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Abstract

Communities of practice (COP) are informal (sometimes formal) groupings of professionals

with shared interests that form to facilitate the exchange of expertise and shared learning or

to function as professional support networks. We analyse a dataset on the size of COPs and

show that their distribution has a fractal structure similar to that found in huntergatherer

social organisation and the structure of human personal social networks. Small communities

up to about 40 in size can be managed democratically, but all larger communities require a

leadership team structure. We show that frequency of interaction declines as size increases,

as is the case in personal social networks. This suggests that professional work-oriented

organisations may be subject to the same kinds of constraint imposed on human social

organisation by the social brain. We discuss the implications for business management

structure.

Introduction

The Social Brain Hypothesis suggests that there is a “natural” size of group for humans of

around 150 [1,2]. There is considerable evidence that groupings of this size are characteristic

of personal social networks both offline and online [3–7], as well as the size of villages and

other natural groupings in both historical and contemporary small scale human societies [8,9].

Strictly speaking, although the value of 150 has a particular significance, the social brain rela-

tionship takes the form of a fractally structured series of group sizes that have the approximate

sequence 5–15–50–150–500–1500 [10–11], a pattern also found (with the same numbers) in

primates [12]. These numbers seem to act as natural attractors, and hence are more common

as group sizes.

In humans, this sequence of numbers has been reported from a variety of social contexts,

including patterns of interaction in several different kinds of social media [6,13–14], cellphone

calling networks [15], personal social networks in contemporary societies [16], the structure of

modern armies [17], the size distribution of residential campsites [18], alliance formation in

online gaming worlds [19] and even science co-authorship networks [20]. Dunbar & Sosis [21]

analysed both the size distributions and the size at community fission in several historical and
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contemporary utopian communities and found that the numbers 50, 150 and 500 seem both

to be more common than would be expected and allow communities to maximise longevity.

There appears to be something about these particular numbers that makes them especially

stable.

The value of 150 as a natural grouping size seems to be dictated by cognitive processing

capacities associated with brain size, since this value is predicted by a robust relationship

between group size and neocortex volume across primates (the Social Brain Hypothesis)

[22,23]. There is now considerable evidence from neuroimaging experiments that there is a

correlation between the size of friendship groups (egocentric social networks) measured in a

variety of ways and the volumes of key brain regimes in the frontal, temporal and parietal

lobes and the limbic system [24–35]. Similar results have also now been reported for primates

[36,37]. These cortical regions are explicitly associated with social skills such as mentalising or

mindreading [38–43].

Within this framework, however, it is the way we distribute our available social time that is

largely responsible for the layered structure of these networks, both in humans [44,45] and ani-

mals [46,47]. This is a direct consequence of the fact that social time is limited: not only is the

length of the active day constrained, but we have other important things to do in it [1,48–50].

The decisions we make about whom to prioritize, and how much time to invest in each of

them in relation to the benefits that they provide us [51], create the layers when we try to opti-

mize the number of individuals in each benefit category as a function of the respective costs

and benefits [45,52].

There is no obvious explanation as to why viewing social networks from above (how indi-

viduals are distributed in space to create social groups) or from below (in the form of egocen-

tric networks) should yield exactly the same fractal pattern with groupings and layers of

identical sizes defined by the same frequencies of interaction. However, the pattern is widely

observed in both humans and other primates and appears to be very robust. One possible rea-

son is that egocentric networks map onto community structures because both have a modular

structure derivative of the fact that our inner core groups (probably those associated with the

15-layer [46]) have a discrete size and higher order groupings are made up by bolting together

other similar groupings connected by weaker bridging ties.

Given the pervasiveness of this pattern, we might expect it to apply in the context of busi-

ness and administrative structures. So far, however, no studies have examined the structure of

organisations in this light. We here analyse a sample of communities of practice (COP) as a par-

ticular example of this kind of business-world organisation. Communities of practice are

groups of people that share a craft or profession [53–55]. Such communities exist to share

knowledge and expertise, and can develop naturally out of interactions among practitioners or

be created deliberately. Members do not have to be co-located, especially since the internet

now allows geographically dispersed individuals to interact more easily than would previously

have been the case [56]. As communities of shared expertise, COPs are not new: in many ways,

they are a modern manifestation of medieval guilds without the regulatory component. Wen-

ger et al. [57] offer a number of specific recommendations that are likely to maximise the suc-

cess of a COP. These include allowing the community to evolve organically, allowing

opportunities for dialogue, focusing on the value/purpose of the community, nurturing a regu-

lar rhythm for interaction within the community. In many ways, these mirror the natural pro-

cesses that appear to be important in maintaining the cohesion of more conventional social

communities [8,58].

We examine a sample of COPs drawn from a convenience sample. Respondents were asked

to provide only information on the size of their COP and the type of activity involved. We use

standard clustering methods to search for an optimal partition into sub-distributions in order
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to identify natural clusters within the data. Since frequency of interaction is usually inversely

related to grouping size in personal networks [3,43,59], we also ask whether frequency of meet-

ings is inversely correlated with COP size, reflecting the difficulty of coordinating meetings

among large numbers of people. A negative size-dependent relationship would provide some

evidence that the time constraints that limit their size are the same as those that limit the size

of natural social groupings. Because increasing size places additional stress on an organisation

[60], we also ask whether management strategies change as COP size increases and, if they do,

what form this takes. We are particularly interested in whether there is a transition from open,

democratic management (all members help to organise and run the COP meetings in a collab-

orative way) to a more formal management structure (e.g. a management committee).

Materials and methods

The data had been previously collected through a google form survey (Communities of Practice
at Work). There were two main routes to recruiting participants for the survey: (1) through a

relevant mailing list associated with EW’s professional practice and (2) through followers of

@ewebber https://twitter.com/ewebber on twitter. The mailing list consisted of 933 email

addresses of people that had downloaded a copy of a community of practice maturity model at

https://tacitlondon.com/community-of-practice-maturity-model between Feb 2016 and Feb

2019. The assumption was that these people had, at some point, been interested in the topic

and so likely to have been part of an active COP. The twitter route was less targeted, but had

the potential of initially reaching a network of ~9000 people around the world and many more

following at least 61 retweets (shares) to an undetermined number of people. A total of 6 public

tweets were sent at different times of day to maximise responses. These routes inevitably mean

that many of the respondents were likely to occupy digital/IT industry roles within govern-

ment, finance, retail and education sectors. However, this echoes the rise in communities of

practice as part of digital/IT organisation structures. Most respondents are likely to have been

based in the UK, although this cannot be confirmed as it was not a question on the survey.

The survey screened for people that were part of active COPs in the workplace. Community

of practice was defined as: Communities of practice (sometimes also called guilds, chapters, net-
works, communities of interest or clans) are groups of people who share a practice and interact
regularly to support each other and grow their practice. And relevant participants were defined

as: This survey is for people who are members of one or more communities of practice that sup-
port their work (either in the workplace or across workplaces). Please fill in one form for each
community you are a member of. In all, 111 people completed the survey and met the criterion

for being a member of a COP. They reported being members of 130 different COPs. Our unit

of analysis is the COP, not the individual respondent.

To determine how many people were in each active community, we asked: Roughly how
many members are there in the community? A second question asked how many leaders there

were (i.e. who were responsible for coordinating the group, setting its agenda and managing

its meetings). A third question asked how often the community met (either all together or as a

subset of members). The response field was free text. The responses were converted to a stan-

dardised numerical format (average number of weeks between meetings). Two final free text

questions asked our informants to identify (1) what they most appreciated about their COP

and (2) the major challenge or block to the effective functioning of the COP.

The data are available in the online S1 Data

To determine whether the data form a single homogenous dataset, we first compare the dis-

tribution of COP sizes against a normal, an exponential and a logarithmic distribution using a

Kolmogorov-Smirnov one sample test. If none of these fit the data, it is likely that this is
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because the data consist of a set of overlying distributions (e.g. a set of normal distributions

with separate peaks whose tails overlap). If so, this should be apparent as a series of distinct

breaks in slope when the data are plotted as a log10-transformed cumulative distribution. The

number of such breaks indicates the number of distinct clusters. We then use k-means cluster

analysis in SPSS v.23 to search for the optimal distribution of datapoints within clusters so as

to determine cluster mean values. We ran the analysis for 2�k�10. In the limit, such analyses

will always yield a perfect fit when the number of clusters equals the number of datapoints.

The optimal number of clusters is usually taken to be that which optimises the goodness of fit,

subject to the constraint that no cluster should contain too small a number of datapoints since

this is not considered ideal. Coulson [61], for example, suggests a goodness of fit of around

85% as a reasonable trade off (for further discussion, see also [18]). As a first step, we plot the

F-ratio for each analysis (as an index of goodness-of-fit) as a function of k and search for the

value of k that maximises F.

The optimal number of clusters should be reflected in low rates of overlap in data allocations

to adjacent clusters. To determine whether the F-ratio analysis yields an optimal partitioning of

the data, we used silhouette analysis [62] since this is generally considered the most appropriate

method. The silhouette statistic varies between -1 (complete overlap) and +1 (no overlap). Neg-

ative values imply that clusters are not well differentiated; silhouette values>0.3 indicate satis-

factory resolution. Ideally, cluster means should remain stable as k increases: new clusters

should arise by partitioning a single cluster rather than by reassigning clusters completely anew.

To determine cluster stability, we counted the proportion of clusters whose mean values differed

between k = x and k = x+1 by more than the first decimal place. We plotted the resulting values

against k = x in order to identify values of k where cluster mean value remains stable.

Finally, we seek to identify whether the observed mean cluster values correspond to the val-

ues identified in huntergatherer layer sizes. To do this, we follow [3,21] and determine whether

individual cluster mean values at optimal k differ significantly from each of the observed mean

values for layer sizes observed in human huntergatherer societies [63]; since the smallest for-

mal grouping layer in these societies is ~50 in size, we used the values for the two innermost

layers (those at ~5 and ~15) from egocentric networks [3]. We use the respective standard

errors on the huntergatherer and network data to calculate t for each pairwise comparison,

and seek the layer from which each cluster mean is least significantly different.

The data in this study were deemed to be third-party data that do not contain data from

individual participants, and not subject to ethics review.

Results

Fig 1 plots the distribution of COP group sizes in the sample. We first determine whether the

distribution forms a simple univariate normal distribution. It does not (Kolmogorov-Smirnov

one sample test with a mean of 180.0±493.8SD: p<0.001). An exponential distribution does

not provide a better fit (p<0.001); nor does a log10-transformation normalise the data

(p<0.001). This likely means that the distribution is multimodal, formed from a number of

separate distributions overlying each other. To test for this, we first plot the cumulative distri-

bution on a log10 scale (Fig 2A). Multimodal distributions can be detected by breaks in the

slope of the distribution. The distribution suggests that there may be as many as six slope

changes, all of which occur close to the nominal values of 5, 15, 50, 150, 500 and 1500 (identi-

fied by the dashed lines).

To determine the optimal number of such distributions, we use a k-mean cluster analysis,

with k allowed to vary across the range 2�k�10. Fig 2B plots the F ratio (as an index of good-

ness of fit) for successive values of k. The “elbow” in Fig 2B identifies k = 6 as the optimal
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number of clusters. We ran two separate tests to check this: cluster means should be stable

above this value and a six cluster solution should yield a satisfactory silhouette pattern. Fig 3A

plots the proportion of cluster means that do not change in value between k = x and k = x+1.

There appears to be a striking phase transition at k = 6: cluster means change a great deal in

value below k = 6, but above it they change hardly at all. Moreover, the number of clusters with

fewer than five members increases rapidly after k = 6, which undesirable. Second, we examined

the silhouette pattern for the 6-cluster solution to determine whether the clusters are well sepa-

rated. The mean silhouette value is 0.606, with all individual values>0.15, and a distribution

that is significantly more positive than 0 (Fig 3B: one-sample Wilcoxon test with H0 = 0:

p<0.001). This is a very acceptable level of clustering. Increasing the number of clusters

beyond 6 does not improve silhouette value (in fact, the mean varies only between 0.56 and

0.63 across the range of k) suggesting that the breaks between clusters are quite stable.

Fig 1. Distribution of Community of Practice (COP) sizes. The X-axis is log10-transformed for illustrative convenience.

https://doi.org/10.1371/journal.pone.0232204.g001
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The cluster means identified by this analysis are: 4.0, 11.0, 30.2, 112.2, 389.0, 1737.8, with a

mean scaling ratio of 3.4. We next ask whether each of these values fit the mean layer values

found for huntergatherer social organisation. To do this, we compare each observed cluster

mean value with each of the huntergatherer layer values and calculate a t value based on the

appropriate standard error for the huntergatherer data. The results are given in Table 1. For

each case, the observed value differs significantly in size from all but one of the corresponding

layers in hunter-gatherer communities. In two cases, an adjacent value is also not significant

(but always with a markedly higher value of t that approaches statistical significance). To give a

sense of the scale of the fit, the mean value of the t-statistic for the putative corresponding

Fig 2. (a) Cumulative distribution of size of COPs. Vertical lines demarcate (L to R) 5, 15, 50, 150, 500 and 1500. Distinctive breaks in slope are evident in the vicinity of

these lines. (b) Goodness of fit (indexed as F-ratio) for k-means cluster analysis of Community of Practice group sizes as a function of number of clusters.

https://doi.org/10.1371/journal.pone.0232204.g002

Fig 3. (a) Proportion of clusters whose mean size changes by more than the first decimal place between the k = x and k = x+1 cluster solution. (b) Distribution of

silhouette values for a k = 6 solution.

https://doi.org/10.1371/journal.pone.0232204.g003
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layers (the cells on the main diagonal) is t = 0.37±0.43SD (N = 6) versus t = 50.40±140.32

(N = 30) for the off-diagonal cells. The difference is highly significant (Mann-Whitney test:

p<0.001).

Each COP was managed either by an individual or a small subset of the membership or by

all the members acting as a collective (e.g. by taking it in turns to organise meetings). Fig 4 plots

the number of leaders (as defined by the informant) against community size. The mean number

of leaders is 4.09±5.72SD (indicated by the horizontal dotted line). The pattern on the left hand

side of the graph suggests a divergence between those COPs that run themselves as a democratic

collective (the line of datapoints to the left of the dashed vertical line that rise in line with COP

size) and those that have some kind of management structure with one or more formal leaders

(the line of datapoints along the base below the horizontal dotted line). The attempt to work

with an effectively leaderless system (i.e. one in which every member can initiate and manage

particular events, even if there is one person who acts as coordinator) seems to reach its limit at

COPs of ~40 members (the dashed vertical line): after that, there is a phase transition (demar-

cated by the vertical dashed line) marking a sudden switch from the possibility of democracy to

management by a small team. A plot of the distribution of leadership team size (Fig 5) suggests

a bimodal distribution involving either a single individual (occasionally two people) or a group

of 5–10 individuals. The ratio of these two options does not appear to correlate with COP size.

Most COP s (30%) met weekly either in person or online. However, the distribution was

skewed with the average interval between successive meetings being 6.3±12.6D weeks. As

might be expected given the need to coordinate large numbers of individuals, there is a signifi-

cant positive relationship between the inter-meeting interval and COP size for the six clusters

(Fig 6; regression on raw data: r2 = 0.262, F1,123 = 43.6, p<0.0001). For the nominal grouping

levels, the mean intervals between meetings are 12.6 days for groups of 5, 23.9 days for groups

of 15, 25.0 days for groups of 50, 46.3 days for groups of 150, 64.2 days for groups of 500 and

245.9 days for groups of 1500. These values roughly approximate the equivalent contact fre-

quencies between individuals that we find in both face-to-face and online communities: for

the first four layers, these are once every 6.4 days, 17.2 days, 72.5 days and 143.7 days, respec-

tively [14]. Further evidence of the constraints imposed by time come from the open text

answers to our question on the challenges that informants felt prevented COPs from fulfilling

their potential. Of the 130 cases, 40 (30.5%) listed time to attend meetings as the most impor-

tant problem, and a further 34 (26%) identified other members’ failure to be involved in orga-

nising meetings. In other, almost two-thirds of COPs were hampered by their members’ time

constraints.

Table 1. Student’s t comparing observed cluster means against theoretical values derived from previous studies.

Observed t against predicted values

Means 3.8±2.39† 11.3±6.19† 42.8±18.0‡ 127.0±43.8‡ 566.6±166.2‡ 1727.9±620.6‡

4.0 0.08¶ -1.18 -2.16� -2.81� -3.39� -2.78�

11.0 3.01� -0.05¶ 1.76 -2.65� -3.34� -2.78�

30.2 11.05� 3.05� 0.70 -2.21� -3.23� -2.74�

112.2 45.27� 16.30� 3.86� -0.34 -2.73� -2.60�

389.0 161.17� 61.02� 19.23� 5.98� -1.07 -2.16�

1737.8 725.52� 278.92� 94.17� 36.78� 7.05� 0.02¶

† values for egocentric social networks from [3]

‡ values for hunter-gatherer societies from [63]

� For N = 128, p<0.05 when t<1.98; best fit value in each case is indicated in bold italics.
¶ When t<0.062, p>0.95 2-tailed, indicating significant similarity.

https://doi.org/10.1371/journal.pone.0232204.t001
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From the free-text answers to the question “What do you most appreciate about your

COP?”, one response, which we label a sense of camaraderie, was especially common. Many of

the informants explicitly used this term, but we included comments that mentioned trust, fun,

engagement or supportiveness. Significantly more respondents in small COPs (<40 in size)

stated that a sense of camaraderie was the single most important factor about their COP com-

pared to those in large (>40) COPs (36.5% of 85 cases vs 17.8% of 45 cases, respectively: Fisher

Exact test, p = 0.029).

Discussion

Communities of Practice seem to have a similar fractal distribution to natural human commu-

nities, as reflected in both the structure of personal social networks and the distribution of

Fig 4. Number of leaders in the community plotted against community size. Horizontal dotted line denotes overall mean (4.09 leaders). Vertical dashed line denotes

the apparent upper limit for democratic management of communities. The X-axis is log10-transformed for illustrative convenience.

https://doi.org/10.1371/journal.pone.0232204.g004
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nested hunter-gatherer social groupings. Business communities are typically more functionally

focussed than conventional social communities, and this may, of course, make them more

transient [64]. In this respect, they may resemble the more transient networks characteristic of

twitter [4,13] and, perhaps, academic networks [5,20]. Although hunter-gatherer communities

clearly have economic functions, nonetheless they are also social communities based on histor-

ically deep personal relationships of kinship and friendship between the individuals and fami-

lies that, in most cases, last a lifetime (an individual’s tribal membership, for example, does not

change during their life).

Business communities are necessarily task-oriented and may dissolve quite quickly once

the task has been accomplished [64], much as alliances in the online gaming world do [19].

Where COPs form professional associations, they may, of course, be longer lasting, although

even here there may be considerable turnover (“churn”) in membership over time. Most mil-

lennials, for example, only expect to stay in a job for 4.4 years on average [65], and this may

exacerbate the rate of membership churn even in those cases where a COP has an extended

lifespan. The fact that COPs have a similar fractal structure to natural human groupings sug-

gests that the limits on group size are set by the same kinds of constraints as determine the size

Fig 5. Frequency distribution for size of leadership group.

https://doi.org/10.1371/journal.pone.0232204.g005
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of natural social human groups. These constraints normally relate to a combination of time

[44,45,59] and mental processing capacity [26,27,31,34]. The neural demands of managing

social relationships has, for example, been shown to be considerably greater than managing

purely factual information [41]. This suggests that the cognitive demands of managing large

numbers of relationships probably influences the size of COPs in much the same way as they

do the size of human social groups.

Fig 4 suggests that it is possible for communities to be run without having a formal leader-

ship structure up to a limiting size of about 40 individuals, but that above this size community

coherence requires the emergence of a more formal management structure (e.g. a management

committee or some kind of acknowledged leadership). This may explain why huntergatherer

bands (or camp groups) (which vary between about 35–50 in size depending on latitude [66])

are able to function effectively as egalitarian, democratic institutions, whereas forms of leader-

ship tend to emerge in larger scale communities (e.g. tribes). Johnson [60] has suggested that

natural human groups face stresses that grow exponentially as group size increases. This sets

Fig 6. Mean (±1 se) time between meetings as a function of cluster. Note that, in a small number of cases, frequency of meetings was not specified.

https://doi.org/10.1371/journal.pone.0232204.g006
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an upper limit on group size that can only be breached if the group becomes substructured.

This substructuring, he argued, emerges at a group size of about 40. Dávid-Barrett & Dunbar

[67] showed that small elites emerge naturally in communities whose functional objective is

group coordination (as opposed to cooperation on a task) and, when they do, the presence of a

managing elite significantly increases the efficiency with which the community functions (at

least in terms of information flow). This naturally gives rise to a layered structure to such

communities.

The layered structure in human social networks is thought to reflect mainly the time costs

of maintaining relationships [44,45,52]. In the present case, this is reflected in the negative

relationship between COP size and the interval between meetings (Fig 5). That time may be a

constraint is hinted at by the fact that, in our sample, time commitments were identified as the

major challenge limiting COPs from achieving their full potential. Members have to be willing

to sacrifice time devoted to other activities (or, in a social context, other individuals) in order

to attend meetings. The more frequent these meetings are, the greater that commitment to the

group will have to be. An important component of that commitment will be the sense of obli-

gation to other COP members, and this sense of obligation is likely to be greater and more per-

sonalised when the group size is small (creating a greater pressure to attend). In this case, the

group will need to meet frequently in order to generate a sufficiently strong sense of personal

obligation.

The phase shift in COP management structure (Fig 4) provides us with some valuable

insights into why substructuring might have to occur in both social and business organisation:

it rapidly becomes impossible to manage more than 40–50 individuals in a strictly democratic

face-to-face fashion. Some structural mechanism is needed to allow face-to-face interactions to

function effectively in a way that facilitates organisational management. Hutterite farming

communities (known as “colonies”) provide a relevant, if unusual, example of this. Their com-

munities are run on strictly democratic lines despite the fact that they typically contain 100–

150 individuals of all ages [21]. Fig 4 suggests that this ought to be beyond their capacity to

manage democratically. Hutterites solve the problem by a form of covert structuring–manage-

ment decisions are made only by the adult males of the community (typically around 20–40

individuals) who constitute a small enough group to function along strict democratic lines.

Our findings have implications for organisations wanting to benefit from COPs at a num-

ber of levels. These relate to community size, psychological intimacy, formal management

mechanisms, and the availability of time. It goes without saying, perhaps, senior managers

need to adopt a supportive attitude. Indeed, lack of such support was mentioned by a number

of respondents as the main constraint on the success of COPs.

It is clear that size matters and influences the benefits derived from a community of prac-

tice. Smaller COPs allow for greater psychological intimacy and camaraderie, and this will

have an impact on feelings of belonging and support. This may well impact on staff retention

and recruitment. Smaller communities have the ability to meet more frequently, which means

increasing the camaraderie further. These communities create stronger bonds between indi-

viduals and lean towards becoming social networks because of this. The bonds involved in

such a network can create enough commitment to maintain the community without the need

for organisational management intervention. These smaller more intimate groups are able to

have a diverse set of activities that are possible because of their smaller nature. They include,

sharing, learning, face to face discussions, “brown bag” sessions, social events and collaborative

projects (e.g. creating best practice guidelines, setting standards, producing training materials).

Larger communities necessarily require a different approach. Due to the nature of meeting fre-

quency, they may need to be more formally managed, either through time allocated to existing

community members to form a committee or additional support staff. A COP moving from a
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smaller size (less than 40) to a larger size will need a transition to help make that happen. In

addition, larger groups are by their nature restricted in the activities that they can carry out,

but may develop additional functions such as training, showcases, career opportunities, news-

letters, conferences and discussion forums. Very large communities can be seen as a network,

where a core group broadcasts information to a wider group. Because of this, there might be

the need to create subsets in larger communities to carry out more focused activities and tasks

All COPs exist only because one or more individuals are willing, and have the capacity, to

take on the task of organising them. It was clear from the comments to the free text questions

that these individuals find this a burden (a quarter listed failure by other members to contrib-

ute as a major limitation to the success of the COP). The phase shift in management structure

at COPs of around 40 in size raises the more general point that a large COP or voluntary asso-

ciations will only survive if there is a pool of people willing and able to undertake the task of

running it (i.e. by joining its management committee). Organisations can support this by free-

ing up people’s time to manage the community, actively encouraging or rewarding organisa-

tional and participation through support, sponsorship or incentives, and by dedicating

individuals to take on support roles for the COPs.

The main lesson would seem to be how to maintain a balance between an open, democratic

organisation in which all members feel they have a stake and effective top-down management

once an organisation (or a department within a larger organisation) exceeds ~50 individuals in

size. It seems that this circle cannot easily be squared without developing a formal manage-

ment structure.
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