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Intraluminal thrombus: Innocent bystander or factor in

abdominal aortic aneurysm pathogenesis?
April J. Boyd, MD, PhD, Winnipeg, Manitoba, Canada
ABSTRACT
Background: Abdominal aortic aneurysms (AAAs) represent a complex multifactorial hemodynamic, thrombotic, and
inflammatory process that can ultimately result in aortic rupture and death. Despite improved screening and surgical
management of AAAs, the mortality rates have remained high after rupture, and little progress has occurred in the
development of nonoperative treatments. Intraluminal thrombus (ILT) is present in most AAAs and might be involved in
AAA pathogenesis. The present review examined the latest clinical and experimental evidence for possible involvement
of the ILT in AAA growth and rupture.

Methods: A literature review was performed after a search of the PubMed database from 2012 to June 2020 using the
terms “abdominal aortic aneurysm” and “intraluminal thrombus.”

Results: The structure, composition, and hemodynamics of ILT formation and propagation were reviewed in relation to
the hemostatic and proteolytic factors favoring ILT deposition. The potential effects of the ILT on AAA wall degeneration
and rupture, including a review of the current controversies regarding the position, thickness, and composition of ILT, are
presented. Although initially potentially protective against increased wall stress, increasing evidence has shown that an
increased volume and greater age of the ILT have direct detrimental effects on aortic wall integrity, which might
predispose to an increased rupture risk.

Conclusions: ILT does not appear to be an innocent bystander in AAA pathophysiology. However, its exact role remains
elusive and controversial. Despite computational evidence of a possible protective role of the ILT in reducing wall stress,
increasing evidence has shown that the ILT promotes AAA wall degeneration in humans and in animal models. Further
research, with large animal models and with more chronic ILT is crucial for a better understanding of the role of the ILT in
AAAs and for the potential development of targeted therapies to slow or halt AAA progression. (JVSeVascular Science
2021;2:159-69.)
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Abdominal aortic aneurysms (AAAs) are typically asymp-
tomatic, and their rupture has been associated with high
morbidity and mortality. AAAs are discrete dilations of the
aorta that preferentially develop in the infrarenal
segment1 and typically contain intraluminal thrombus
(ILT).2,3 AAAs are considered for repair in good-risk candi-
dates at maximal aortic diameters of $5.5 cm in men
and $5.0 cm in women (owing to the smaller relative
size of the female aorta).4 However, the use of the AAA
size as the primary criterion for intervention is imperfect,
because rupture at sizes <5 cm is possible,5 especially in
women.6 It is also unclear why some AAAs will reach
extreme sizes without rupturing,7,8 and, if size is the major
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factor, why AAAs rarely rupture at the location of the
maximal aortic diameter.9 The main focus of AAA man-
agement has been to predict and prevent rupture.
Despite extensive research into the pathogenesis of
AAAs, the mortality rates have remained high, with only
a slight decrease during the past two decades.10 Most of
the improvement in AAA mortality has resulted from
improved screening for AAAs11 and the increased endo-
vascular management of ruptured AAAs (RAAAs),10 not
from any improvement in nonoperative management.
The development of an AAA is a complex multifactorial

thrombotic, inflammatory, and hemodynamic process
that ultimately leads to remodeling of the aortic wall
connective tissue, resulting in expansion and rupture.12

The inflammatory nature of the process is evidenced by
the infiltration of leukocytes, lymphocytes, and macro-
phages; with apoptosis of vascular smooth muscle cells
(VSMCs).13,14 This inflammation is associated with
increased proteolytic activity, primarily due to the effects
of matrix metalloproteinases (MMPs), serine proteases,
and cytokines.15 All are believed to affect the synthesis
and degradation of elastin and collagen, leading to
irreversible changes in the aortic matrix.16-18 It is thought
that elastin degradation is the initiating step for AAA
expansion and that proteolytic degradation of collagen
is the final step leading to rupture.
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The changes in the aortic wall in AAAs are similar to
those of atherosclerosis and share some similarities
with typical arterial thrombosis. However, AAAs represent
a form of atherothrombotic disease characterized, not
only by matrix degradation, but also by the formation
of nonocclusive ILT.19 This ILT rarely embolizes; however,
when that occurs, the morbidity is high.20 Unlike athero-
sclerosis, in which remodeling and resolution of arterial
injury can occur, the atherothrombotic process in AAAs,
once initiated, does not resolve and can, ultimately,
lead to vessel rupture.
Of the factors involved in AAA pathogenesis, the poten-

tial role of ILT has emerged as an area of current research
interest. Nonocclusive ILT, until recently, has been pre-
sumed to be inert and to passively accumulate owing
to the hemodynamics changes caused by aortic expan-
sion. It is now known that ILT is a complex material con-
taining many active inflammatory cells and proteolytic
enzymes.21,22 The present review critically examined the
latest clinical and experimental evidence for possible
involvement of ILT in the development, growth, and
rupture of AAAs. Understanding any potential role of
ILT in AAA pathogenesis could have implications for tar-
geted therapeutic interventions.

METHODS
A literature search, from 2012 to June 2020, for original

reports, meta-analyses, and systematic reviews pertain-
ing to AAAs and ILT was performed using the PubMed
search engine MEDLINE database. The search words
were “abdominal aortic aneurysm” and “intraluminal
thrombus.” The titles and abstracts were screened to
identify potential relevance and suitability. Studies were
included if the full text was available. A total of 250
reports were initially reviewed, with 125 included in the
present study.

ILT STRUCTURE
Unlike typical acute thrombus, the ILT associated with

AAAs is distinctly different, with two predominant types:
continuous and discrete.23 Continuous ILT is more homo-
geneous and uniform on gross inspection. Discrete ILT is
the most common type, with three distinct layers, known
as luminal, medial, and abluminal, which have sharp de-
marcations and weak attachments between adjacent
layers. Discrete ILT has the appearance of being gradually
deposited over time.24 Beneath discrete ILT, and adja-
cent to the AAA wall, a fluid layer of unknown signifi-
cance is typically present.23 Each layer of discrete ILT
varies in color, with the luminal layer more characteristi-
cally red owing to a greater proportion of erythrocytes,
similar to that of typical thrombus, with little fibrinolytic
activity.22,25-27 The medial and abluminal layers are acel-
lular and have greater density toward the abluminal side,
reflecting older generations of ILT.28 These layers tend to
be yellow to brown, reflective of increasing erythrocyte
degeneration29 (Fig 1). Fibrin deposition occurs uniformly
throughout the ILT; however, fibrinolysis is more active in
the abluminal regions.19,23

Over time, discrete ILT appears to mature and develop
channels known as canaliculi. These canaliculi connect
the luminal to abluminal layers in a continuous network
that might allow for the penetration of various cell types
into the ILT, even after it has been well-established.21 The
cell types found in the luminal layer canaliculi are typically
degranulated platelets and macrophages. Macrophages
do not appear to be passively trapped in ILT, because
they have shown no signs of necrosis or apoptosis.21 Histo-
logic and immunofluorescent staining showed a distinct
activated macrophage population within luminal ILT.30

These fibrocyte-like macrophages express CD45, but lack
CD34 and FLK1, suggesting a unique population of cells
not derived from the aortic endothelium. These macro-
phages secrete various anti-inflammatory cytokines,
unlike the macrophages of the adventitia, which produce
nitric oxide and reactive oxygen intermediates.13 The exact
contribution of this distinct population ofmacrophages to
ILT formation is unknown.
It is not clear why two grossly different types of ILT are

present in AAAs nor whether continuous and discrete
ILT differs in terms of physical properties, bioactivity, pat-
terns and timing of deposition, or their potential contribu-
tion to AAA growth or rupture. The mechanism of
deposition is not fully understood. However, the pattern
of ILT deposition appears to depend on the AAA shape
and hemodynamics.31 The onset of macroscopic ILT depo-
sition seems to begin only after aortic expansion had
changed the geometry to the point at which the hemody-
namic conditions favor significant platelet and erythro-
cyte deposition.32 Although ILT can change the
deposition pattern with AAA remodeling and growth,33

it generally continues to accumulate and rarely resolves.34

MECHANICAL PROPERTIES AND
HEMODYNAMICS OF ILT
Humphrey et al23 have written excellent review with a

more detailed discussion on the biomechanics of ILT in
AAAs. In brief, it has been suggested that ILTs might
play a protective role in AAA formation by withstanding
strain.3 In a retrospective multicenter study, finite
element analysis (FEA) was used to calculate the pre-
dicted peak wall stress (PWS), peak wall rupture risk
(PWRR), rupture risk equivalent diameter (RRED), and
ILT volume on computed tomography angiograms
(CTAs) from 13 patients with RAAA with prerupture
CTAs available for comparison.35 A control group of pa-
tients with diameter-matched, non-RAAAs was included
in the analysis. The prerupture CTAs showed significantly
greater PWRR and RRED compared with those of the
control group. RAAAs showed the greatest maximum
diameters, PWRR, and RRED; however, only one half
showed rupture at sites that correlated with the



Fig 2. Abdominal aortic aneurysm (AAA) showing active
extravasation of contrast (yellow arrow) into thick intra-
luminal thrombus (ILT; white arrow) that had preceded
rupture by 9 days (A) and crescent sign on axial computed
tomography angiogram (CTA; yellow arrow; B).Fig 1. Intraluminal thrombus removed intact from a large

abdominal aortic aneurysm (AAA) showing characteristic
layers of discrete thrombus.
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prerupture PWRR locations.35 No statistically significant
difference was found for PWS and ILT volume; however,
the FEA software was not able to measure the variable
ILT thickness within the AAAs.35 Therefore, it was not
possible to consider any correlation between PWS,
PWRR, or RRED and the location of the AAA rupture or
site of maximal ILT deposition.
Haller et al36 included measures of normalized ILT and

percentage of volume of ILT when they examined the
PWS and mean wall stress (MWS) in large ($6 cm) and
small (<6 cm) RAAAs and non-RAAAs using FEA. They
found the PWS was lower in small RAAAs than in large
RAAAs and in small or large non-RAAAs. Small RAAAs
had a lower MWS compared with large RAAAs. Small
RAAAs also had a greater percentage of volume of ILT
and normalized ILT thickness compared with small
non-RAAAs. Although increased ILT was associated
with lower MWS and PWS, it was also associated with
aneurysm rupture at smaller diameters.36

Tong et al37 performed biaxial testing on ILT and sug-
gested that with increasing ILT age, decreased mechan-
ical anisotropy occurred, suggesting a greater propensity
for ILT dissection over time. This greater propensity for ILT
dissection might explain the fissuring of contrast into
thick ILT, which has occasionally been seen as an early
sign of impending AAA rupture38 (Fig 2). In addition, me-
chanical testing of the aortic wall underlying older ILTs
showed an increase in anisotropy, suggesting a loss of
strength in these regions. These data suggest that
although ILT might initially provide some form of protec-
tion against high wall stress, the aging of the ILT causes it
to lose this ability. Thus, any biomechanical advantage of
ILT in reducing PWS might be offset by weakening of the
AAA wall over time.
It is well known that hemodynamics factors favor the
preferential formation of AAAs in the infrarenal segment
of the aorta and perpetuate continued aortic expan-
sion.39 Alterations in aortic length and tortuosity result
in the development of flow vortexes that ultimately pro-
duce turbulent flow.40-42 Tangential forces exerted on
the wall, commonly known as wall shear stress (WSS),
result in regions of high, low, and oscillating WSS.43,44

These altered hemodynamic conditions likely play a ma-
jor role in initiating and propagating ILT deposition. It has
been proposed that high WSS results in intimal denuda-
tion that predisposes to ILT formation,45 with low WSS fa-
voring ILT deposition.46 Calculation of the time-averaged
shear stress on simulated particles in the proximal and
middle of an AAA showed a correlation between slower
near-wall particle transit times and future ILT deposi-
tion.32 In this sense, low oscillatory WSS is also thought
to be proatherogenic.45 It has been suggested that plate-
lets activate in regions of high WSS and deposit in zones
of low WSS.
Bhagavan et al47 computationally examined the roles

of five key morphologic features of AAAs on ILT forma-
tion: AAA diameter, AAA length, axial position, tortuosity,
and renal artery position. They concluded that the
maximum diameter is a key determinant, with vortex
flow structures having the potential to induce thrombo-
genicity and, therefore, ILT deposition. Lozowy et al33 pre-
viously performed a direct numerical stimulation
computational fluid dynamics analysis on realistic AAA
geometries to study the effects of pulsatile flow on AAA
morphology and ILT deposition. In most cases, turbulent
vortex structures impinged or sheared along one AAA
wall, which tended to be devoid of ILT. In contrast, along
the opposite wall, a zone of vortex blood flow was associ-
ated with the accumulation of ILT. Expansion occurred to
a greater extent in the direction of dominant flow



Fig 3. Velocity (m) in meters/second (m/s) streamlines
showing a dominant flow channel (red arrow and red
streamlines) with faster flowing blood in contrast to a zone
of vortex flow (blue arrow and blue streamlines; see also the
Video 1). Reproduced, with permission from Boyd et al.48
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impingement and not at the site of maximal ILT deposi-
tion (Fig 3 and Video 1). The results from their small
computational study suggest that flow impingement,
and not ILT deposition, promotes AAA expansion.33

Small AAAs, with average size of 4.0 cm, were followed
up for several years with serial CTA imaging until they
had reached ~5.5 cm. CTA was used to create realistic
AAA geometries, and computational fluid dynamics
was used to predict variations in WSS over time. The loca-
tion and thickness of the ILT was recorded at each time
point.49 In virtually all cases, the ILT had increased over
time and its location coincided with the zones of low
WSS and vortex flow. ILT deposition tended to increase
in the same location in all but one case. In that case,
the zone of vortex flow had changed its location over
time and coincided with a change in the location of ILT
deposition (Fig 4 and Video 2). This finding suggests
that ILT deposition is strongly dependent on aortic
hemodynamics.
In a rat xenograft model, Etienne et al50 created

saccular or fusiform aneurysms. They showed that
saccular aneurysms had lower inflow velocities, greater
vortex flow, and thicker ILT, when assessed by magnetic
resonance imaging, compared with fusiform aneurysms.
Saccular aneurysms also had higher myeloperoxidase,
platelet factor 4, advanced oxidation protein products,
iron, and MMP-9, suggesting that differential specific he-
modynamics can affect inflammatory markers and ILT
deposition.

ILT AND RUPTURE RISK
In an autopsy study, AAAs were found to typically

rupture in regions of ILT burden in 80% of cases.9

Kazi et al51 showed that the aortic wall beneath ILT is
thinner, has more inflammatory infiltrate, greater
apoptosis of VSMCs, and a greater amount of degraded
extracellular matrix. Early evidence indicated that the
burden of ILT in AAAs was associated with accelerated
growth and rupture risk.36,52-54 Pillari et al34 showed a
synchronous increase in ILT volumes with AAA growth
to 7 cm. In contrast, after 7 cm, aortic expansion was
not associated with an increase in ILT volume, suggesting
that hemodynamic and procoagulant conditions no
longer favor ILT deposition and/or that the advanced
stage of AAA growth is unrelated to the presence of ILT.34

In contrast, Golledge et al55 matched RAAAs with non-
RAAAs for size and found no difference in ILT thickness.
Kontopodis et al56 showed that ILT wasmore symmetrical
in RAAAs but was slightly reduced at the site of rupture.
Qiu et al57 correlated the rupture location with the ILT
content in a small series of RAAAs. AAAs, devoid of ILT,
ruptured in areas of low WSS. In contrast, in those with
thin ILT, the AAA had ruptured at the site of dominant
flow impingement. In those with thick ILT, the rupture
had occurred at the border of the dominant flow channel
and the region with highest ILT deposition.57 Although
their small study showed variable rupture locations,
AAAs with thick ILT ruptured at significantly smaller sizes
than did those without ILT, and rupture was more com-
mon in AAAs that contained ILT compared with those
devoid of ILT.57 Using a computational fluid dynamics
approach, we have previously shown that AAA rupture
tends to occurs in zones of vortex flow in AAAs with
eccentric ILT deposition, where the predicted WSS was
low and ILT deposition was greatest.48

Vorpet al58 hypothesized that thedeposition of ILTmight
lead to a relatively hypoxic environment with increased
proteolytic activity in the aortic wall nearest to thick ILT
deposition. Under normal circumstances, aortic wall
oxygenation and nutrients reach themedia and adventitia
by diffusion from the lumen and are less dependent on
that provided by the adventitial vasa vasorum.59 With
increasing aortic wall inflammation, the vasa vasorum di-
lates tomaintain vessel integrity.60 In support of the hypox-
ia theory, Vorpetal61 demonstrated that thick ILThad lower
oxygen pressure compared with areas with thin ILT and
resulted in greater inflammation, greater hypoxia-specific
peptide, and decreased tensile strength.61 In addition, it



Fig 4. A, Axial computed tomography angiograms (CTAs) of abdominal aortic aneurysm (AAA) from time point 1
(baseline), time point 2 (at 2 years), time point 3 (at 5 years) showing increased intraluminal thrombus (ILT)
deposition over time. B, Velocity streamlines (white arrows) and cross-sectional velocity profiles (black arrows)
showing changes in location of vortex flow for time points 1 and 3, coinciding with the gradual change in ILT
deposition. Reprinted, with permission, from Launcelott et al.49
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has been shown that macrophages subjected to hypoxia
increase their reactivity62 and promote elastase produc-
tion.63 Hypoxia has been shown to have a detrimental ef-
fect on the extracellular matrix,64 in particular, hypoxic
fibroblasts produced less collagen, because oxygen is a
requirement for the hydroxylation of proline.65

Positron emission tomography with fluorine
18-fluorodeoxyglucose (18F-FDG) can detect activated
leukocytes by competing with glucose for uptake into
metabolically active cells. Xu et al66 showed that
18F-FDG uptake correlated positively with regions of
high wall stress in non-RAAAs and RAAAs and that the
location of rupture was associated with regions of higher
metabolic activity. Huang et al67 showed that in small
non-RAAAs, 18F-FDG activity was highest in regions of
thick ILT and FEA-predicted high mechanical wall stress,
suggesting that regions with higher ILT have greater in-
flammatory activity.

ILT FORMATION AND COAGULATION FACTORS
Tobacco smoking is the strongest risk factor for AAA

development, and active smoking is associated with
faster AAA growth and higher rupture rates.68 Although
the inciting mechanisms for vascular dysfunction are
not well understood, the endothelial absorption of to-
bacco smoke constituents induces free radical lipid per-
oxidation of the vascular endothelium.69 Whatever the
inciting event, vessel injury exposes matrix proteins to
circulating platelets, leading to their activation. It is well
known that autocrine activation of surrounding platelets,



164 Boyd JVSeVascular Science
--- 2021
via adenosine diphosphate and thromboxane A2, leads
to the formation of a platelet-rich plug. In addition, expo-
sure of subendothelial tissue factor (TF) and the forma-
tion of a complex of factor Xa (FXa) and factor Va
occurs; with thrombin cleavage of fibrinogen to fibrin.
The subsequent interaction of the primary hemostatic
plug with factor XIIIa, cross-linked fibrin, leads to a stable
secondary plateletefibrin thrombus. Increased second-
ary fibers contribute to fibrin consolidation.69

In early ILT formation, platelets exposed to P-selection
stimulate the accumulation of neutrophils preferentially
in the luminal layer of ILT.70 Neutrophils have a high af-
finity for fibrin and undergo constitutive apoptosis after
binding,22 which releases various inflammatory cyto-
kines, proteases, and metalloproteinases,71,72 as well as
myeloperoxidase and elastase.73

The glycoprotein IIb/IIIa inhibitor, abciximab, attenuated
ILT formationandpreventedaortic expansion in a rat xeno-
graft model.74 This agent also decreased P-selection
expression, elastin degradation, and VSMCadhesion. How-
ever, P-selectin is not specific to platelets, because it is also
expressedbyendothelial cells.75Administrationof theanti-
platelet agent, AZD6140 (a P2Y12 receptor antagonist), in
this xenograft model reduced AAA growth, ILT deposition,
MMP-9 expression, leukocyte infiltration, andelastin degra-
dation.76 In aortic tissue harvested from hypercholesterol-
emic rats, aspirin also reduced radical oxidative stress in
endothelial cells.77 In angiotensin II-induced AAAs in
mice, the administration of clopidogrel reduced ILT forma-
tion, platelet andmacrophage accumulation, and rupture-
related death. Clopidogrel also decreased MMP-2 and
MMP-9, urokinase plasminogen, and tissue plasminogen
activator (TPA) levels and platelet factor 4 and platelet-
derived cytokines.78 All these animal models showed a
strongcorrelationbetweenAAAgrowthand ILTdeposition.
They also showed strong evidence of the role of platelets in
ILT formation and AAA growth. However, no benefit was
found fromplatelet inhibition onAAAprogression, rupture,
or repair outcomes in humans to date.79

In angiotensin II-induced AAAs in apolipoprotein
Eedeficient mice, AAA size correlated with FXa expres-
sion and increased protease activator (PAR-2) expres-
sion.80 When these mice were treated with enoxaparin
(FXa/FIIa inhibitor), fondaparinux (FXa inhibitor), or
dabigatran (FIIa inhibitor), no effect was found for FIIa in-
hibition alone on AAA development. In contrast, FXa and
FXa/FIIa inhibition was associated with decreased AAA
formation and reduced steroid receptor activator levels,
PAR-2 expression, MMP-2, Smad 2/3 phosphorylation,
and monoclonal macrophage-monocyte antibody 2e
positive cells. These findings suggest that FXa/FIIa might
limit AAA growth by downregulating PAR-2emediated
Smad2/3 signaling and MMP-2 expression. FXa inhibition
alone was associated with decreased ILT formation and
increased elastin degradation. These data suggest that
FXa/FIIa is important in AAA growth and ILT-mediated
elastin degeneration. These findings also suggest that in-
hibition of FXa/FIIa could be a potential therapy for
limiting AAA growth.80

ILT AND PROTEASES
Serine proteases and coagulation factors are simulta-

neously elevated in AAA tissue,81 suggesting possible
cooperation between the hemostatic and proteolytic
systems in degrading components of the extracellular
matrix (ECM),82 and the possibility that this interaction
might play a significant role in AAA pathogenesis.22,83-89

ILT might be a source for serine proteases released or
activated during coagulation, fibrinolysis, and proteolysis
that could weaken the AAA wall.90-93 TPA and D-dimer
concentrations were significantly higher in the plasma
of subjects with AAAs.90 Also, the AAA tissue had greater
concentrations of TPA and plasmin, with decreased plas-
minogen activator inhibitor (PAI-1) activity,91-96 suggest-
ing that AAAs are associated with hypercoagulability
that might promote ILT deposition.
Endothelial inflammation results in the secretion of von

Willebrand factor, which is involved in the formation of
platelet-rich thrombus. The plasma of 30 patients with
asymptomatic AAAs was tested for von Willebrand factor
activity, thrombin generation time, factor XII levels, and
prekallikrein concentrations, with the findings correlated
with the CTA-assessed ILT volume.97 A positive correlation
between the ILT volume, von Willebrand factor activity,
and prekallikrein concentrations in plasma was found,
indicating that these factors might be important in initi-
ating ILT formation.97

Carrell et al98 investigated fibrinolytic and proteolytic ac-
tivity in the human AAA wall in relation to the luminal and
abluminal layers of the ILT. They found 100-fold greater
TPA and 6-fold higher urokinase plasminogen activator
activity in the aortic wall compared with either location
of the ILT. Luminal ILT had had significantly lower levels
of PAI-1 compared with the AAA wall and the abluminal
layer of the ILT. The MMP-9 levels were high in the ILT
and in the AAA wall, suggesting that ILT might be the
source of plasmin activation of endogenous MMPs.
It has also been suggested that thin, as opposed to thick,

ILTmightallowforgreaterpenetrationof inflammatorycells
and localized proteolytic degradation. Siennicka et al99

demonstrated inhomogeneity of coagulation and
fibrinolytic activity in human AAAs according to the ILT
thickness. The relative concentrations of TF, plasma, PAI-1,
a2-antiplasmin (a2AP), andTPA in ILTand theAAAwall adja-
cent to thin and thick ILTweremeasured in 35patientswith
eccentric ILTundergoingelective openAAA repair.99 TF and
a2AP levels were highest in the aortic wall adjacent to thin
ILT where the greatest inflammatory infiltration had
occurred. The TPA levels were highest in the aortic wall. In
contrast, plasminogen was highest in ILT, suggesting coop-
eration in generating active plasmin. Plasmin, depending
on the level of a2AP, might then activate various MMPs
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responsible for proteolytic degeneration of the wall. Wier-
nicki et al100 also showed that thin ILT (<1 cm) correlated
with higher oxidative stresserelated enzymes and MMP-9
expression in full-thickness human AAAs, suggesting that
ILT might be the contributing source of plasmin and
MMP-9 activation, leading to proteolytic degeneration of
the AAA wall.
The continued elaboration of ILT in AAAs without com-

plete vessel occlusion or distal embolization involves a
balance between procoagulant and anticoagulant fac-
tors.101 Like AAAs, popliteal artery aneurysms (PAAs) are
characterized by similar ILT deposition and atherothrom-
botic pathology, although PAAs are more prone to ILT
embolization and significantly less likely to rupture.102 His-
tologic assessments of PAAs compared with AAAs
showed more signs of intramural hemorrhage, greater
intimal inflammation, and higher matrix MMP-2 activity.
MMP-9 activity was similar in both types of aneurysms.103

Abdul-Hussien et al104 showed that AAAs had higher
interferon-g, interferon-inducible protein 10, tumor necro-
sis factor-a, monocyte chemotactic protein-1, and macro-
phage inflammatory protein-1a and -1b compared with
PAAs. AAAs also had significantly higher B cell, plasma
cell, and cytotoxic T cell infiltration compared with PAAs.
The reasons for the relative differences in the inflamma-

tory and protease profile between AAAs and PAAs is un-
known. It is possible that size is still the major factor for
the greater rupture rates of AAAs compared with PAAs.
PAAs have greater rates of ILT embolization owing to
the potentially increased local trauma, as evidenced by
the more frequent intramural hemorrhage. All studies
to date have compared the PAA and AAA differences
in the aneurysm wall, and none has compared the con-
stituents or activity of ILT in these two conditions. Under-
standing the differences in ILT between PAAs and AAAs
could be important in determining the possible role of
ILT, if any, in the pathophysiology of all aneurysms.

ILT AND CYTOKINES
Upregulation of cytokines occurs, which suggests an

immune component to the inflammatory nature of
AAAs. Tumor necrosis factor-a, transforming growth fac-
tor-b (TGF-b), interleukin (IL)-1b, IL-6, IL-8, IL-17, and IL-18,
and CD40 ligand are all elevated in AAAs compared
with controls.105-108 Only selected cytokines appear to
play a role in ILT formation in AAAs. One such proinflam-
matory cytokine is IL-8, which stimulates neutrophil
recruitment and migration.109-111 The luminal layer of ILT
is the main source of IL-8, with a gradient of decreasing
IL-8 levels toward the abluminal layer, and the aortic
wall showing four times lower levels.112 IL-8 might be a
factor in the continued deposition of ILT via continued
recruitment of neutrophils.
The cytokine, TGF-b, is also involved in ILT development

in AAA pathogenesis. TGF-b is bound to fibrillin,113 where
it regulates fibroblast differentiation and proliferation,
immune response, and protease activity114,115 in the
ECM, and is considered to be involved in the mainte-
nance of vascular integrity. In mice that underwent
AAA induction by external elastase application, inhibition
of TGF-b activity enhanced neutrophil infiltration into
both the ILT and the aortic wall and increased AAA
growth, ILT deposition, ECM degradation, and the sus-
ceptibility rupture.116 Early blockade of IL-1b in this model
significantly decreased the extent of ILT deposition and
AAA formation. In contrast, late administration of IL-1b
had no effect, suggesting that neutrophils are involved
in early AAA formation.116 However, aortic wall proteolysis
in most animal models of AAA is so acute and severe that
it causes sudden aortic dilation, not infrequently leading
to acute rupture. ILT in animal models more closely re-
sembles the typical features of the luminal layer of
discrete ILT and does not develop the features of the
deeper more chronic ILT.

ILT AND MMPs
MMPs are a family of calcium-dependent zinc endo-

peptidases most widely implicated in AAA pathogenesis.
MMP-2 and MMP-9 are two of the most widely studied
MMPs in AAA pathology. Both MMP-2 and MMP-9 are
type IV collagenases and are found at higher levels in
the plasma, aortic wall, and ILT of patients with
AAAs22,117-119 and are associated with increased VSMC
apoptosis and elastin degradation.13,14 MMP-9 levels will
also be significantly elevated in RAAAs, in particular at
the site of rupture compared with other sites in the aortic
wall.92

AAAs will typically have varying thicknesses of ILT from
1 mm to several centimeters.120,121 The highest levels of
MMP-2 and MMP-9 were found in the luminal layer of
ILT compared with the deeper layers closer to the aortic
wall.73 However, in the aortic wall, the MMP-9 and tissue
inhibitor of MMP-1 levels were highest in regions with
thin ILT,122 suggesting that thinner ILT might undergo
more active proteolysis. In contrast, when full-thickness
human aortic tissues samples were stereographically
biopsied over the entire aorta from patients undergoing
open AAA repair and correlated with computationally
derived hemodynamics, high MMP-9 levels correlated
positively low WSS and high ILT deposition, increased in-
flammatory infiltrate, and decreased elastin and collagen
content.123

The reason for the discrepancy between thick and thin
ILT might reflect the location of tissue sampling, because
the former study had taken biopsy specimens of AAA tis-
sue only from the area of maximal aortic diameter.122 In
contrast, in the latter study, biopsies were taken from a
representative section of the entire aorta and mainly
compared the ILT and no-ILT regions.123 In addition,
thin ILT might have been recently deposited and, thus,
might have had greater inflammatory activity, similar to
that seen in the luminal layer of discrete ILT. Samples
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of thick ILT likely had deeper, more inert, layers included
in the sample, which might have diluted the measure-
ments of the inflammatory markers. A comparison of
the surface layer of thick ILT with that of thin ILT might
explain the differences in inflammatory and proteolytic
activities and might explain the discrepant findings
regarding the rupture location in relation to the ILT.
Regardless, the cited studies have shown that the aortic
wall nearest the ILT had the greatest MMP-9 activity, sug-
gesting that local variations in MMP-9 proteolytic activity
might explain the tendency for AAAs to rupture at re-
gions of higher ILT deposition in several studies.

CONCLUSIONS AND FUTURE DIRECTIONS
The development of ILT in AAAs involves a concerted

interaction between hemodynamics, the coagulation
cascade, acute and chronic inflammatory cell activation,
and cytokine/protease release. The initiation of ILT deposi-
tion in AAAs is likely in response to endothelial injury and,
therefore, might initially be protective. Despite computa-
tional evidence of a possible protective role of ILT in
reducing wall stress, AAAs devoid of ILT do not rupture at
smaller diameters nor at greater rates than those with
circumferential ILT. In contrast, evidencehas shownsmaller
AAAs with a higher ILT burden having a tendency to be at
an increased risk of rupture, with rupture occurring prefer-
entially at the site of ILT deposition in AAAs with eccentric
ILT. Increasing evidence has shown the instability of ILT
with increasing age and/or thickness, the potential for
aortic wall hypoxia, and increased proteolytic degradation
in AAA regions with associated ILT. Thus, the question re-
mains regarding why would thrombus be protective in
AAAs but detrimental in other vascular beds.
As with most computational and animal model AAA

research, issues exists with translation of the findings to
the human condition. However, the present review found
both animal and human evidence of the potential role of
ILT deposition in AAA formation and increased rupture
risk. A purely hemodynamic approach to understanding
the potential role of ILT is insufficient, because the
possible proteolytic effect of ILT on the AAA wall itself
must also be considered. In addition, the shape and
pattern of ILT distribution varies in AAAs, and most
studies have been underpowered to properly assess the
potential role of the ILT deposition pattern and thickness
on local proteolysis and AAA rupture risk.
Therefore, ILT is likely not an innocent bystander in AAA

pathophysiology; however, its potential role remains un-
defined. With increasing endovascular AAA manage-
ment, samples of aortic tissue and ILT will be less
frequently available. Animal models will become increas-
ingly more important in understanding the molecular
mechanisms and controversies regarding the location
and thickness of ILT and its effect on AAA rupture risk.
However, no current animal model has completely rep-
resented the complexity, chronicity, and outcomes of
human AAAs nor have any shown a protective effect of
ILT. Large animal models with more chronic ILT are
needed to mimic the conditions in human AAAs and
will be crucial to determine whether therapies targeted
toward ILT will have any significant effects on AAA
growth and rupture risk.
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