effect is observed in the UVMR due to
low power, we would also not expect to be able to observe an effect for that metabolite in
any MVMR analysis [41].

One key limitation of our study is the possibility that horizontal pleiotropy from traits
not included in MVMR might have biased our results. The MVMR-IVW method will
only provide a consistent estimate if all variants are valid instruments and not affected by
unbalanced pleiotropy [41,42]. Given the interrelatedness of metabolites and their shared
metabolic pathways, residual pleiotropy could plausibly bias our findings. Additionally, the
calculated Q-statistics demonstrated strong heterogeneity within both MVMR models and
inconsistencies across different UVMR methods, indicative that pleiotropy may potentially
bias the causal effect estimates.

Another limitation of our study is the sample overlap between individuals in the
risk factor and outcome datasets in the main analysis. Here, in the main analyses, UKBB
participants were included in the SNP–risk factor and SNP–outcome estimates, with ap-
proximately ~30% of participants in the birthweight GWAS present in the UKBB metabolic
traits GWAS. Selecting instruments in the same sample as the MR analysis may introduce a
winner’s curse and overprediction; thus, we performed external validation and selected
instruments from an independent dataset to assess the extent of the bias as a sensitivity
analysis [43,44]. SNPs were identified for each available metabolic trait within the indepen-
dent GWAS; then, summary data was extracted from the UKBB GWAS to minimise loss of
power and maintain consistency of metabolic traits in the analysis. Our results consistently
demonstrated statistical evidence that maternal glucose has a causal relationship with
offspring birthweight using both UKBB and Kettunen GWAS-selected SNPs, which is
reassuring given the well-established role of maternal glucose on offspring birthweight.

Furthermore, findings from this study should be interpreted bearing in mind that our
sample mostly included individuals from European ancestry from high-income settings,
which might limit the generalisability of the findings, and that the NMR platform used in
this study is highly enriched for lipoprotein-related traits, whereas many other metabolic
pathways are underrepresented. Thus, future research should focus on including more
diverse populations and use higher-resolution metabolomics data, allowing for a broader
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interrogation of maternal metabolic traits. These will become feasible as the availability
of large-scale GWASs in individuals of non-European settings and the use of mass spec-
trometry metabolomics increase. In addition, our findings are exploratory, and further
MR studies investigating the mechanisms linking genetic variants to specific candidate
metabolic traits (e.g., alanine and glutamine) are warranted to assess in depth the credibility
of these findings and the plausibility of bias due to horizontal pleiotropy.

4. Materials and Methods
4.1. Overview

Figure 3 provides an overview of the study design. In brief, we selected genetic
instruments for up to 46 NMR metabolic traits from two independent genome-wide as-
sociation studies (GWAS), referred to as UK Biobank and Kettunen GWAS throughout,
including up to 115,078 and 24,925 European ancestry individuals, respectively. We con-
ducted two-sample univariable MR (UVMR) analysis to estimate the total causal effect of
each NMR metabolic trait on offspring birthweight using the two sets of GWAS-selected
genetic instruments. Genetic association data for metabolic traits and birthweight were
extracted from UK Biobank (UKBB) and the 2019 Early Growth Genetics consortium (EGG)
(N ≤ 210,267).
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Figure 3. A summary of methods used to select and estimate effects of metabolic traits on offspring
birthweight in the Mendelian randomisation analysis. GWAS: genome-wide association study,
MVMR: multivariable Mendelian randomisation, NMR: nuclear magnetic resonance, SNP: single-
nucleotide polymorphism, UKBB: UK Biobank, UVMR: univariable Mendelian randomisation, r2:
genetic correlation between SNPs.

Importantly, genetic association data for offspring birthweight reflected direct maternal
genetic effects (i.e., the effect of maternal genotype on offspring birthweight after accounting
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for potential bias from offspring genetic effects due to correlations between maternal and
offspring genotypes) [45,46].

Many genetic variants regulate processes that affect multiple metabolites; thus, results
from UVMR are likely biased by horizontal pleiotropy. Therefore, we used UVMR to
identify candidate metabolic traits (p < 0.05), which were then taken forward into multi-
variable MR (MVMR) analyses. MVMR is an extension of UVMR that is suitable to jointly
estimate the direct causal effect when considering risk factors that may be correlated, such
as metabolic traits. In MVMR, multiple genetic variants that are potentially associated with
several measured risk factors of interest are used to simultaneously estimate the direct
causal effect of each risk factor on the outcome [47]. This accounts for pleiotropic effects via
other risk factors included in the model which may bias UVMR estimates [48]. The effect
estimated by MVMR is the direct effect not mediated by any other variable in the model.

4.2. Data Sources

Data were extracted from publicly available datasets of summary associations from
GWAS consortia (Table S6).

4.2.1. Genetic Association Data for Metabolic Traits

We used genetic association data from two publicly available GWASs of metabolic
traits available on the MR-Base data catalogue [49], generated as previously described.
In both GWASs, metabolic traits were measured using targeted high-throughput NMR
metabolomics (Nightingale Health Ltd., Helsinki, Finland), which provides simultaneous
quantification of 249 metabolic traits (i.e., 165 metabolic traits and 84 derived ratios), encom-
passing routine lipids, lipoprotein subclass profiling (including lipid composition within
14 subclasses), fatty-acid composition, and various low-molecular-weight metabolites such
as amino acids, ketone bodies, and glycolysis metabolites. Technical details and epidemi-
ological applications were previously reviewed [36,50], and a full list of 249 metabolic
traits is provided in Table S7. Metabolic traits were standardised and normalised prior to
analyses using rank-based inverse normal transformation (INT).

For the first GWAS, genetic association data were generated for up to 115,078 UK
Biobank participants of European ancestry (54% females; age (years): mean = 56, SD: 8) for
which metabolic traits were available using linear mixed model (LMM) association method
as implemented in BOLT-LMM (v2.3) adjusting for genotype array, fasting time, and sex
(hereafter ‘UKBB GWAS’), as previously described [51–54]. For the second GWAS, genetic
association data were generated for up to 24,925 individuals of European ancestry from the
Kettunen et al. meta-analysis including 10 studies adjusting for age, sex, time from last meal,
and, where applicable, 10 first principal components [55] (hereafter ‘Kettunen GWAS’). The
proportion of females in these studies ranged between 37% and 64%, with a mean age range
of 31.2–61.3 years. The first dataset is better powered due to its larger sample size which
enables the selection of a greater number of genetic instruments. However, there is sample
overlap; the GWAS used for instrument selection includes UKBB participants in the genetic
association data for both metabolic traits and offspring birthweight. Analyses using the
Kettunen GWAS are likely to be underpowered due to its smaller sample size but are less
likely to suffer from bias due to sample overlap as it does not include UKBB participants.

4.2.2. Genetic Association Data for Offspring Birthweight

Genetic association data for offspring birthweight were extracted from a recent GWAS
meta-analysis including 210,267 European participants, combining results of 41 studies
from the EGG consortium and UKBB, with mean age at delivery ranging from 24.5 to
31.5 years (see Appendix A for further details) [56]. In this study, we used data from
maternal genetic effects on offspring birthweight that was adjusted for offspring genotype,
as previously described [56,57], in order to avoid potential biases due to the correlation
between foetal and maternal genotypes [56,57].
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4.3. Primary Exclusion Criteria for Metabolic Traits to Go into UVMR Analyses

The NMR platform used in this study includes many lipids and lipoproteins that are
known to be closely (i) numerically and/or (ii) biologically related. As an example of (i),
concentrations of cholesterol in different lipoprotein particles sum to the concentration
of total cholesterol; therefore, total cholesterol is correlated with cholesterol in specific
lipoproteins. As an example of (ii), the three glycolysis metabolites (glucose, lactate, and
pyruvate) are metabolised via the same biological pathway (i.e., glycolysis), and, as a result,
are correlated. This can result in variance inflation and biased estimates of effects in both
observational and MVMR analyses if an attempt were made to mutually adjust for all or
even a subset of them at the same time, unless one has extremely large sample sizes [58].

Therefore, we applied three exclusion criteria to the full list of 249 NMR metabolic
traits to reduce redundancy in our UVMR analyses and avoid multicollinearity in our
MVMR models (Table S7 and Figure S3).

First, we excluded those with multiple measures that reflected the same metabolic
entity (e.g., same trait expressed as a proportion or concentration) or where multiple
measures reflected a composite measure of highly related traits (e.g., ‘total fatty acids’ is a
composite/combined measure of saturated, monounsaturated, and polyunsaturated fatty
acids). As a result, we excluded 84 derived ratios and three composite fatty-acid measures
(e.g., total fatty acids, polyunsaturated fatty acids, and degree of unsaturation).

Second, among lipoprotein-related traits, we selected measures related to circulat-
ing lipid composition (i.e., total triglycerides, phospholipids, esterified cholesterol, free
cholesterol, phosphatidylcholines, and sphingomyelins), apolipoproteins A1 and B, and
total lipids in 14 lipoprotein subclasses (i.e., extremely large, very large, large, medium,
small, and very small very low-density lipoprotein (VLDL), IDL, large, medium, and small
LDL, very large, large, medium, and small HDL). It has been demonstrated previously
that we cannot conditionally predict different lipid measures within these subclasses in
the same MVMR model due to the very high correlation between these traits [41]. This
makes conducting UVMR on different elements within a subclass of lipoprotein redundant
as they are not genetically separable and each UVMR would give equivalent estimated
effects. As a consequence, we a priori chose to focus on total lipids in each subclass. This
selection resulted in the exclusion of 114 measures, mostly representing lipid composition
and particle concentration within lipoproteins/lipoprotein subclasses.

Third, we checked the genetic correlation across the remaining measures (Figure S4).
If two traits are approximately genetically identical, they cannot be distinguished in UVMR
analysis or analysed as two distinct traits in a MVMR analysis, due to multicollinear-
ity. Therefore, if a pair of metabolic traits was found to be highly genetically correlated
(r2 > 0.985), one element of the pair was removed. This resulted in the exclusion of two ad-
ditional metabolic traits (“total lipids in small LDL” and “total lipids in very large VLDL”).

After all exclusions, detailed in Table S7, 46 metabolic traits remained available for
analyses (Figure S4).

4.4. Statistical Analyses

We estimated the effects of maternal metabolic traits on offspring birthweight using
UVMR and MVMR. Genetic association data for metabolic traits and offspring birthweight
were harmonised to reflect the same effect allele using allele frequency information to infer
the strand for palindromic SNPs [59]. Palindromic SNPs with MAF > 42% were considered
ambiguous and removed from analyses. All statistical analyses were performed using R
(version 4.0.3, the R Core team, Boston, MA, USA) using the ‘two-sample MR’ R package
(version 4.0.2, Bristol, UK) [49] and the ‘MVMR’ R package (version 1, Bristol, UK) [41].

4.5. Univariable MR

We selected SNPs strongly and independently associated with each of our selected
metabolic traits using a threshold of p < 5 × 10−8 and r2 < 0.01 (using 1000 Genomes
EUR population for estimating pairwise linkage disequilibrium (LD)) using data from the
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UKBB and Kettunen GWASs. Then, we used UVMR to combine genetic association data
for metabolic traits (from UKBB) and birthweight (from EGG + UKBB) using SNPs selected
from UKBB and Kettunen GWASs. We applied an automated approach for the method of
analysis, contingent on the number of associated SNPs for each metabolite; 1 SNP—Wald
ratio estimate, >1 SNPs—IVW estimate.

We present UVMR results according to subclasses of metabolic traits (amino acids,
apolipoproteins, cholesterol esters, fluid balance, inflammation, ketone bodies, lipoprotein
subclasses, other lipids, phospholipids, and triglycerides).

To test instrument strength, we calculated the mean F-statistics across SNPs for each
metabolic trait included in the UVMR analyses [41,47].

We also performed leave-one-out analyses, sequentially omitting the indicated SNP
and rerunning the analysis. This may indicate whether the estimated association is being
substantially driven by a singular SNP.

4.6. Multivariable MR

All metabolic traits that demonstrated statistical evidence of an effect in the UVMR
(p < 0.05) were included in the MVMR estimation of the direct effect on birthweight (using
either of UKBB and Kettunen GWAS-selected SNPs).

We then applied MVMR to estimate the direct effect on birthweight of all candidate
metabolic traits selected on the basis of UVMR results [47]. All SNPs associated with at least
one of the candidate metabolic traits were selected for the MVMR analysis. An additional
round of clumping was applied to ensure no genetic variants for one metabolic trait were
in LD with genetic variants for any other metabolic trait.

To test instrument strength, the conditional F-statistic was calculated, which is the
multivariable equivalent to a standard F-statistic; thus, a conditional F-statistic greater
than 10 in MVMR implies that the model is unlikely to suffer from substantial weak
instrument bias [47]. A phenotypic correlation matrix derived from NMR UKBB data was
used to approximate the pairwise covariances for the SNP–metabolic trait associations in
the calculation of conditional F-statistics.

Outlying instruments in MVMR analysis were quantified by the Q-statistic, calculated
from the p-value-adjusted χ2 distribution. Degrees of freedom were determined by the
number of instruments available for MVMR analyses, minus the number of metabolic traits,
minus one [41].

4.7. Other Mendelian Randomisation Methods

We applied alternative UVMR estimation methods that are reliant upon different
assumptions to explore the sensitivity of our main UVMR estimates to the IVW method’s
assumptions. MR-Egger, weighted median, and weighted mode were used to explore
the presence of horizontal pleiotropy and the robustness of our results to the presence
of invalid instruments [60–62]. If the magnitude and direction of effects are inconsistent
with the estimates obtained via IVW, this is indicative of bias due to invalid instruments.
MR-Egger can estimate causal effects in the presence of invalid instruments provided
that the magnitude of the pleiotropic effect is unrelated to the strength of the association
between the instruments and the exposure (known as the INSIDE assumption) [61]. The
weighted median estimate provides a consistent estimate of the causal effect when at least
50% of the weight in the analyses comes from valid instruments [60]. Similarly, but less
restrictive than weighted median, the weighted mode estimate requires the largest subset
of instruments to be valid in which they identify a homogeneous causal effect estimate [62].

5. Conclusions

In summary, in this study, we demonstrated the utility of integrating MR and metabolomics
data to (de)prioritise candidate maternal molecular traits influencing foetal growth. Our
findings confirm previous studies on the strong relation between maternal glucose and
offspring birthweight, highlight glutamine as a potential causal metabolite, and do not
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support a relationship between several maternal lipids and offspring birthweight. Iden-
tification of specific metabolic traits represents a unique opportunity to understand the
relation between the intrauterine environment and offspring growth.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/metabo12060537/s1: Figure S1a–f. Plots of the leave-one-out sensi-
tivity analysis of the IVW MR analysis excluding the specified SNP: (a) alanine, (b) 3-hydroxybutyrate,
(c) glutamine, (d) glucose, (e) isoleucine, and (f) pyruvate; Figure S2a–f. Scatter plots of UVMR analy-
ses using IVW, MR-Egger, weighted median, and weighted mode: (a) alanine, (b) 3-hydroxybutyrate,
(c) glutamine, (d) glucose, (e) isoleucine, and (f) pyruvate; Figure S3. Genetic correlation between
metabolic measures based on n = 114 harmonised SNPs within the Kettunen-selected SNPs; Figure S4.
Exclusions made to establish the list of metabolites; Table S1. UVMR effect estimates from both main
analyses and using Kettunen-selected SNPs; Table S2. The number of SNPs (K) representing each
metabolite in UVMR analyses; Table S3. Mean F-statistics calculated for UVMR models; Table S4.
MVMR effect estimates using UKBB-selected SNPs; Table S5. MVMR effect estimates using Kettunen-
selected SNPs; Table S6. List of GWASs included in SNP selection; Table S7. UKBB NMR metabolites
included in analysis.
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Appendix A

Early Growth Genetics Consortium (EGG) and UK Biobank Offspring Birthweight GWAS

EGG studies were adjusted for study specific covariates where available, described in
detail elsewhere [56].

A total of 216,839 UK Biobank participants self-reported the birthweight of their first
offspring in kilograms (kg) during at least one assessment centre visit [64]. Individuals
that reported an offspring birthweight lower than 2.2 kg or greater than 4.6 kg, or that
reported being part of a multiple birth were excluded. Where birthweight was reported
at multiple timepoints, the average was calculated, and women with a mean difference
between offspring birthweight greater than 1 kg were excluded. Thus, a total of 210,267
people of European ancestry and a valid measure of offspring birthweight were included
in analyses.

The GWAS of offspring birthweight contained a total of 210,267 individuals of Euro-
pean ancestry: (1) 12,319 individuals from 10 GWAS in the EGG consortium of European
descent imputed to the HapMap 2 reference panel; (2) 7542 individuals from two GWASs
in the EGG consortium of European descent imputed to the Haplotype Reference Consor-
tium panel (HRC); (3) 190,406 individuals of white European origin from the UK Biobank
imputed to the HRC reference panel [56].

Summary statistics from the EGG and UK Biobank were combined using a fixed-effects
meta-analysis in GWAMA 8, and variants that failed GWAS quality control filters were
excluded [65].
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