
GigaScience, 9, 2020, 1–6

doi: 10.1093/gigascience/giz163
Technical Note

TE CHNICAL NO TE

Telescope: an interactive tool for managing large-scale
analysis from mobile devices
Jaqueline J. Brito 1,*,†, Thiago Mosqueiro2,†, Jeremy Rotman3, Victor Xue3,
Douglas J. Chapski4, Juan De la Hoz5, Paulo Matias6, Lana S. Martin 1,
Alex Zelikovsky7,8, Matteo Pellegrini2 and Serghei Mangul 1,*

1Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue,
Los Angeles, CA 90089-9121, USA; 2Institute for Quantitative and Computational Biosciences, University of
California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; 3Department of
Computer Science, University of California, Los Angeles, 404 Westwood Plaza, Los Angeles, CA 90095, USA;
4Department of Anesthesiology, David Geffen School of Medicine at UCLA, 650 Charles E. Young Drive, Los
Angeles, CA 90095, USA; 5Center for Neurobehavioral Genetics, University of California Los Angeles, 695
Charles E Young Dr S, Los Angeles, CA 90095, USA; 6Department of Computer Science, Federal University of
São Carlos, km 325 Rod. Washington Luis, São Carlos, SP 13565–905, Brazil; 7Department of Computer Science,
Georgia State University, 1 Park Place, Atlanta, GA 30303, USA; and 8The Laboratory of Bioinformatics, I.M.
Sechenov First Moscow State Medical University, Moscow 119991, Russia
∗Correspondence address. Jaqueline J. Brito, Dept. of Clinical Pharmacy, School of Pharmacy, University of Southern California.1985 Zonal Avenue, Los
Angeles, CA 90089-9121, USA. E-mail: britoj@usc.edu https://orcid.org/0000-0002-7158-3253; Serghei Mangul, Dept. of Clinical Pharmacy, School of
Pharmacy, University of Southern California.1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA. E-mail:
mangul@usc.edu https://orcid.org/0000-0003-4770-3443
†These authors contributed equally to this work.

Abstract

Background In today’s world of big data, computational analysis has become a key driver of biomedical research.
High-performance computational facilities are capable of processing considerable volumes of data, yet often lack an
easy-to-use interface to guide the user in supervising and adjusting bioinformatics analysis via a tablet or smartphone.
Results To address this gap we proposed Telescope, a novel tool that interfaces with high-performance computational
clusters to deliver an intuitive user interface for controlling and monitoring bioinformatics analyses in real-time. By
leveraging last generation technology now ubiquitous to most researchers (such as smartphones), Telescope delivers a
friendly user experience and manages conectivity and encryption under the hood. Conclusions Telescope helps to mitigate
the digital divide between wet and computational laboratories in contemporary biology. By delivering convenience and ease
of use through a user experience not relying on expertise with computational clusters, Telescope can help researchers close
the feedback loop between bioinformatics and experimental work with minimal impact on the performance of
computational tools. Telescope is freely available at https://github.com/Mangul-Lab-USC/telescope.

Keywords: bioinformatics; job scheduler; high-throughput computing; bioinformatics analysis

Received: 2 October 2019; Revised: 26 November 2019; Accepted: 19 December 2019

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
https://orcid.org/0000-0002-7158-3253
http://orcid.org/0000-0003-2311-7191
https://orcid.org/0000-0003-4770-3443
mailto:lanamart@usc.edu
https://orcid.org/0000-0002-7158-3253
https://orcid.org/0000-0002-7158-3253
mailto:mangul@usc.edu
https://orcid.org/0000-0003-4770-3443
https://orcid.org/0000-0003-4770-3443
https://github.com/Mangul-Lab-USC/telescope
http://creativecommons.org/licenses/by/4.0/


2 Telescope: an interactive tool for managing large-scale analysis from mobile devices

Introduction

Exponential growth in the volume of available omics data has
reshaped the landscape of contemporary biology, creating de-
mand for a continuous feedback loop that seamlessly integrates
experimental biology and bioinformatics [1, 2]. Life science and
biomedical researchers must choose from an unprecedented di-
versity of software tools and datasets designed for analyzing in-
creasingly large outputs from modern genomics and sequencing
technologies, which are supported by high-performance cluster
infrastructures [3]. Scientific discovery in academia and industry
now relies on the seamless integration of bioinformatics tools,
omics datasets, and large clusters [4–8].

Many life science and biomedical researchers lacking compu-
tational training now must learn how to use computational tools
in order to process data from their experiments or seek broad
patterns in omics data. Ideally, any bioinformatics analysis tool
should provide an easy-to-use interface through which the re-
searcher can run and monitor each analysis of omics data [9].
A friendly user interface for omics tools would also enable the
researcher with limited computational background to monitor
and adjust their analysis without manual intervention. Lack of a
user interface for management tools poses an obstacle to novice
users who wish to perform analysis on high-performance com-
puting clusters [10]. The procedure of connecting to the cluster
often involves a multi-step process and requires generating SSH
keys or other forms of authentication. The necessity of using
the UNIX command line for each step may discourage potential
users.

Yet most bioinformatics tools require the researcher to
spend a large amount of time manually adjusting and super-
vising actively running analytical tasks (referred to as jobs) via
the command line in a computational pipeline. Today’s high-
performance computational facilities are capable of processing
considerable volumes of data, but a new bottleneck has devel-
oped: their user interfaces require the researcher fluent knowl-
edge of the command line in order to manipulate analysis in real
time.

There is a pressing need to seamlessly integrate bioinfor-
matics analysis into the experimental analysis performed by
biomedical researchers, in order to expand research opportuni-
ties to individuals who lack a computational background and to
reduce the time burden of any researcher who uses a compu-
tational pipeline. One example in this direction is the Galaxy
Project, which provides a friendly and interactive interface to
deploy simple bioinformatics pipelines [11]. Despite many ad-
vantages, Galaxy Project lacks a flexible interface to manage the
analytical tasks, and many parameters related to allocating the
computational resources are predefined (i.e., the number of pro-
cesses is hard coded) [12].

Bridging the gap between bioinformatics and biological
experimentation requires an on-the-fly job management ap-
plication that is fronted by a user-friendly interface [13]. We
developed Telescope to addresses this challenge. Telescope is
capable of leveraging common and familiar technologies that
do provide a user-friendly interface to manage jobs from any
mobile device without compromising flexibility for advanced
users. For example, Telescope allows users to track with their
smartphones any bioinformatics tools (e.g., GATK [14]) or jobs
submitted by specific platforms (e.g., Galaxy Project [14, 15]),
displaying in real time the partial outputs, warnings, and error

messages associated with each job. Telescope includes the
following functionality:

� tracking the progress and performance of actively running
bioinformatics tools;

� displaying in real time the current output of an active job;
� interacting with the computational cluster with minimal ef-

fort, allowing cancellation and/or rescheduling of jobs with
different parameters, or new job queuing;

� using statistics archived from previous jobs to estimate the
resources necessary for future jobs.

Telescope is designed to natively operate with a simple and
straightforward interface based on Web 2.0 technology that is
compatible with most modern devices (e.g., tablets and smart-
phones). Moreover, Telescope assumes little from the server
side, requiring only the existence of a scheduling system (e.g.,
Sun Grid Engine [SGE], SLURM [16]) and SSH connection, both
elements featured in virtually all cluster systems dedicated to
high-performance computing. Because no further assumptions
are made, Telescope is tuned to interfere as minimally as possi-
ble with cluster performance. We successfully tested Telescope
at the University of California, Los Angeles (UCLA) campus-wide
computational cluster [17], and we designed the tool for smooth
integration with other cluster systems. To integrate Telescope
in high-performance clusters, the technical team managing the
cluster must only review Telescope’s requirements.

Related Work

Several tools exist that provide management and monitoring of
bioinformatics analysis tasks, but they offer limited functional-
ity and deployment when compared to Telescope. PHPQstat [18]
and GE Web Application [19] are open-source PHP applications
that provide web interfaces that allow users to monitor the sta-
tus of jobs managed by SGE, a commonly used high-throughput
cluster system. PHPQstat and GE Web Application are limited
to use with SGE and display only details of the jobs currently
running on the cluster. (Telescope includes in the display for
each job additional functionalities, such as job submission and
tracking history.) Virtual Desktop (VDI) [20] provides users a web-
based user interface to interact with the Faculty of Arts and Sci-
ences, Research Computing (FASRC) Cluster at Harvard Univer-
sity. Among other functionalities, VDI allows users to check the
status of a job, edit an existing job, and submit new jobs. How-
ever, VDI is proprietary software that is limited to deployment
on the FASRC Cluster; implementation details are not publicly
available.

Applications of distributed processing frameworks, such as
Apache Spark [21] and Hadoop MapReduce [22], can be mon-
itored via the framework’s web-based user interfaces. These
tools display detailed information about each job, including
the worker nodes, statuses of job stages, and memory us-
age. Applications such as Apache Spark, Hadoop, and MapRe-
duce are specifically designed for each framework and are
incapable of working with commonly used scheduling sys-
tems like SGE or individual cluster systems managed by
universities.

Several existing tools can be used to create and monitor jobs
using a web-based interface, but they support only specific pro-
gramming languages or processing pipeline formats. For exam-
ple, Luigi [23] is a Python module that can be used to manage



Brito et al. 3

jobs via the Internet. Airflow [24] allows the creation of directed
acyclic graphs (DAGs) that specify a pipeline for processing of
tasks; it also provides a user interface that allows users to vi-
sualize the processing status of the jobs specified by the DAGs.
Compared with these tools, Telescope is a more general tool be-
cause its main objective is to leverage the common existence
of scheduling systems (e.g., SGE) on clusters. Thus, Telescope
is neither designed for nor restricted to a specific programming
language or processing pipeline format. Telescope was initially
developed to work with SGE, but it is designed to be configurable
to other scheduling systems.

Finally, several tools enable an interactive approach to build-
ing and executing bioinformatics analysis tasks but lack a func-
tion that allows the user to remotely monitor jobs. Jupyter Note-
books, an open-source web application that supports the cre-
ation and sharing of live code and data visualizations, allow
users to connect to clusters and run jobs using web browsers
[25, 26]. However, the Jupyter Notebooks system does not allow
the user to monitor jobs from a mobile device.

Methods

Telescope comprises 2 main features (Fig. 1): a mobile-friendly
user interface that relies on Web 2.0 and a connection to SSH-
enabled servers. Telescope gathers job information through a Job
Manager, which connects to the target cluster via the Connec-
tion Manager. Job information is then stored in Telescope’s Lo-
cal Database to support job analytics and a searchable history.
The User Interface relies primarily on both the Local Database
and the Rate Limiter to render all relevant job information into
a mobile-friendly web page while limiting the impact of Tele-
scope’s interaction with the target cluster. In the following sec-
tions, we describe Telescope’s key components in detail.

Figure 1: Telescope architecture. The Job Manager gathers job information by
connecting to the target cluster via its Connection Manager. Telescope’s Local
Database keeps records of this information, which is rendered by the User Inter-
face into a mobile-friendly web page.

Job Manager

This component handles all job requests. The Job Manager sup-
ports the operation of checking a job’s status, cancelling an
existing job, and creating a new job. Given a cluster’s specific
scheduler manager, the Job Manager leverages automated code
generation based on the input data. The generated code is
routed to the Connection Manager, which leverages SSH’s secure
code execution capability. The Telescope Core then stores the re-
sults from a completed job in the Local Database.

Connection Manager

This component interfaces with the target cluster. The Connec-
tion Manager establishes communication via an SSH connec-
tion using key pairs for authentication. Telescope then leverages
this connection to exchange discrete messages with the cluster
server. As the messages are encrypted using the industry stan-
dard SSH protocol, Telescope is able to gather information with-
out compromising the user’s privacy. The Connection Manager
also stores any SSH keys provided by the user.

Local Database

The Local Database keeps records of all monitored jobs. An en-
try is created for each job and archives the associated job ID, job
name, and user login. The Local Database also stores informa-
tion regarding the requested resources (e.g., number of cores re-
quested, memory requested), the current status of the job, and
relevant metrics (e.g., elapsed time, maximum peak memory).
The stored attributes can be configured for different scheduling
systems (Table S1 lists the attributes in the table Job assuming a
cluster with SGE). These records are retained over time to sup-
port job statistics and analytics. As these data are aggregated,
the average memory and elapsed time for a given bioinformatics
pipeline may be extracted as a function of the input parameters.

Status Scheduler

For each job monitored by Telescope, the Status Scheduler peri-
odically checks the cluster to update the Local Database with the
most recent status data. The Status Scheduler is a background
process and triggers update requests for all jobs in predeter-
mined time intervals. These updates are performed in 2 steps.
First, Telescope issues a query to obtain a list of all jobs running
in the cluster. Then, for each active job, a new query requests
detailed information. For ad hoc requests from a user, only this
user’s jobs are inspected.

Telescope Core

The Telescope Core interconnects all components in the Tele-
scope application. The User Interface and Status Scheduler gen-
erate job requests that are sent to the Telescope Core, which the
Job Manager receives and handles. The results of completed job
requests are propagated to update the Local Database, User In-
terface, and Cache. Telescope uses a Rate Limiter to restrict the
rate of requests running under a specified threshold, which pre-
vents an overload of the system running Telescope and, more
importantly, the target computational cluster. (Rate limiting is
a common technique used to prevent denial of service attacks
[27].) Each user request must pass through this limiter before
reaching the Telescope Core. When the current rate of job re-
quest exceeds the maximum threshold, additional user requests
are sent to the Cache, which maintains the results of the user’s



4 Telescope: an interactive tool for managing large-scale analysis from mobile devices

last requests, rather than the Telescope Core. In addition, Tele-
scope applies an exponential back-off algorithm that increases
the time interval during which the system can accept another
request from the same user.

User Interface

Users interact with Telescope through a mobile-friendly web in-
terface (Fig. 2). User authentication when logging into Telescope
is performed via the OAuth protocol [28], which conducts ver-
ification using the user’s existing accounts from popular Inter-
net services (e.g., Google, Twitter, Facebook). After logging into
Telescope, the initial web page displays a summary of all jobs
actively running on the cluster under the user’s account (Fig. 2,
left panel), including the job identification code and name, user-
name, current state, and starting timestamp. Each job ID is
linked to a page containing more specific data for that job (Fig. 2,
right panel), including the name of the script file and directory,
the content of the script file, and the last few available lines from
the output file. Warnings and error messages are collected from
the content of logs, defined on .e files. In addition to visualiz-
ing jobs that are queued, users can also cancel or create new
jobs via the User Interface. Therefore, the User Interface also
supports inputting parameters to pre-defined bioinformatics
pipelines.

Security

Because Telescope handles private information and SSH keys,
we designed a system that leverages industry standards for
data handling and mitigation of vulnerabilities. Stored SSH pri-
vate keys are encrypted using PBKDF cryptography, as recom-
mended by the Public-Key Cryptography Standards (RFC 8018)
[29]. In cases in which a private key is compromised, Telescope
users may initiate a key revocation policy. Telescope currently
supports SSH key revocation by deleting the compromised SSH
fingerprints and updating the revocation list, a procedure that

covers most Linux distributions. If a custom security policy is
required by a user or cluster administration team, Telescope’s
modular implementation can be easily tailored by Telescope ad-
ministrators.

Discussion

Telescope interacts with the computational resources directly,
at the operating system level, and spares the user from learn-
ing in-depth computer science material or devoting substantial
time to manually interacting with the computational pipeline.
Telescope is domain agnostic and can be used by anyone per-
forming extensive computational analyses (e.g., deep learning,
large-scale simulations for climate research).

Data retained in the database could support analytics and
generate insights about job behavior, enabling users to pre-
dict resource allocation and forecast computation time. We are
working on expanding the prediction feature with a simple, au-
tomated mechanism based on regular expressions that allows
users to attach tags to jobs that can later be used for aggrega-
tions and analytics. For example, data from previous jobs of read
alignment tools (Figs S1 and S2, Supplemental Note 1), stored in
the table Job (Table S1), could have been tagged with the tool’s
name and the number of reads. Then, Telescope would be able
to estimate the expected elapsed time and maximum amount
of memory required to run these tools as a function of the num-
ber of reads. In the future, we plan to systematically collect in-
formation about the computational resources of the jobs run
through Telescope. We will use recorded information to develop
and provide a template that allows users to choose potential
software and processing types to make better choices for re-
source usage.

Telescope has an intuitive user interface and demands mini-
mal requirements from the computational cluster, making the
tool appealing to users lacking a computational background,
who often face a steep learning curve to operate computational

Figure 2: Telescope User Interface. The first screen displays the status of the jobs on the cluster. The next screen shows detailed information about the first listed job:
source directory, name and content of the script file, and last lines of current task output.



Brito et al. 5

resources, and to experienced users who often manage a large
number of jobs and repetitive tasks. As computational clusters
run Unix-based operating systems, Telescope does not com-
pletely eliminate the interaction with command line prompts
but contributes to lowering the bar needed to effectively run and
monitor bioinformatics analyses at scale.

We observed that Telescope users who are new users of Unix
operating systems are able to, within seconds, check the status
of a job and look for warning and error messages: as fast as open-
ing their web browsers and connecting to Telescope. By address-
ing the challenges inherent to learning to use the command line,
Telescope was designed to invite users with any level of compu-
tational experience to join the bioinformatics community.

The development of Telescope demonstrates that the cur-
rent model where bioinformatics analyses are outsourced with
no control during job execution (e.g., use of pre-cut pipelines
wrapped in GUIs) is inefficient and prevents biomedical inves-
tigators from harnessing the true potential of their computa-
tional tools in the wet lab environment. While Telescope does
not directly improve the runtime performance of bioinformatics
tools, the application increases the accessibility of biomedical
data analyses to the scientific community and provides for all
users a tool for improving work productivity.

Real-time tracking allows biomedical researchers to access
partial results—before the analytical task has been completed
on a large dataset—and identify potential problems with the
analysis or sequencing experiment.

The ideas and results presented in this study represent a
contribution toward mitigating the digital divide in contempo-
rary biology. By offering real-time job management tracking and
control over computational clusters even on mobile devices,
Telescope can help researchers accomplish a seamless feedback
connection between bioinformatics and experimental work with
minimal performance interference.

Availability of Supporting Source Code and
Requirements

Project name: Telescope
Project home page: https://github.com/Mangul-Lab-USC/telesc
ope
Operating system(s): Platform independent
Programming language: Python 2.7 and 3
Other requirements: Installation of pip is required to run Tele-
scope
License: GNU General Public License v3.0
RRID:SCR 017626

Availability of Supporting Data and Materials

Snapshots of our code and other supporting data are available
in the GigaScience respository, GigaDB [30].

Additional Files

Table S1. Local Database’s schema, explicitly listing attributes,
their corresponding data types, and descriptions. These at-
tributes correspond to the information provided by the qstat
function of the scheduling system Sun Grid Engine.
Figure S1. Comparison of the runtime (measured by CPU time in
hours) for each tool against the size of each sample (measured
by the number of reads).

Figure S2. Comparison of the RAM (measured in gigabytes) for
each tool against the size of each sample (measured by the num-
ber of reads).

Abbreviations

DAG: directed acyclic graph; FASRC: Faculty of Arts and Sci-
ences, Research Computing; GATK: Genome Analysis Toolkit;
GUI: Graphical User Interface; NIH: National Institutes of Health;
NSF: National Science Foundation; SGE: Sun Grid Engine; SSH:
Secure Shell; UCLA: University of California, Los Angeles; VDI:
Virtual Desktop.

Competing Interests

The authors declare that they have no competing interests.

Funding

T.M. acknowledges support from a UCLA QCBio Collaboratory
Postdoctoral Fellowship and the QCBio Collaboratory commu-
nity directed by Dr. Matteo Pellegrini. A.Z. has been partially
supported by NSF Grants DBI-1564899 and CCF-1619110 and NIH
Grant 1R01EB025022-01.

Authors’ Contributions

T.M. proposed and scoped the project. J.J.B. and T.M. developed
the software presented in this article and were major contribu-
tors in writing the manuscript. J.R., V.X., D.J.C., J.D.H., P.M., L.S.M.,
A.Z., and M.P. contributed to portions of the code and in writing
the manuscript. S.M. led the project and contributed in writing
the manuscript.

References

1. Markowetz F. All biology is computational biology. PLoS Biol
2017;15:e2002050.

2. Mangul S. Interpreting and integrating big data in the life sci-
ences. EmergTop Life Sci 2019;3:335–41.

3. Wren JD. Bioinformatics programs are 31-fold over-
represented among the highest impact scientific papers
of the past two decades. Bioinformatics 2016;32:2686–91.

4. Bulterys PL, Toesca IJ, Norris MH, et al. An in situ
high-throughput screen identifies inhibitors of intracellular
Burkholderia pseudomallei with therapeutic efficacy. Proc Natl
Acad Sci U S A 2019;116:18597–606.

5. Mack JJ, Mosqueiro TS, Archer BJ, et al. NOTCH1 is a
mechanosensor in adult arteries. Nat Commun 2017;8:
1620.

6. Cook CN, Mosqueiro T, Brent CS, et al. Individual differ-
ences in learning and biogenic amine levels influence the
behavioural division between foraging honeybee scouts and
recruits. J Anim Ecol 2019;88:236–46.

7. Beal J, Haddock-Angelli T, Gershater M, et al. Reproducibil-
ity of fluorescent expression from engineered biological con-
structs in E. coli. PLoS One 2016;11:e0150182.

8. Mangul S, Yang HT, Strauli N, et al. ROP: dumpster diving in
RNA-sequencing to find the source of 1 trillion reads across
diverse adult human tissues. Genome Biol 2018;19:36.

9 Laganà A, Beno I, Melnekoff D, et al. Precision medicine for
relapsed multiple myeloma on the basis of an integrative
multiomics approach. JCO Precis Oncol 2018;2:1–17.

https://github.com/Mangul-Lab-USC/telescope
https://scicrunch.org/resolver/RRID:SCR_017626


6 Telescope: an interactive tool for managing large-scale analysis from mobile devices

10. Mangul S, Martin LS, Hoffmann A, et al. Addressing the dig-
ital divide in contemporary biology: lessons from teaching
UNIX. Trends Biotechnol 2017;35:901–3.

11. Børnich C, Grytten I, Hovig E, et al. Galaxy Portal: interacting
with the galaxy platform through mobile devices. Bioinfor-
matics 2016;32:1743–5.

12. The Galaxy Project Documentation: Authentication, User
and Job Management Limitations. https://galaxyproject.
org/community/galaxy-admins/surveys/2012/#authentic
ation-user-and-job-management-limitations. Accessed 5
December 2019.

13. Mangul S, Mosqueiro T, Abdill RJ, et al. Challenges
and recommendations to improve the installability and
archival stability of omics computational tools. PLoS Biol
2019;17:e3000333.

14. Genome Analysis Toolkit, Broad Institute. https://software.b
roadinstitute.org/gatk/. Accessed 5 December 2019.

15. Galaxy Community Hub. https://galaxyproject.org/. Ac-
cessed 5 December 2019.

16. Yoo AB, Jette MA, Grondona M. Slurm: Simple linux util-
ity for resource management. In: Feitelson D, Rudolph L,
Schwiegelshohn U , eds. Workshop on Job Scheduling Strate-
gies for Parallel Processing. Berlin: Springer; 2003:44–60.

17. About Hoffman2 - Institute for Digital Research and Educa-
tion. https://idre.ucla.edu/hoffman2/. Accessed 5 December
2019.

18. HPCNow/PHPQstat. https://github.com/HPCNow/PHPQstat/.
Accessed 5 December 2019.

19. GE Web Application. https://sourceforge.net/projects/geweb
app/. Accessed 5 December 2019.

20. Virtual Desktop (VDI) through Open OnDemand. FAS Re-
search Computing. https://www.rc.fas.harvard.edu/resourc
es/documentation/virtual-desktop/. Accessed 5 December

2019.
21. Monitoring and Instrumentation - Spark 2.4.4 Documenta-

tion. https://spark.apache.org/docs/latest/monitoring.html.
Accessed 5 December 2019.

22. Apache Hadoop. https://hadoop.apache.org/. Accessed 5 De-
cember 2019.

23. spotify/luigi. https://github.com/spotify/luigi/. Accessed 5
December 2019.

24. Apache Airflow Documentation. https://airflow.apache.org/.
Accessed 5 December 2019.

25. Jupyter Notebook - Hoffman2 Cluster User Guide - UCLA.
https://www.hoffman2.idre.ucla.edu/access/jupyter-notebo
ok/. Accessed 5 December 2019.

26. Jupyter Notebook - Center for High Performance Computing
- The University of Utah. https://www.chpc.utah.edu/docu
mentation/software/jupyterhub.php. Accessed 5 December
2019.

27. Zargar ST, Joshi J, Tipper D. A survey of defense mech-
anisms against distributed denial of service (DDoS)
flooding attacks. IEEE Commun Surv Tutor 2013;15:
2046–69.

28. The OAuth 2.0 Authorization Framework. 2012,
doi:10.17487/rfc6749.https://tools.ietf.org/html/rfc6749.
Accessed 5 December 2019.

29. Moriarty K, Kaliski B, Rusch A. PKCS# 5: password-
based cryptography specification version 2.1. 2017,
doi:10.17487/rfc8018. https://tools.ietf.org/html/rfc8018.
Accessed 5 December 2019.

30. Brito JJ, Mosqueiro T, Rotman J, et al. Supporting data for
“Telescope: an interactive tool for managing large-scale
analysis from mobile devices.” GigaScience Database 2019.
http://dx.doi.org/10.5524/100686.

https://galaxyproject.org/community/galaxy-admins/surveys/2012/#authentication-user-and-job-management-limitations
https://software.broadinstitute.org/gatk/
https://galaxyproject.org/
https://idre.ucla.edu/hoffman2/
https://github.com/HPCNow/PHPQstat/
https://sourceforge.net/projects/gewebapp/
https://www.rc.fas.harvard.edu/resources/documentation/virtual-desktop/
https://spark.apache.org/docs/latest/monitoring.html
https://hadoop.apache.org/
https://github.com/spotify/luigi/
https://airflow.apache.org/
https://www.hoffman2.idre.ucla.edu/access/jupyter-notebook/
https://www.chpc.utah.edu/documentation/software/jupyterhub.php
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc8018
http://dx.doi.org/10.5524/100686

