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Abstract: Resistance to soybean cyst nematodes (SCN) in “Peking-type” resistance is bigenic,
requiring Rhg4-a and rhg1-a. Rhg4-a encodes a serine hydroxymethyltransferase (GmSHMT08)
and rhg1-a encodes a soluble NSF attachment protein (GmSNAP18). Recently, it has been
shown that a pathogenesis-related protein, GmPR08-Bet VI, potentiates the interaction between
GmSHMT08 and GmSNAP18. Mutational analysis using spontaneously occurring and ethyl
methanesulfonate (EMS)-induced mutations was carried out to increase our knowledge of the
interacting GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex. Mutations affecting
the GmSHMT08 protein structure (dimerization and tetramerization) and interaction sites with
GmSNAP18 and GmPR08-Bet VI proteins were found to impact the multi-protein complex.
Interestingly, mutations affecting the PLP/THF substrate binding and catalysis did not affect the
multi-protein complex, although they resulted in increased susceptibility to SCN. Most importantly,
GmSHMT08 and GmSNAP18 from PI88788 were shown to interact within the cell, being potentiated
in the presence of GmPR08-Bet VI. In addition, we have shown the presence of incompatibility
between the GmSNAP18 (rhg1-b) of PI88788 and GmSHMT08 (Rhg4-a) from Peking. Components
of the reactive oxygen species (ROS) pathway were shown to be induced in the SCN incompatible
reaction and were mapped to QTLs for resistance to SCN using different mapping populations.

Keywords: α-SNAP; SHMT; PR08-Bet VI; Peking; PI88788; SCN resistance; EMS mutagenesis; site
directed mutagenesis; alanine scanning; mutational analysis; protein-protein interaction

1. Introduction

Soybean (Glycine max (L) Merr.), a valuable source of protein, nutritional oil, and biodiesel,
is one of the most important crops worldwide [1–3]. However, soybean production is limited by
soybean cyst nematodes (SCN), a microscopic roundworm that feeds on the roots of soybeans, causing
over USD 1.2 billion in yield loss annually in the U.S. alone [4]. Planting of resistant cultivars is the
main strategy to control this pathogen [5]. Increases in the virulence of SCN populations on most
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known resistant sources urges the need for understanding the SCN resistance pathway. Peking and
PI88788 are considered the two major types of SCN resistance in soybean accessions [5]. Soybean
cv. ‘Forrest’ is a Peking-type SCN-resistant line that requires both rhg1-a (GmSNAP18) [6,7] and
Rhg4-a (GmSHMT08) [8–10] as the major resistant genes, as opposed to PI88788-type resistance that
utilizes the rhg1-b allele of GmSNAP18, a wound-inducible domain protein (WI12), and an amino acid
transporter [11–13]. EMS mutagenesis in Forrest provided important evidence for the identification and
discovery of the major gene at the Rhg4-a locus (GmSHMT08) conferring resistance to SCN [8]. Copy
number variation at the rhg1 also plays a role in SCN resistance [11,14–18]. Recently, we demonstrated,
through whole genome re-sequencing of 106 soybean lines, the impact of copy number variants at both
the rhg1 and Rhg4 genes on broad-based resistance to SCN [18].

The serine hydroxymethyltransferase (SHMT) gene family is widely present in the plant and
animal kingdoms. SHMT plays a role in one-carbon metabolism, methionine synthesis, and the
maintenance of redox homeostasis during photorespiration [19–21]. Through a transaldimination
reaction, the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methyleneTHF is
carried out by the SHMT enzyme [22]. In the glycine synthesis reaction, SHMT plays a major role by
directing one-carbon units to the folate-mediated one-carbon metabolism that is required for methyl
group biogenesis, nucleotide biosynthesis, and vitamin and amino acid metabolism [23]. In the
serine synthesis reaction, SHMT is essential in the metabolic reactions of photorespiration, which is
primordial for C3 plants. Through the glyoxylate cycle, SHMT plays a role in the maintenance of
redox homeostasis, involving the gluthatione synthase and peroxidase genes. In plants, mutations at
the mitochondrial AtSHMT1 cause a photorespiratory phenotype in Arabidopsis thaliana [24]. The
mutation is due to a G→A transition at the 5′ splice site of the sixth intron of AtSHMT1, causing
aberrant splicing and a premature translation termination [24]. In humans, mutations in the SHMT
proteins were shown to be involved in cancers and cardiovascular diseases [25–27].

The soluble NSF attachment protein (SNAP) carries four tetratricopeptide repeat motifs, known
as TPRs [6]. Proteins containing TPRs were proved essential determinants of signal transduction
pathways responding to hormones such as ethylene, cytokinin, gibberellin, salicylate, and auxin [28,29],
in addition to being involved in a plethora of cellular and molecular functions [30,31]. The molecular
functions of TPR proteins include protein folding, transport, and transcriptional control [30,32,33].
TPR proteins are involved in several biological processes, such as cycle regulation, neurogenesis,
mitochondrial, and peroxisomal protein transport [30]. TPR-containing proteins can be found in
humans, yeast, bacteria, and plants. Mutations in TPR proteins produce several human diseases. In
fact, mutations in the TPR containing protein aryl-hydrocarbon-interacting-protein-like 1 (AIPL1)
results in Leber congenital amaurosis, one of the most severe inherited retinopathies [34]. Missense
mutations in the TPR region of p67 phox, affecting TPR domain folding, have been implicated in
chronic granulomatous disease [35]. Additionally, a TPR-Down (TPRD) protein was found to be
involved in Down syndrome [36].

Recent experimental evidence pointed to a role of GmSHMT08 in DNA methylation [37,38]. In
addition, a pathogenesis related protein, GmPR08-Bet VI, has been identified to physically interact
with GmSHMT08 and plays a role in SCN resistance. Pathogenesis related proteins (PRs) are common
in many viridiplantae and bind large hydrophobic compounds (i.e., lipids, hormones, and antibiotics).
Some pathogenesis-related proteins are toxic to invading fungal pathogens. PRs are also involved in
human diseases. It has been shown that the human glioma pathogenesis-related protein 1 (GLIPR1), a
PR1 homologous gene, has tumor suppressor activities and is involved in the restoration of function in
prostate cancer cells [39]. Similarly, loss of GLIPR1 function predisposed mice to tumorigenesis [40].
PRs can be secreted by the fusion of vesicles and SNAP proteins through translocation and docking at
the plasma membrane, a process very well studied in animals and plants as well, involving the SNARE
protein complex [41]. The SNARE complex involves several protein partners, including SNAP, PR, and
other SNARE-related proteins and has been shown to contribute to gene for gene resistance against
bacteria in Nicotiana bentamiana by secretion of PR1 in the extracellular space [42]. Overexpression of
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the pathogenesis-related protein AtPRP5 from Arabidopsis thaliana decreased SCN cyst number to less
than 50% in transgenic soybean roots [43]. A PR10 protein was reported to play an important role in
host defense against Phytophthora sojae infection [44].

In soybeans, a new crosstalk between the GmSHMT08 and GmSNAP18 proteins underlying SCN
resistance in soybean was reported [29]. Both proteins interact at the molecular level, requiring the
presence of another partner: the pathogenesis-related protein, GmPR08-Bet VI. Recent findings show
that GmPR08-Bet VI transcripts were induced in response to SCN infections and its overexpression
decreased the number of SCN cysts by nearly 65% in transgenic soybean roots [29]. In addition to the
identified SCN resistant and SCN defense genes, the presence of a crosstalk has been suggested as
involving the two phytohormones: salicylic acid and cytokinin [29]. The identification and discovery
of the first step of the upstream SCN pathway involving the GmSHMT08/GmSNAP18/GmPR08-Bet
VI multi-protein complex present an unprecedented plant resistance mechanism against a pathogen.
In the current study, we reveal the impact of naturally occurring and induced mutations
in GmSHMT08 and GmSNAP18 in the GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein
complex in Peking-type resistance. Unprecedently, this study investigates the presence of the
GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex in PI88788-type resistance. Taking
into consideration the involvement of GmSHMT08, GmSNAP18, and GmPR08-Bet VI proteins in
plants, animals, and human diseases including cancers, the findings revealed in this manuscript may
have widespread implications within the field of biology and pharmacogenomics, paving the way for
novel therapeutics.

2. Materials and Methods

2.1. Development of the EMS Mutagenesis Forrest Population

The wild type Forrest seeds, from Southern Illinois University Carbondale Agricultural Research
Center, were mutagenized with 0.6% EMS as described by (Meksem et al., 2008). These seeds were
planted to harvest M2 families, and advanced to the M3 generation at Southern Illinois University
Carbondale as shown earlier [2].

2.2. Genotyping of ExF RIL Population

The ExF RIL population used in this study was developed at Southern Illinois University
Carbondale [45]. The ExF genotyping was conducted as described by [6].

2.3. SCN-Infection Phenotyping

SCN screening was performed as described earlier [6,9].

2.4. Plasmid Construction for Y2H Analysis

The coding sequences of the GmSNAP18 gene with only one (GmSNAP18∆73−184), two
(GmSNAP18∆109−184), three (GmSNAP18∆152–184), or four (full length) TPR domains were amplified
from Forrest cDNA using forward and reverse primers containing NdeI and SalI restriction enzyme
sites, respectively. The PCR product was digested and fused to the GAL4 DNA binding domain of the
pGBKT7 bait vector (Clontech, Mountain View, CA 94043, USA). Similarly, the coding sequence of
the GmSHMT08 gene was PCR-amplified using forward and reverse primers containing EcoRI and
XhoI restriction enzyme sites, respectively (Table S1). The PCR product was digested, purified and
ligated to the GAL4 DNA activation domain of the pGADT7 prey vector (Clontech). All constructs
were verified by sequencing.

2.5. Yeast Co-Transformation Assay

The pGADT7 prey construct containing the full length GmSHMT08 coding sequence was
transformed into Saccharomyces cerevisiae (yeast) strain AH109 together with various pGBKT7
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bait plasmids. The co-transformed yeast cells containing bait and prey constructs were selected
using SD/-Leu/-Trp medium. The interactions between GmSHMT08 and various GmSNAP18
deletions were identified by plating the co-transformed yeast cells onto the SD/-Leu-/Trp/-His and
SD/-Leu/-Trp/-His/-Ade selective media. Serial dilutions of the co-transformed yeast cells were plated
on the selective media to measure the strength of the interaction.

2.6. qRT-PCR Analysis

Soybean seedlings were grown in autoclaved sandy soil in a growth chamber for less than a
week, and then infected with 2000 eggs from SCN HG-type 0 (race 3). Total RNA was isolated from
the infected and non-infected root samples after three, five, and ten days following SCN infection as
described previously [6]. The GmSHMT08, GmSNAP18, and GmPR08-Bet VI primers used for qRT-PCR
have been described previously [29]. Experiments were repeated three times with similar results.
Statistical analysis was performed using Student’s t-test for comparisons of means, using the JMP Pro
V14 software (SAS Institute Inc., Cary, NC).

2.7. Protein Extraction and Co-Immunoprecipiation Analysis

Total proteins from Soybean Forrest-WT, Essex-WT, and the four recombinant inbred lines (RILs)
were extracted in a lysis buffer containing 5 mM DTT, 1% (v/v) NP40, 1 mM sodium molybdate, 1
mM NaF, 1 mM PMSF, 1.5 mM Na3VO4, 100 mM NaCl, 2 mM EDTA, 50 mM Tris-HCl at pH 7.5, 10%
(v/v) glycerol, and one tablet from the plant protease and phosphatase inhibitors at 1:100 mL (Thermo
Scientific, Grand Island, NY 14072, USA). A Coomassie Bradford protein Assay Kit (Thermo Scientific)
was used to quantify the protein concentration. For native gel analysis, DTT and SDS agents were
removed. In planta co-IP analysis was performed as shown earlier [29].

2.8. BiFC Assay

The coding sequence of Essex, Forrest, and PI88788 GmSHMT08 wild type were cloned into
pSAT4-nEYFP-C1 as shown earlier [29]. The nine Gmshmt08 mutant alleles were cloned into
pSAT4-nEYFP-C1 to generate nEYFP-GmSHMT08 mutant fusions (Additional Files 1–9). Likewise,
GmSNAP18 coding sequence from Essex, Forrest, and PI88788 were cloned into pSAT4-cEYFP-C1-B, as
shown earlier [29]. The six Gmsnap18 mutant alleles were cloned into pSAT4-cEYFP-C1-B to generate
cEYFP-GmSNAP18 mutant fusions (Additional Files 10–15). Various combinations of cEYFP and
nEYFP fusions including controls were co-expressed in onion (Allium cepa) epidermal cells by particle
bombardment as previously described [46] (Figure S2). In order to test the interactions among all
genes, the GmPR08-Bet VI gene cloned into pG2RNAi, to generate pG2RNAi2-GmPR08-Bet VI fusions,
was co-expressed along with cEYFP and nEYFP fusions in onion epidermal cells, as shown earlier [29].
Onion tissues co-transformed with cEYFP and nEYFP fusions were incubated in the dark at 25 ◦C, and
after 16–36 h the tissues were examined for YFP activity. Fluorescent and bright field images were
captured using the EVOS® FL Auto Cell Imaging System (Life Technologies, Grand Island, NY 14072,
USA).

2.9. Modeling of GmSNAP18, GmSNAP18, and GmPR08-Bet VI Proteins and Mutational Analysis

Homology modeling of putative GmSNAP18, GmSHMT08, and GmPR08-Bet VI protein structures
was conducted using Deepview and Swiss-Model Workspace software as shown earlier [29]. Briefly,
protein sequences from Forrest and available α-SNAP, SHMT, and PR crystal structures from
Rattus norvegicus (PDB accession 3J96 chain G) [47], from Homo sapiens (1BJ4 chain A) [48], and
from A. thaliana (2I9Y) were used as templates, respectively. Residues 6–284, 11-462, and 2–152 were
modelled against their corresponding templates with a sequence identity of 39%, 60%, and 33%
(according to the Protein Data Bank database). TPR domains, induced mutations, and haplotype
mapping and visualizations were performed using the UCSF Chimera package [49]. To induce and
map the corresponding naturally occurring and EMS-induced mutations and study their impact on the
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THF/PLP binding/catalysis, protein structure (dimerization and tetramerization), and the multi-protein
complex interaction, the structural editing tool from the UCSF Chimera package was employed. Briefly,
5.0 Angstroms containing all atoms/bonds of any residue surrounding the mutated residue were
selected first and shown in the model to study all possible residue interactions. Then, the rotamers
tool that is incorporated within the Chimera package software was used to mutate the corresponding
residues in order to study and predict their possible impact on protein activity and/or structure [50].
The rotamers tool allows amino acid sidechain rotamers to be viewed, evaluated, and incorporated
into structures, where a given residue can be changed into different amino acids to predict the impact
and effect of the mutations on the adjacent residues in a 5.0 Angstroms area surrounding the mutated
residue. All three templates used met the minimum requirement of sequence homology (at least 30%)
between the target and template [51].

2.10. Interaction Analysis of Homology Models

Interactions of the three-homology models including GmSNAP18, GmSNAP18, and GmPR08-Bet
VI proteins were carried out as described earlier [29].

3. Results

3.1. GmSNAP18 and GmSHMT08 Interaction in Yeast

GmSNAP18 contains four TPR motifs [6]. Proteins containing TPR domains facilitate specific
interactions with partner proteins [30]. As shown earlier, protein homology modeling and docking
algorithms have predicted the involvement of the TPR domain in the interaction with GmSHMT08
protein. In the current study, we first investigated the impact of TPR motif deletion on the interaction
between the GmSHMT08 and GmSNAP18 proteins. Yeast co-transformation assays were used to
examine the direct protein-protein interaction between the full coding sequence of GmSHMT08
and GmSNAP18 (used as a positive control), in addition to TPR deletions. In this assay, the
coding sequences of GmSNAP18 with only one (GmSNAP18∆73−184), two (GmSNAP18∆109−184),
three (GmSNAP18∆152−184) or four (full length) TPR motifs were amplified from Forrest cDNA and
cloned into the bait vector as DNA-binding domain fusions (Figure 1A). Meanwhile, GmSHMT08
was cloned as a DNA-activation domain fusion in the prey vector. Yeast cells co-transformed with
the GmSHMT08 bait construct along with the prey GmSNAP18 constructs were able to grow on the
selective SD/-His/-Leu/-Trp medium (Figure 1B). Interestingly, while GmSNAP18 constructs containing
only one (GmSNAP18∆73−184) or two (GmSNAP18∆109−184) TPR motifs showed an interaction similar
to that of the full-length gene, the GmSNAP18 containing three (GmSNAP18∆152−184) TPR motifs
showed the strongest interaction (Figure 1B). No interaction was observed in yeast cells co-transformed
with GmSHMT08 and the empty bait vector or bait vector containing the human Lamin C gene
(Figure 1B). When yeast co-transformed cells were selected on the stringent SD/-His/-Leu/-Trp/-Ade
drop-out medium, only cells containing GmSHMT08 and GmSNAP18∆152−184 showed weak interaction
(Figure 1B). Together, these data strongly support the presence of a physical interaction between
GmSHMT08 and GmSNAP18 that may require the presence of other partners. These results are
coherent with recent findings showing the presence of a multi-protein complex within SCN infected
root cells containing the GmSHMT08 and GmSNAP18, and requiring the newly identified partner
GmPR08-Bet VI [29].
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Figure 1. Impact of mutational analysis of the four TPR motifs GmSNAP18 interaction with GmSHMT08
in yeast. (A) Schematic structures of GmSHMT08 and GmSNAP18 constructs used in the yeast
co-transformation assays. (B) Summary of yeast co-transformation assays. Yeast strain AH109
was co-transformed with GmSHMT08 prey vector together with bait constructs containing one
(GmSNAP18∆73-184), two (GmSNAP18∆109-184), three (GmSNAP18∆152-184), or four (full length) TPR
domains of GmSNAP18. Yeast cells containing bait and prey plasmids were selected by plating the cells
on the SD/-Leu/-Trp medium. GmSNAP18/GmSHMT08 interaction were determined by differential
growth on the selective SD/Leu/-Trp/-His and SD/-Leu/-Trp/-His/-Ade media. Empty bait plasmid and
bait plasmid containing the human Lamin C gene were used as negative controls. Yellow, orange, blue,
and red boxes represent TPR1, TPR2, TPR3, and TPR4 Tetratricopeptide repeat motifs at GmSNAP18
predicted protein, respectively. 1, 1/10, and 1/100 represent serial dilutions of the co-transformed yeast
cells. The experiment was repeated three times and similar results were obtained.

3.2. Resistant and Susceptible Alleles of GmSNAP18 and GmSHMT08 from Forrest and Essex can Physically
Associate with Each Other

We examined whether various haplotypes can impact the physical association between
GmSHMT08 and GmSNAP18. To this end, co-immunoprecipitation analysis was conducted in
six lines: the resistant Forrest-WT line and the susceptible Essex-WT line (both used as controls),
in addition to the four ExF RILs carrying various combinations of the resistant and susceptible
haplotypes (GmSNAP18+/GmSHMT08+, GmSNAP18−/GmSHMT08−, GmSNAP18+/GmSHMT08−, and
GmSNAP18−/GmSHMT08+) under SCN infection (Figure S1). Proteins from the total soybean root
extract were incubated in the presence of the immobilized anti-GmSNAP18 antibody. Under native
PAGE conditions, western hybridization of the eluted fraction using anti-GmSHMT08 antibodies
showed the presence of GmSHMT08 binding in Essex, Forrest, and the four ExF RILs analyzed
(Figure 2A). These data support the idea that both GmSNAP18 and GmSHMT08 are components of the
same protein complex in vivo.

Moreover, the presence of the GmSNAP18 protein in the same complex was confirmed using
anti-GmSNAP18 antibodies in Essex, Forrest, and all of the RILs analyzed. These data show that both
resistant and susceptible alleles of GmSNAP18 and GmSHMT08 can physically associate with each other.
Interestingly, the obtained co-immunoprecipitation results are coherent with BiFC analysis, showing
that susceptible E-GmSNAP18 interacts with resistant F-GmSHMT08 and vice-versa (F-GmSNAP18
interacts with E-GmSHMT08) (Figure 2B).

Most importantly, blotting tests with both anti-GmSHMT08 and anti-GmSNAP18 antibodies
showed the presence of a protein complex of the same size corresponding to ~250 KDa (Native PAGE)
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(Figure 2A). These data suggest that in addition to a tetrameric GmSHMT08 protein (~200KDa) and
GmSNAP18 molecule (~32 KDa), the other ~18 KDa may correspond to other protein interacting
partner(s) that may be present in the same complex.

Figure 2. Interaction analyses of GmSNAP18 and GmSHMT08 proteins carrying resistant and
susceptible allele combinations by Co-immunoprecipitation (Co-IP) and BiFC assay. (A) The total
protein extracts of soybean Forrest, Essex, and four ExF RIL (Figure S1) roots were immunoprecipitated
with Anti-GmSNAP18 PA. Blots from the eluted fraction were probed with both anti-SHMT08 and
Anti-GmSNAP18. Upper bands on the panel (~ 250 KDa) correspond to the multi-protein complex
including the tetrameric GmSHMT08 protein, lower bands on the panel (~ 250 KDa) correspond to the
multi-protein complex including the GmSNAP18 protein. Native PAGE conditions (non denaturant)
and western hybridization of the eluted fraction using both anti-GmSHMT08 and anti-GmSNAP18
antibodies showed the co-localization of the GmSHMT08 and GmSNAP18 binding. IgG and beads
were used for Co-IP experiments as a negative control and technical control, respectively (B) BiFC
analysis between GmSHMT08, GmSNAP18, and GmPR08-Bet VI proteins. The coding sequences of
resistant Forrest (F) and susceptible Essex (E) alleles from GmSNAP18 and GmSHMT08 were cloned
into pSAT4-nEYFP-C1-B and pSAT4-cEYFP-C1 to generate nEYFP-SNAP18 and cEYFP-GmSHMT08
fusions, respectively. GmPR08-Bet VI was cloned into pG2RNAi2. Various combinations of cEYFP and
nEYFP control fusions were co-expressed in onion epidermal cells by particle bombardment (Figure S2).
Co-IP and BiFC assays indicated that resistant and susceptible alleles of GmSNAP18 and GmSHMT08
can associate each other.

Notably, the calculated molecular mass of the immunoprecipitated pathogenesis-related protein
was 17.76 KDa (theoretical PI of 5.96), which is the approximate size (~18 KDa) of the expected
polypeptide partner that was suggested to be part of the GmSHMT08 and GmSNPA18 interacting
protein complex (Figure 2A). These data support the previous results obtained from mass spectrometry
and BiFC analysis showing the presence of the GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein
complex [29].

3.3. Expression and Interaction Analysis of GmSHMT08, GmSNAP18, and GmPR08-Bet VI in
PI88788-Type Resistance

To gain insight into the role of GmSNAP18, GmSHMT08, and GmPR08-Bet VI genes in soybean
response to SCN infection, we analyzed their gene expression patterns in the roots of PI88788, in the
absence and presence of SCN infection at 3, 5, and 10 days after infection (DAI). GmSHMT08 and
GmSNAP18 transcripts were significantly induced in response to SCN infection at 3 DAI (early infection
stage) (Figure 3A). Meanwhile, GmPR08-Bet VI transcripts showed a different expression pattern, being
significantly induced at early, mid, and late SCN infection stages. The observed differences between
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resistance (GmSNAP18 and GmSHMT08) and defense (GmPR08-Bet VI) genes may be related to the
continuous role that GmPR08-Bet VI plays in reducing both exogenous and endogenous cytokinins
at the feeding site, leading to cytokinin deficiency and therefore preventing syncytia expansion [29].
Regardless, all three genes respond to SCN infection in PI88788. Moreover, the obtained expression
patterns are coherent with the copy number of GmSNAP18. In fact, Forrest, which carries three
copies [18] of the GmSNAP18, was 3.23 times more abundant than in Essex (carrying 1 copy of the
GmSNAP18 [18]). On the other hand, PI88788, carrying nine copies [18] of the GmSNAP18, was 9.17
times more induced than Essex, at 3 days after SCN infection (Figure S3A). Clearly, the GmSNAP18
copy number directly impacts its gene expression, playing a crucial role in plant resistance to SCN.

Figure 3. Expression and interaction analyses of GmSNAP18 and GmSHMT08 proteins carrying PI88788
alleles by Co-immunoprecipitation (Co-IP) and BiFC assay. (A) qRT-PCRanalysis of the GmSHMT08,
GmSNAP18, and GmPR08-Bet VI genes in PI88788 from infected (3, 5, and 10 days) and non-infected
(Ctr) root tissue with SCN HG-type 0. Expressions were normalized using Ubiquitin as reference. *
Asterisks indicate significant differences between samples as determined by Student’s t-test (* p < 0.01).
Error bars represent standard deviations. (B) The total protein extracts of soybean PI88788 roots were
immunoprecipitated with Anti-GmSNAP18 PA. Forrest and Essex were used as positive control. Blots
from the eluted fraction were probed with Anti-SHMT08. Western hybridization of the eluted fraction
using both Anti-GmSHMT08 antibodies showed the presence of the GmSHMT08 and GmSNAP18
binding. IgG and Anti-Rubisco were used for Co-IP experiments as a negative control. (C) BiFC analysis
between GmSHMT08, GmSNAP18, and/or GmPR08-Bet VI. The coding sequences of GmSNAP18 and
GmSHMT08 were cloned into pSAT4-nEYFP-C1-B and pSAT4-cEYFP-C1 to generate nEYFP-SNAP18
and cEYFP-GmSHMT08 fusions, respectively. GmPR08-Bet VI was cloned into pG2RNAi2. Various
combinations of cEYFP and nEYFP control fusions were co-expressed in onion epidermal cells by
particle bombardment (Figure S2). Co-IP and BiFC assays indicated that GmSNAP18 and GmSHMT08
alleles from PI88788 can associate each other.

It has been reported that the GmSHMT08 in Peking-type resistance carries a resistant promoter
(which is different from the susceptible promoter found in Essex and Williams 82), providing an
additional layer of the SCN resistance mechanism [18]. As a result, GmSHMT08 transcripts were 2.11
times more abundant in Forrest than in Essex at early SCN infection (Figure S3B). Similarly, PI88788
also carries the resistant GmSHMT08 promoter [18], and its transcripts were 2.18 times more abundant
when compared to Essex at the early SCN infection time point (Figure S3B). These data support the
role of the resistant GmSHMT08 promoter in inducing GmSHMT08 transcripts in response to SCN
infections, which is consistent with the role of a tetrameric GmSHMT08 in resistance to SCN.
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Interaction between the three proteins has been previously reported in Peking-type resistance;
however, it is not clear if the GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex is also
present in PI88788. To test this hypothesis, two different approaches including co-immunoprecipitation
analysis and BiFC assay were performed. Interestingly, co-immunoprecipiation analysis of the
protein-eluted fraction from soybean root (SCN infected tissue) using anti-GmSNAP18 antibodies
and blotted with anti-GmSHMT08 antibodies showed the presence of binding at 50 KDa (SDS PAGE),
which corresponds to the GmSHMT08 homomers. Western blotting showed lower binding intensity in
the SCN-susceptible Essex line when compared to the resistant PI88788 and Forrest lines. Notably, the
presence of gene dosage effect is in agreement with the gene expression analysis and copy number
shown above.

Additionally, BiFC assays supported the co-immunoprecipitation results and demonstrated that
both GmSHMT08 and GmSNAP18 proteins associate with each other in PI88788, showing a stronger
interaction in the presence of the GmPR08-Bet VI protein, similar to that of Peking-type resistance
(Figure 3B). PI88788 carries the susceptible GmSHMT08 allele, which is similar to Essex, but different
from the resistant GmSHMT08 allele in Forrest (Peking-type). When tested by BiFC, a weak signal
was observed between the Forrest-GmSHMT08 and the PI88788-GmSNAP18. The presence of a weak
interaction between two resistant alleles belonging to different types of resistance may be due to the
presence of a haplotype compatibility and the presence of a different gene network. These results are
supported by previous complementation analyses showing that the resistant GmSNAP18+ Forrest
haplotype was capable of restoring resistance to SCN in ExF-susceptible lines (carrying the susceptible
GmSNAP18− Essex type and the resistant GmSHMT08+ Forrest type), but not necessarily the resistant
GmSNAP18+ haplotype from PI88788 that was not capable of restoring resistance to SCN in the ExF
susceptible lines [7]. Interestingly, this interaction was potentiated by the presence of GmPR08-Bet VI
(Figure 3C). The presence of the multi-protein complex (GmSNAP18 at the rhg1-b locus, the GmSHMT08
at the Rhg4-b locus, and GmPR08-Bet VI) in PI88788 represents an unprecedented discovery, which
may have widespread implications in breeding programs.

3.4. Mutational Analysis Supported the Predicted Interaction Model

Using both reverse and forward genetic approaches, we previously identified sixteen missense
and two-nonsense EMS mutants at the GmSHMT08 protein [8,10]. SCN screening of all sixteen isolated
mutants revealed a loss of resistance to SCN. Their female index increased significantly up to 93.4%
(Figure S4). In the current study, we isolated a novel GmSHMT08G357R carrying a missense mutation
one residue away from the N358Y SNP found between Forrest and Essex, increasing the total of
isolated Gmshmt08 EMS missense mutants to 17 (Figure S4). It has recently been reported that the
Forrest-specific polymorphic substitution N358Y impacted the mobility of a loop near the entrance
of the (6S)-tetrahydrofolate-binding site, severely reducing its affinity for folate and dramatically
impairing enzyme activity in Forrest GmSHMT08 [52]. Interestingly, an EMS mutation at the Gly357
residue resulted in the highest increase in female index (FI > 113%) (Figure S4).

Out of the isolated 17 missense mutants, 5, 2, 2, 1, 4, and 1 Gmshmt08 mutants were predicted to
impact the THF binding, PLP binding, PLP catalysis, THF catalysis, GmSHMT08 dimerization, and
GmSHMT08 tetramerization, respectively (Figure 4 and Figure S4). The remaining two Gmshmt08
mutations were not located at the dimerization, tetramerization, or at the PLP/THF catalysis or binding
sites. In fact, these two Gmshmt08G326E and Gmshmt08N368T mutations were mapped near to the
interaction sites of GmSNAP18 and GmPR08-Bet VI. The newly identified Gmshmt08G357R mutant was
mapped on the surface very close to the Y358N polymorphism.

In order to study the effect of the mutations at key residues of GmSHMT08, BiFC assays
were carried out. Nine Gmshmt08 mutants (Gmshmt08∆+S44F, Gmshmt08∆+H121A, Gmshmt08∆+M125I,
Gmshmt08∆+A302V, Gmshmt08∆+L303A, Gmshmt08∆+G326E, Gmshmt08∆+G357R, Gmshmt08∆+Y358N, and
Gmshmt08∆+N368T) carrying mutations in residues located at the interaction site between all subunits
constituting the GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein complex, in addition to
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mutations affecting PLP/THF binding/catalysis, dimerization and tetramerization of the GmSHMT08
subunits, were included in the BiFC assay. All these mutations resulted in increased female
indices, and consequently in a susceptible reaction toward the soybean cyst nematode (Figure S4).
Interestingly, BiFC analysis shows that tested mutations affecting GmSHMT08 dimerization
(Gmshmt08∆+A302V and Gmshmt08∆+L303A), tetramerization (Gmshmt08∆+H121A and Gmshmt08∆+M125I),
and the interaction with GmSNAP18 and GmPR08-Bet VI proteins (Gmshmt08∆+G326E, and
Gmshmt08∆+N368T) negatively impacted the interaction of the GmSNAP18/GmSHMT08/GmPR08-Bet
VI multi-protein complex. Interestingly, Gmshmt08 mutations affecting the THF substrate binding
(Gmshmt08∆+G357R and Gmshmt08∆+Y358N) and PLP catalysis (Gmshmt08∆+S44F) did not necessarily
affect the GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein complex, although they resulted in
an increase in the SCN female index (Figure 5).

Figure 4. Mutational analysis supports the GmSNAP18/GmSHMT08/GmP08-Bet VI multi-protein
complex predicted model. (A) The nine Gmshmt08 mutant alleles used in the mutational analysis to
study the predicted homology model (multi-protein). (down panel) represents the original residues
in the Forrest WT, (up panel) represents the mutated residues (Induced and natural occurring
mutations). (B) The predicted interaction between GmSHMT08 (left) and GmSNAP18 (Right). The
surface in the middle (orange arc) correspond to the pocket where GmPR08-Bet VI protein was
predicted to fit. Locations of the four TPR motifs (TPR1: Yellow, TPR2: Orange, TPR3: Blue,
TPR4: Red) and polymorphisms (Green) at the GmSNAP18 are shown (Right). (C) The predicted
interaction between GmSNAP18, GmSHMT08, and GmPR08-Bet VI protein complex. GmSHMT08
EMS induced mutations affecting Dimerization (red), Tetramerization (red), and Interaction (Green)
with GmSNAP18 and GmPR08-Bet VI proteins are shown. The two polymorphisms R130P and
Y358N between Essex and Forrest are shown in yellow. The GmSHMT08 EMS mutant M125I was
identified earlier by TILLING (Liu et al., 2012); EMS mutants S44F, A302V, G326E, and N368T were
identified by forward genetic (Kandoth et al., 2017). The EMS mutant G357R was identified by TILLING
in this study. GmSHMT08∆+H121A, GmSHMT08∆M125I, GmSHMT08∆+L303A, GmSNAP18∆+E208D,
GmSNAP18∆+Y286D, GmSNAP18∆+E287D, GmSNAP18∆+V288*, and GmSNAP18∆+I289L mutations were
produced by direct site mutagenesis in the current study and further tested their impact on the
GmSHMT08/GmSNAP18/GmPR08 multi-protein complex complex by BiFC. The predicted interaction
model was supported by BiFC analysis.
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Figure 5. BiFC analysis between GmSNAP18, GmPR08, and the nine GmSHMT08 mutated alleles.
The coding sequence of the 9 GmSHMT08 mutant alleles were cloned into pSAT4-nEYFP-C1 to
generate nEYFP-GmSHMT08 mutant fusions. Likewise, GmSNAP18 from the Forrest WT and
GmPR08-Bet VI were cloned into pSAT4-cEYFP-C1-B and pG2RNAi2 to generate cEYFP-GmSNAP18
and pG2RNAi2-GmPR08-Bet VI fusions. Various combinations of cEYFP and nEYFP control fusions
were co-expressed in onion epidermal cells by particle bombardment (Figure S2). Bar = 200 µM.

Additionally, we tested, using BiFC, the five Gmsnap18 mutations (Gmsnap18∆+E208D,
Gmsnap18∆+Y286D, Gmsnap18∆+E287D, Gmsnap18∆+V288*, and Gmsnap18∆+I289L) corresponding to the
five naturally occurring mutations between the Essex and Forrest cultivars that are present at the
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C-terminal (Supplemental Figure S4B). The presence of these naturally occurring mutations did not
impact the GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein complex interactions (Figure 6).

Figure 6. BiFC analysis between GmSHMT08, GmPR08, and the six GmSNAP18 mutant alleles.
The coding sequence of the six GmSNAP18 mutant alleles were cloned into pSAT4-nEYFP-C1-B to
generate nEYFP-SNAP18 fusions. Likewise, GmSHMT08 and GmPR08-Bet VI from the Forrest-WT were
cloned into pSAT4-cEYFP-C1 and pG2RNAi2 to generate cEYFP-GmSHMT08 and cEYFP-GmPR08-Bet
VI fusions. Various combinations of cEYFP and nEYFP control fusions were co-expressed in onion
epidermal cells by particle bombardment (Figure S2). Bar = 200 µM.

3.5. Genes Encoding Key Components of ROS Signaling Pathway were Induced Under SCN Infection

Analysis of the five fragmented peptides obtained from the LC-MS analysis (Figure 7A) identified
the presence of a peroxidase on Chromosome 16 (Glyma.16G164400), named GmPRXD16 (Figure 7B).
In order to reveal the possible link of the H2O2 pathway in response to SCN infection, we analyzed
the expression of the GmPRXD16 gene in two lines: the susceptible line Essex and the resistant line
Forrest, in the absence and presence of SCN infection at 2 and 5 days. The analysis showed that
GmPRXD16 transcripts were highly induced in the incompatible reaction (Figure 7C). Additionally, we
tested the expression of the protein kinase GmPKR19 gene, as it has been shown that protein kinases
increase with reactive oxygen species (ROS) [53]. GmPKR19 transcripts were significantly induced in
the incompatible reaction at 3 and 5 days after SCN infection (Figure 7C).
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Figure 7. LC-MS protein identification of the eluted fraction obtained by immunoprecipitation using
immobilized anti-SHMT08 antibodies and expression analysis. (A) Fragmented peptides identified by
LC-MS in SCN infected root samples from Forrest. (B) Alignment of the GmPRXD16 protein sequence
showing the five identified fragmented peptides by LC-MS. (C) Expression analysis of component of
the ROS signaling pathway reveals that both genes are co-regulated in root cells undergoing nematode
infection. Transcripts of genes encoding key components of the ROS signaling pathway including the
peroxidase GmPRXD16 and the protein kinase GmPKR19 genes were induced and more abundant
under SCN infection in the resistant line Forrest than in the susceptible line Essex. Asterisks indicate
significant differences between the tested lines as determined by ANOVA (*** p < 0.001, ** p < 0.01,
* p < 0.05).

4. Discussion

4.1. The Presence of a Tetrameric GmSHMT08 Protein within the Multi-Protein Complex

Using immobilized anti-GmSNAP18, co-immunoprecipitation analysis of protein-eluted fraction
demonstrated the presence of binding at ~250 kDa in native-gel conditions after blotting using
both anti-GmSNAP18 and anti-GmSHMT08, suggesting that a tetrameric GmSHMT08 (~200 kDa)
interacts with a molecule of GmSNAP18 (~32 kDa) and another molecule of GmPR08-Bet VI (~18 kDa).
These data are coherent with previous studies reporting that SHMTs in eukaryotes are found as
asymmetric tetramers (Appaji Rao et al., 2003; Lakhssassi et al., 2019; Patil et al., 2019). Therefore,
the biochemical analysis performed in this study supported the BiFC analysis and the predicted
homology model reported earlier [29]. According to Renwick et al. (2019), the human cytosolic serine
hydroxymethyltransferase forms a very tight dimer that comes together to form a loose tetramer [48].
Based on that, another hypothesis could be the formation of a dimer of GmSHMT08 associated with
two GmSNAP18 and two GmPR08-Bet VI molecules (or a hexamer). However, in such a case, the total
molecular weight would be around ~200 kDa, which does not match with the obtained 250 kDa band
after bloating with both anti-GmSHMT08 and anti-GmSNAP18 antibodies.
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Furthermore, it has been shown that the ScSHMT His134 residue is conserved only between
eukaryotic SHMTs and is involved in the interaction of the two SHMT dimers (Tetramerization). In
fact, mutants of sheep cytosolic ScshmtHis134 have been found as dimers, suggesting that this area is
involved in the tetramerization of SHMT. Any disruption of this area may lead to loss of tetramerization
(Jagath et al., 1997a). Therefore, our data support the idea that, at least in soybean, the cytosolic
GmSHMT08 is present as a tetramer, as has been suggested earlier [9,10,29,52]. Moreover, mutations
affecting the GmSHMT08 subunits, including dimerization and tetramerization residues, negatively
impacted the GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein complex interaction, suggesting
that the presence of the GmSHMT08 tetramer is essential for the multi-protein complex.

4.2. Mutational Analysis Reveals the Importance of the Gmshmt08 Tetrameric Structure in Maintaining the
Multi-Protein Complex

Homology modeling and mutational analysis showed that the two L299F and A302V EMS
mutations are localized in an α-helix involved in dimerization, and may affect the dimerization of two
GmSHMT08 homomers to form a dimer. In Escherichia coli, a mostly nonpolar domain around residue
eSHMT Leu276 (Forest Leu303) was involved in the dimerization of two eSHMT homomers [54]. The
eshmt mutant L276A caused an alteration in the dimer-monomer equilibrium, resulting in mostly
a monomeric eSHMT, while retaining the monomeric tertiary structure [54]. Our BiFC analysis
demonstrated that GmSHMT08 mutations at the A302V and L303A residues negatively impacted the
GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex (Figure 4A). Thus, mutations in this
α-helix may interrupt GmSHMT08 dimerization and therefore the presence of a tetramer impacting
the formation of multi-protein complex.

Furthermore, the Gmshmt08M125I mutant is found near the conserved His121 (ScSHMT His134),
which is conserved only between eukaryotic SHMTs and is involved in the interaction of the two
dimers (Tetramerization). The SHMT enzyme exists in homotetrameric or homodimeric form, the latter
being the minimum formation necessary for its catalytic function. Mutants of sheep cytosolic (ScSHMT)
His134 have been found as dimers, suggesting that this area is involved in the tetramerization
of SHMT. Any disruption of this area may lead to loss of tetramerization [55]. In the current
study, mutations in both H121A and M125I residues at the GmSHMT08 negatively impacted the
GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex interaction, reinforcing the hypothesis
that a GmSHMT08 tetramer is essential for the multi-protein complex (Figure 4A). The presence of this
structure may explain the reported gene dosage effect, high copy number, and the induced expression
of the GmSHMT08 in resistant lines (carrying the resistant GmSHMT08 promoter) [18,29]. The presence
of a tetrameric structure of the GmSHMT08 protein is also consistent with soybean lines containing
high copy numbers (up to 4) of the GmSHMT08, resulting in broad based resistance to SCN [18].

4.3. Induced and Natural Gmshmt08 Mutations at the PLP Catalysis and THF Substrate Binding Result in
SCN Susceptibility but not Necessary Impacting the Multi-Protein Complex Interactions

The E61K EMS mutation is predicted to impact cofactor binding at the GmSHMT08 catalytic site
(Figure 4A). It has been shown that Glu74 in sheep liver cytosolic SHMT (ScSHMT), corresponding
to the Gmshmt08E61K mutant, catalyzes the cleavage of serine, thereby facilitating the L-Ser-geminal
diamine to the external aldimine. A mutation at this site has been shown to affect the geometry of the
active site and caused a 28-fold decrease in catalytic efficiency [56]. An ScshmtE74K mutant was proven
to lose activity due to an inability to undergo a conformational change after binding to L-serine [57].
Our Gmshmt08E61K is likely to have the same conformational deficiency. These results are coherent
with the in vitro kinetic studies of the Gmshmt08 mutated alleles E61K and G71D when compared to
the Forrest GmSHMT08 allele (Liu et al., 2012; Kandoth et al., 2017). In fact, enzymatic properties of the
GmSHMT08 alleles carrying the E61K and G71D mutations resulted in proteins that are enzymatically
inactive, as they were unable to support the growth of the bacteria, while the GmSHMT08 allele from
the wild type Forrest supported growth of the mutant bacteria (Liu et al., 2012; Kandoth et al., 2017).
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Additionally, E61K is found two residues away from the required Tyr59, which establishes a
cation –π interaction with Arg250 and acts as an acid-base catalyst and hydrogen exchanger in the
transaldimination process. Disruption of this site has been shown to profoundly alter substrate binding
and catalytic activity in E. coli [58]. The Gmshmt08 mutant R257Q is located on the same β-strand of
the essential Arg250 at the dimerization site, which also holds an arm protruding out of GmSHMT08
(Figure 4A).

The Forrest polymorphism R130P and Gmshmt08G132D mutant are both found near the site of
two essential and conserved histidine residues: His134 and His137 (corresponding to His147 and
His150 in scSHMT). The ScSHMT His147 has been shown to be required for the cofactor binding
of PLP, and ScSHMT His150 is the base that abstracts the α-proton of the glycine external aldimine
complex, which leads to a quinonoid intermediate [55,59]. The E. coli eSHMT Gly124 (Forrest Gly132) is
involved in a stacking interaction between the PLP pyridine ring and eSHMT His126 (ScSHMT His147,
GmSHMT His134) [58]. The presence of this new haplotype may be the reason why Gmshmt08G132D
lost its catalytic activity, and could explain why the Forrest haplotype R130P is less catalytically active
than the Essex Pro130 haplotype [8,52]. Considering proline has a conformational rigidity due to its
direct incorporation of the α-carbon into its side chain, this may cause drastic conformational changes,
interfering with this catalysis (Figure 4). Because the Gmshmt08G132D mutant was located between
residues involved in THF binding (Leu129 and Gly133) and next to an important catalytic residue
(His134), the G132D mutation is predicted to impact the THF binding site or catalysis.

It has been suggested that polymorphism residues that reside near to the ligand-binding sites may
impair a key regulatory property of the GmSHMT08 enzyme [8]. In fact, the two Forrest polymorphic
substitutions (P130R and N358Y) impact the mobility of a loop near the entrance of the THF-binding
site at the GmSHMT08 protein, resulting in reduced affinity for folate substrate, subsequently impairing
the enzymatic activity of GmSHMT08 [52]. The isolated novel Gmshmt08 mutant from the EMS
mutagenized Forrest soybean population G357R (FI = 113%) is located one residue away from the
Forrest polymorphic substitution N358Y, and, therefore, is predicted to impact the THF site’s binding
to folate. Another mutation, S44F, which resulted in a loss of SCN resistance in Forrest, was mapped
close to Tyr59 residues involved in PLP catalysis.

Unlike mutations affecting the dimerization and tetramerization of the GmSHMT08 protein, the
increase in the SCN female index in the S44F, G357R, and Y358N Gmshmt08 mutants is due to the
loss of PLP catalysis and/or THF substrate binding [52]. These findings imply the role of both the
GmSHMT08 structure and its enzymatic catalysis in SCN resistance.

4.4. Mutations at GmSHMT08 Residues Mapped at the GmSNAP18/GmPR08-Bet VI Interacting Sites
Negatively Impacted the Multi-Protein Complex

Two Gmshmt08 mutants, F1460 (G326E) and F1801 (N368T), were found to impact the interaction
between GmSHMT08 and GmPR08-Bet VI (Figure 4). The induced missense mutation G326E changes
the amino acid from a small non-polar R-group to the large negatively-charged glutamic acid, which
could cause a steric hindrance at the interaction site, interrupting the α-helix that interacts with
GmSNAP18/GmPR08-Bet V (Figure 4A,C). This may disrupt the interaction interface between the
multi-protein complex. In the case of the N368T mutation, assuming that this mutation would not alter
the tertiary structure of the expressed GmSHMT08 protein, the shift from a large asparagine to a smaller
threonine may cause a steric effect on two α-helices at the interface with GmSNAP18/GmPR08-Bet
V (Figure 4A,C). This may disrupt the interaction interface between the multi-protein complex.
When tested by BiFC, both G326E and N368T mutations negatively impacted the interaction of the
multi-protein complex, reinforcing the proposed interaction model.

4.5. GmSNAP18 C-Terminal Involvement in Driving the Multi-Protein Complex Toward SCN Infected Sites

The GmSNAP18 gene in Forrest is present with three copies, and hence the probability of
introducing EMS mutations in all three copies simultaneously is very slim. Therefore, we focused
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on naturally existing mutations between different GmSNAP18 haplotypes. Unlike mutations in the
GmSHMT08 protein, mutations in the GmSNAP18 protein did not have a negative effect on the
multi-protein complex interactions. Two main regions were found between SCN-susceptible Essex and
SCN-resistant Forrest. The first region includes the Q208D haplotype (Figure 4B), whereas the second
region involves the GmSNAP18 C-terminal (E285, Y286, E287, V288, and I289) (Figure 4B), that was
suggested to alter the destination of a GmSNAP18-guided vesicle [7,60]. This was based on findings
showing the involvement of the C-terminal region of SNAP proteins in determining its localization
and function controlling vesicle trafficking and fusion [61]. The presence of the GmSNAP18 in the
multi-protein complex may drive the complex to an altered destination, in light of the recent finding
that rhg1 mediates SCN disease resistance through impairment of α-SNAP–NSF interaction and
vesicular trafficking [12]. This is also coherent with in-situ and immunostaining analysis showing the
hyper-accumulation of GmSNAP18 proteins at the plasma membrane of soybean root cells surrounding
the nematode in SCN-resistant soybean lines [29,62]. The GmSHMT08 promoter-GUS analysis in
Forrest was also shown to be expressed in syncytial feeding cells at 3 DAI [8], which is coherent with
the previous hypothesis involving GmSNAP18 in driving the multi-protein complex toward the SCN
infection site.

4.6. GmSHMT08 as Mediator of Peking-Type SCN Resistance

Taken together, the recent findings increase our understanding of the SCN resistance mechanism.
First, recognition between nematode effectors (i.e., HgSLP-1) and resistant soybean lines is essential
to trigger the incompatible interaction [29,63,64]. Binding of nematode effectors [65] may interrupt
the negative autoregulation of GmSNAP18, increasing its transcription at the cellular level, which
positively impacts the induction of GmSHMT08 transcripts. Increased salicylic acid induces salicylic
acid defense genes, including GmSAMT, GmNPR, and GmTGA resulting in the induction of the
GmPR08-Bet VI [29], favoring the multi-protein complex formation. Next, the presence of the
GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex may modulate the activity of the
GmSHMT08 in the maintenance of redox homeostasis within the root cells, but may also affect the
molecular trafficking of the GmPR08-Bet VI in the infected soybean roots increasing cytotoxicity
in the cells surrounding the nematode to disrupt syncytium viability [29] (Figure 8). The presence
of the GmSNAP18/GmSHMT08/GmPR08-Bet VI multi-protein complex within the cell dramatically
intensified cell death and necrosis [29]. Since SHMT is involved in the simultaneous interconversion of
serine/glycine and THF/5,10-methyleneTHF [66], we hypothesize that a potential modulation of its
activity may cause a disruption of serine/glycine and/or THF/5,10-methyleneTHF interconversion.

On the serine/glycine side, the SHMT interconversion of serine/glycine may impact the maintenance
of redox homeostasis that occurs via glutathione synthase and glutathione peroxidases. Another
enzyme, glutathione S-transferases (GSTs), is known for its ability to catalyze the conjugation of the
reduced form of glutathione (GSH) to xenobiotic substrates for detoxification [67–69]. The activity
of GSTs is dependent upon GSH supply from the synthetic enzyme glutathione synthetase and the
action of some transporters to remove GSH conjugates from the cell [70,71]. Glutathione peroxidases
and glutathione transferase of τ-GST gene family transcriptions were significantly modulated in
transcriptomic analysis of SCN infection (syncytia) among other ROS scavenging enzymes [72]. In
fact, while the maintenance of ROS homeostasis at low levels is required for parasitic nematodes
to cause pathogenic disease, disruption of this homeostasis (over accumulation of ROS) can lead to
syncytial apoptosis (Figure 8) [73–75]. In the current study, two components of the ROS pathway
were shown to be highly induced in the incompatible reaction (resistant lines) under SCN infection
(Figure S5). Additionally, a peroxidase (GmPRXD16) and protein kinase receptor (GmPKR19) were
mapped to QTLs for resistance to SCN [76,77] using different mapping populations (Figure S5).
Similarly, genes belonging to the two glutathione transferases (GmGST07 and GmGST15) and a
glutathione peroxidase (GmGPRXD08) that were significantly modulated in transcriptomic analysis of
SCN infection (syncytia) [72] were also mapped to QTLs for resistance to SCN [77–79]. In this context,
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overexpression of Arabidopsis peroxidase AtPRX53 was found to influence plant susceptibility to the
cyst Heterodera schachtii [80].

Figure 8. Deciphering SCN resistance mechanism in Peking-type. Cross-talk between SCN resistant
genes, defense genes, and phytohormones is shown as described earlier (Lakhssassi et al., 2020).
Dashed lines represent unknown possible intermediary steps. The possible binding of a nematode
effector (E) may interrupt the autoregulation of GmSNAP18, causing an increase in the transcription
of GmSNAP18, consequently causing an induction of GmSHMT08. Next, the multi-protein complex
may modulate the activity of the GmSHMT08 in single carbon metabolism, methionine synthesis, and
maintenance of redox homeostasis within the root cells. Induction of the apoptosis, necrosis, and
degeneration observed in the cells surrounding the syncytia may occur. Metabolite abbreviations are as
follows—(SAH) S-adenosylhomocysteine; (SAM) S-adenosylmethionine; (hCyst) homocysteine; (Met)
methionine; (THF) tetrahydrofolate; (GSH) reduced glutathione; (GSSG) oxidized glutathione.

Moreover, the link between SHMTs, PRs, ROS and SA pathways has been established previously.
In Arabidopsis, Atshmt1-1 mutants showed a greater accumulation of H2O2, which is known to induce
SA biosynthesis [81,82]. In soybeans, the induction of the SA pathway results in the induction of
GmPR08-Bet VI following nematode infection [29]. The accumulation of H2O2 leading to SA induction
and GmPR08-Bet VI accumulation in soybean-infected roots is believed to eventually result in cell
death and necrosis, favoring syncytial apoptosis (Figure 8).

On the THF side, 5,10-methyleneTHF and the nucleotide deoxyuridine monophosphate (dUMP)
are both utilized by thymidylate synthetase to synthesize deoxythymidine monophosphate (dTMP). It
has been demonstrated that shmt knockdown mutants induce apoptosis in lung cancer cells through
the inhibition of thymidylate synthesis and consequent overabundance of uracil, therefore causing
uracil misincorporation [83]. The 5,10-methyleneTHF is also found to be utilized by the S-adenosyl
methionine (SAM) cycle in the synthesis of methionine. The SAM cycle is known to provide DNA
methyltransferases with methyl groups from SAM [84]. Modulation of this cycle can result in differential
activity of DNA methyltransferase, and may cause a shift in the epigenetic profile of the soybean
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roots during syncytial formation, as it has been shown that susceptible soybeans under SCN infection
undergo a major change in their methylome [38,85]. Importantly, genome-wide analysis of DNA
methylation patterns in two near-isogenic lines (NILs) differing at the GmSHMT08 locus pointed to a
role of GmSHMT08 in methylome reprograming [37]. This mode of action reveals a new mechanism
through which the induction of the reported apoptosis, necrosis, and degeneration observed in the
cells surrounding the syncytia may occur [5,72,86].

Several molecular partners have been identified to interact with SNAP proteins in both animals
and plants [12,87–90]. The discovery of a serine hydroxymethyltransferase and a pathogenesis-related
protein as novel partners of the soluble NSF attachment protein in PI88788 and Peking-types of SCN
resistance provide plants with a new response mechanism toward biotic stresses. Since the three
proteins were reported to be involved in human diseases, this discovery may impact the fields of
pharmacology, biomedicine, and other related disciplines.

5. Conclusions

The current study revealed the importance of a Tetrameric form of the GmSHMT08 Protein within
the Multi-Protein complex needed for resistance to SCN. Unlike what was reported earlier in PI88788
about the requirement of only needing the rhg1-b for resistance to SCN, this study showed for the first
time an interaction within the cell between GmSNAP18 at the rhg1-b and GmSHMT08 at the Rhg4-b locus
in the PI88788 type of resistance. Similarly to Peking-type resistance, the reported interaction between
the rhg1-b and Rhg4-b in PI88788 was stronger in the presence of the GmPR08-Bet VI. Furthermore,
BiFC analyses have confirmed the presence of haplotype compatibility between the Rhg4-a and rhg1-a,
and between the Rhg4-b and the rhg1-b, reinforcing previous complementation analyses showing that
resistant GmSNAP18+ Forrest haplotype was capable of restoring resistance to SCN in ExF-susceptible
lines (carrying the susceptible GmSNAP18− Essex type and the resistant GmSHMT08+ Forrest type), but
not the resistant GmSNAP18+ haplotype from PI88788 that was not capable of restoring resistance to
SCN in the ExF susceptible lines. The presence of the incompatibility between the GmSNAP18 (rhg1-b)
of PI88788 and GmSHMT08 (Rhg4-a) from Peking may explain the difficulty of breeding for soybean
lines that combine both the PI88788 and Peking type of SCN resistance. Most importantly, we have
shown a clear presence of gene dosage effect impacted by the induction of the 3 genes (GmSHMT08,
GmSNAP18, and GmPR08-Bet VI) in both Peking and PI88788 types of resistance, in addition to the
presence of the resistant promoter at the GmSHMT08, and a high copy number of the GmSNAP18,
positively impacting resistance to SCN in soybean cultivars.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/3/349/s1,
Figure S1: (A) Genotypes of the four ExF RIL populations used for the Co-IP analysis. (B) Female index of
Essex, Forrest, and the four different ExF genotypes (n = 25), Figure S2: Negative controls of the BiFC analysis.
Each of the cloned GmSNAP18 and GmSHMT08 in the pSAT4-nEYFP-C1 (E81) were tested in the presence
of the pSAT4-cEYFP-C1-B (E82) and/or pG2RNAi2 empty vectors used in the BiFC analysis in Figures 2, 3,
6 and 7. Various combinations of cEYFP and nEYFP control fusions were co-expressed in onion epidermal
cells by particle bombardment under the same conditions and experiments, Figure S3: qRT-PCR analysis of
the GmSHMT08, GmSNAP18, and GmPR08-Bet VI genes in Essex, Forrest, and PI88788 from infected (3, 5,
and 10 days) and non-infected (Ctr) root tissue with SCN HG-type 0. Expressions were normalized using
Ubiquitin as reference. Asterisks indicate significant differences between samples as determined by Student’s
t-test (** p < 0.01, * p < 0.05). Error bars represent Standard deviations, Figure S4. The isolated EMS missense
Gmshmt08 mutants. (A) GmSHMT08 gene model in Forrest wild type. (B) GmSHMT08 polymorphisms between
Forrest and Essex wild types, and the 17 missense Gmshmt08 mutants identified by reverse a and forward b,c,d

genetic approaches. PROVEAN predictions of the mutations identified were calculated using the PROVEAN
software available at http://provean.jcvi.org. The primers used for TILLING and gDNA sequencing are indicated
by arrows. FI: female index of soybean cyst nematode (SCN) after 30 days infection, lines with FI lower than
10% are considered to be resistant to SCN, n > 5. GmSHMT08 residues involved in THF and/or PLP cofactor
binding and/or catalysis, dimerization/tetramerization of the GmSHMT08 protein, or affecting the multi-protein
GmSHMT08/GmSNAP18/GmPR08-Bet VI complex subunits are shown. a Identified by TILLING (Liu et al., 2012).
b Identified by forward genetics (Kandoth et al., 2017). c identified by forward genetics (Lakhssassi et al., 2019).
d Identified by forward genetics in the current study, Figure S5. Physical positions corresponding to the peroxidase
(GmPRXD16), the protein kinase receptor (GmPKR19), the two Glutathione transferases (GmGST07 and GmGST15),
and the Glutathione peroxidase (GmGPRXD08), and the identified SCN QTLs are shown; Glyma.07G140400 (Chr07:
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16,641,129–16,643,278) and Glyma.07G139700 (Chr07: 16,580,992–16,582,517) were mapped within the QTL: SCN
3-3 (Gm07: 16,521,027 Mb-Gm07: 18,352,609 Mb) (Webb et al., 1995), Glyma08g05200 (Chr08: 3,685,159–3,688,493)
was mapped 0.31 Mb away from the QTL: SCN 33-2 (Gm08: 3,993,698 Mb-Gm08: 8,223,512 Mb) (Guo et al., 2006),
Glyma.15G251500 (Chr15: 47,176,586–47,178,221) was mapped within the QTL: SCN 25-1 (Gm15: 17,019,921
Mb–Gm15: 51,294,894 Mb) (Yue et al., 2001), Glyma.16G164400 (Chr16: 32,320,351–32,323,318) was mapped within
the QTL: SCN 38-3 (Gm16: 30,404,629 Mb–Gm16: 33,818,897 Mb) (Chang et al., 2011), and Glyma.19G193100
(Chr19: 45,084,723–45,089,886) was mapped 0.02 Mb away from the QTL: SCN 29-7 (Gm19: 45,182,458 Mb–Gm19:
47,378,001 Mb) (Guo et al., 2006), Table S1: The primers used for genotyping, sequencing and subcloning, and
yeast two-hybrid.
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