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ABSTRACT: By utilizing Graphics Processing Units, we show
that constant pH molecular dynamics simulations (CpHMD)
run in Generalized Born (GB) implicit solvent for long time
scales can yield poor pKa predictions as a result of sampling
unrealistic conformations. To address this shortcoming, we
present a method for performing constant pH molecular
dynamics simulations (CpHMD) in explicit solvent using a
discrete protonation state model. The method involves standard
molecular dynamics (MD) being propagated in explicit solvent
followed by protonation state changes being attempted in GB
implicit solvent at fixed intervals. Replica exchange along the
pH-dimension (pH-REMD) helps to obtain acceptable titration
behavior with the proposed method. We analyzed the effects of various parameters and settings on the titration behavior of
CpHMD and pH-REMD in explicit solvent, including the size of the simulation unit cell and the length of the relaxation
dynamics following protonation state changes. We tested the method with the amino acid model compounds, a small
pentapeptide with two titratable sites, and hen egg white lysozyme (HEWL). The proposed method yields superior predicted pKa
values for HEWL over hundreds of nanoseconds of simulation relative to corresponding predicted values from simulations run in
implicit solvent.

1. INTRODUCTION

Solution pH often has a dramatic impact on biomolecular
systems. By modulating the protonation state equilibria of
various, titratable functional groups present in the system, small
changes in solution pH can affect the charge distribution within
the biomolecule. This charge distribution, in turn, often has a
profound impact on the fundamental structure and function of
biomolecules. This effect can be so pronounced that some
proteins’ native states are stable only in a narrow pH range,
even denaturing completely in extreme pH environments.1,2

Because biomolecular behavior can depend very strongly on
the pH-dependent protonation states of various titratable
residues, accurate computational models designed to treat such
systems must somehow account for pH effects. While the
traditional approach of assigning a fixed protonation state for
each titratable residue at the beginning of the simulation is still
the most common approach, numerous methods have been
developed in an attempt to treat pH effects in biomolecules
more quantitatively.3

Of particular interest in this study is the constant pH
molecular dynamics (CpHMD) technique, of which there are
several variants.4−8 CpHMD is a method that leverages the
ability of classical molecular dynamics to sample conforma-
tional space while simultaneously sampling from the available
protonation states according to the semigrand canonical

ensemble.5 By adopting this approach, CpHMD simulations
can overcome the limitations imposed by constant-protonation
MD simulations by constructing an ensemble whose proto-
nation state distributions are properly weighted via the
thermodynamic constraint imposed by a constant chemical
potential of hydronium ions.
Within the myriad of available CpHMD methods, there are

two fundamentally different approachescontinuous proto-
nation states6,8−11 and discrete protonation states.5,7,12−14 In
the former, a continuous ‘titration coordinate’ describing a
fictitious ‘titration particle’ is introduced at each protonable site
that is propagated as part of the standard MD according to a
pH-dependent force acting on this particle.6,8 Discrete
protonation state models, on the other hand, employ occasional
Metropolis Monte Carlo (MC) exchange attempts between
different protonation states throughout the course of the MD
simulation.5,7 For the purposes of this study, we will focus on
CpHMD models using discrete protonation statesspecifically
as implemented in the AMBER software suite.7

In the original AMBER implementation of CpHMD, the
molecular dynamics is propagated treating solvent effects
implicitly via the Generalized Born (GB) method.7 Periodically
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throughout the dynamics, a trial move changing the
protonation state of either one or two closely interacting
titratable residues is evaluated based on the difference in
electrostatic and solvation energies calculated via GB, after
which the coordinates are propagated according to this same
potential.
Recently, however, Machuqueiro and Baptista raised

concerns about pKa predictions inheriting problems related to
the model compound definition and inaccuracies in the
underlying force field.15 In particular, force field deficiencies
have been shown to result in incorrecteven unphysical
global minima.16−20 So far, reported applications of Mongan et
al.’s method have shown good results because the simulations
were too short to reveal the full extent of the weaknesses in the
Generalized Born model being used.7,12,21−24 When we
implemented Mongan et al.’s method on graphics processing
units (GPUs) in order to run long simulations, the unphysical
states sampled over long time scales degraded the pKa
predictions of the hen egg-white lysozyme (HEWL). This
erroneous sampling may be addressed to some extent by using
an explicit representation of the solvent to propagate the
dynamics.
While most of the physics-based methods designed to

describe a biomolecular system at constant pH use an implicit
solvent representation of the solvent, several CpHMD methods
have been extended to sample, at least conformations, in
explicit solvent with both the discrete5 and continuous9−11

protonation models. The methods proposed by Baptista et al.5

and Wallace and Shen9 use an implicit solvent potential to
sample protonation states while the methods developed by Goh
et al.10 and Donnini et al.11 perform λ-dynamics on the titration
coordinate directly in explicit solvent. A more recent approach
by Wallace and Shen uses a λ-dynamics approach in pure
explicit solvent and adds a counterion whose charge is changed
simultaneously with a titratable residue in order to maintain
charge neutrality in the unit cell.25

Discrete protonation methods use molecular dynamics to
propagate the spatial coordinates, while occasionally interrupt-
ing the dynamics to attempt changes to the protonation states
of the titratable residues using a Metropolis Monte Carlo
criteria. The CpHMD method implemented in AMBER7 (and
later implemented in CHARMM12) performs MD in GB
solvent, periodically attempting to change the protonation state
of one or two interacting residues roughly every 10 fs.7 In the
stochastic titration method described by Baptista et al.,
dynamics is run in explicit solvent for 2 ps,26 after which a
cycle of protonation state change attempts are evaluated using
the Poisson−Boltzmann (PB) equation to treat solvation
effects for every titratable residue and interacting titratable
residue pair. About 40 000 full cycles are attempted each time
protonation state changes are attempted.27 Afterward, the
solute is held fixed while MD is propagated on the solvent to
reorganize the solvent distribution to the new set of
protonation states.
Implicit solvent modelsin this case GB and PBaverage

over all solvent degrees of freedom, thereby instantly
incorporating the effects of solvent relaxation around discrete
protonation state changes. Therefore, MC moves in which a
protonation state change is attempted have a reasonable
probability of succeeding when the solution pH is set close to
the pKa of the titratable group. When explicit solvent molecules
are present, however, the solvent orientation around any
solvent-exposed, titratable residue will oppose any protonation

state changes. On average, the solvent distribution tends to
resist protonation state changes by imposing a barrier on the
order of 100 kcal/mol as estimated by measurements in our lab
and in others’,9 making titration with discrete protonation
states difficult directly in explicit solvent.
In this study, we present a new method of performing

CpHMD simulations in explicit solvent using discrete
protonation states. This method is similar in some regards to
that used by Baptista et al.,5 and we evaluate its performance on
the model compounds, a pentapeptide, and the HEWL protein.
To enhance the sampling capabilities of this new CpHMD
method, we use replica exchange in the pH-dimension (pH-
REMD), whose theory and performance were discussed
previously in the context of implicit solvent calculations.12,24

This paper is organized as follows: We will first describe the
method and its implementation in the Theory and Methods
section, followed by a description of the calculations we
performed in the Calculation Details section. Afterward, we will
evaluate its performance as well as sensitivity to the method’s
tunable parameters in the Results and Discussion section.

2. THEORY AND METHODS
In this section, we will discuss the details of our proposed
method and highlight how it differs from the approach used by
Baptista et al.5 The theoretical foundation of our CpHMD
method is described in detail, as well as the pH-REMD method
we used in our simulations.

2.1. Conformational and Protonation State Sampling.
In CpHMD, structures are sampled from the semigrand
canonical ensemble, whose probability distribution function is
given by

∫
ρ

βμ β
βμ β

=
* −

∑ ′ ′ * ′ − ′ ′ ′′

n H
d d n H

q p n
q p n

p q p q n
( , , )

exp( ( , , ))

exp( ( , , ))n
(1)

where β = 1/kBT, μ* is the chemical potential of hydronium
(directly related to the solution pH), q is the generalized
coordinates of the system particles, p is the conjugate
momenta, and n is the total number of titratable protons
present in that state. When bold, n refers to the protonation
state vector, specifying not only the total number of protons
present but on which titratable sites those protons are located.
The denominator in eq 1 is the partition function of the
semigrand canonical ensemble.
To sample from the probability function ρ in eq 1, discrete

protonation state methods use MD with a fixed set of
protonation states to sample coordinates and momenta coupled
with a MC-based protonation state sampling at fixed
conformations throughout the trajectory. Baptista et al. showed
that standard MD, which samples ρ(q,p|n), used in conjunction
with MC moves on protonation states, which samples from
ρ(n|q,p), properly samples from the desired probability
distribution function ρ(q, p, n).5 In this notation, ρ(q,p|n) is
the conditional probability function of the positions and
momenta with fixed protonation states whereas ρ(n|q,p) is the
conditional probability function of the protonation state vector
at a fixed protein conformation.
In explicit solvent, ρ(n|q,p) is difficult to sample directly,

since the solvent orientation is relaxed with respect to the
current protonation state vector. Following the arguments of
Baptista et al., the system coordinates (and momenta) can be
separated into solute and solvent degrees of freedom.5 The
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protonation state sampling is then performed according to the
conditional probability

ρ ρ′ = |′ ′ ′p q n p q( )solvent solvent solute solute (2)

where qsolvent and psolvent are relaxed solvent distributions of
positions and momenta around the protonation state vector, n.5

The energy differences resulting from the relaxed solvent
distributions around the different protonation states are
quantities that implicit solvent models strive to reproduce.
Therefore, the distribution function ρ′ in eq 2 can be
approximated using continuum models, such as the PB or
GB equations, thereby avoiding the otherwise costly solvent
relaxation calculation associated with each attempted proto-
nation state change. Performing relaxation MD on the solvent
degrees of freedom should be done after protonation state
changes to generate the uncorrelated, relaxed solvent
distribution required by eq 2. While using MD to generate
relaxed solvent distributions violates detailed balancemicro-
scopic reversibility is no longer preservedManousiouthakis
and Deem have shown that simply satisfying the weaker balance
condition is valid.28

Contrary to the stochastic titration method that calculated
solvation free energies using the PB equation to evaluate
protonation state changes,5 we chose to use the GB implicit
solvent model for three main reasons. First, AMBER has
numerous GB models readily available,29−33 allowing us to use
the existing code to evaluate protonation state change attempts.
Second, results from the original GB-based CpHMD
implementation by Mongan et al., and from a number of
previous studies using the method, have been promis-
ing.7,22,24,34 Furthermore, GB was shown to be effective when
used in a hybrid solvent method with continuous protonation
states,9 is computationally cheaper than PB, and GB is more
easily parallelizable, allowing longer simulations to be
performed in the same amount of time.
2.2. Explicit Solvent CpHMD Workflow. The process of

the CpHMD method presented here can be divided into three
repeating steps, summarized in the workflow diagram in Figure
1. This workflow is very similar to the one presented in ref 5
(Figure 2), although the nature of the MC protonation state
move is different.
In the proposed method standard MD in explicit solvent is

carried out using a constant set of protonation states (an initial
set must be provided at the start of the simulation). At some
point the MD is stopped, the solvent (including any
nonstructural ions) are stripped, the potential is switched to
an available GB model, and a set of N protonation state changes
are attempted where N is the number of titratable residues.
While in principle the MD can be stopped randomly with a
predetermined probability at any step, in this iteration of our
proposed method we run MD for a set time interval, τMD,
similar to the stochastic titration method.5

After the MD is halted and the solvent stripped, protonation
state changes are proposed for each titratable residue once, in
random order, choosing from the available protonation states of
that residue excluding the currently occupied state. The
electrostatic energy difference between the proposed and
current protonation states, as well as the MC decision regarding
whether or not to accept the proposed state, are calculated the
same way as in the original GB implementation.7 If the
protonation state change is accepted, the ‘current’ state is
appropriately updated, and the next residue, chosen at random
without replacement, is titrated with this new state.

For each residue that is titrated, there is a 25% chance that a
so-called multisite titration will occur with a neighboring
residue; that is, the proposed change will involve changes to the
protonation state of both the residue and its neighbor. Two
titratable residues are considered ‘neighbors’ if any two titrating
hydrogen atoms are within 2 Å from each other. If either
residue has more than one titrating proton, the two residues are
neighbors if the minimum distance between any pair of titrating
hydrogens meets the cutoff.
Including multisite protonation state jumps is important for

systems that have closely interacting titratable residues.
Without these multisite moves, proton transfers between
adjacent titratable residues involved in a hydrogen bond
would never occur due to the high penalty of disrupting the
interaction by adding another proton or removing the proton
involved in the hydrogen bond. This feature was actually
present in the initial GB CpHMD implementation, and while
no mention of it was made in the original paper, a small note
was made in the AMBER Users’ manual.7

If any of the protonation state change attempts were
accepted, the solute is frozen while MD is performed on the
solvent (and any ions) to relax the solvent distribution around
the new protonation states. The length of this relaxation is a
tunable parameter of the method, which we will call τrlx. After
the relaxation is complete, the velocities of the solute atoms are
restored to their values prior to the relaxation and the standard
dynamics is continued.
It is worth noting that as the protonation states change

during the course of the CpHMD simulations, so too does the
net charge on the system. Because we are using periodic

Figure 1. Workflow of the proposed discrete protonation CpHMD
method in explicit solvent. Following the standard MD, the solvent,
including all nonstructural ions (as determined by user-input), are
stripped and the protonation state changes are evaluated in a GB
potential. After that, the solvent and the original settings are restored
for the remaining steps.
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boundary conditions with a lattice-sum method to compute
electrostatics, finite-size effects involving the changing charges
are introduced.35,36 The investigations focusing on charge-
dependent finite-size effects have identified artifacts affecting
primarily computed free energies and pressure and are larger
for smaller unit cells.35 In the proposed method, the
protonation state changes are attempted in implicit solvent
with a GB potential, which is entirely unaffected by these finite-
size effects. Furthermore, since replica exchange simulations in
AMBER require the use of constant volume, no pressure
corrections are required, either.
2.3. pH-based Replica Exchange. The underlying theory

behind replica exchange in pH-space with MD run in explicit
solvent is unchanged from the version we implemented in
implicit solvent earlier.12,24 Replicas are ordered by their
solution pH parameter, and adjacent replicas attempt to
exchange their pH periodically throughout the MD simulations.
The probability of accepting these replica exchange attempts,

given by eq 3, depends only on the difference in the number of
titrating protons present in each replica and their respective
difference in pH.24

= − −→P N Nmin{1, exp[ln 10( )(pH pH )]}i j i j i j (3)

where Ni is the total number of titratable protons ‘present’ in
state i.
Because the probability of accepting replica exchange

attempts depends only on the number of titratable protons
that are present in the system, the number of replicas necessary
to obtain efficient mixing in pH-space does not increase as
explicit solvent is added. This, coupled with the more accurate
sampling found with explicit solvent simulations,24 makes pH-
REMD an effective tool for explicit solvent CpHMD.

3. CALCULATION DETAILS

To evaluate the performance of the proposed method, we
applied it to the amino acid model compounds, a small
pentapeptide (ACFCA), and a protein commonly used in pKa
calculation studies-the hen egg-white lysozyme (HEWL).
3.1. Implicit Solvent Simulations. In order to allow

simulations to be run for hundreds of nanoseconds, we
implemented Mongan et al.’s CpHMD method with pH-
REMD24 on GPUs in GB implicit solvent.37 We used the
HEWL structure solved in PDB code 1AKI38 as our starting
structure. The carboxylate residues were initially set in the
deprotonated state, and histidine 15 was started in the double-
protonated state according to AMBER defaults.
The structure was minimized using 10 steps of the steepest

descent algorithm followed by 990 steps of conjugate gradient
with 10 kcal/mol·Å2 . The minimized structure was then heated
for 1 ns, varying the target temperature linearly from 10 to 300
K over 667 ps. Positional restraints (5 kcal/mol·Å2) were
placed on the backbone atoms. The temperature was controlled
using Langevin dynamics with a 5 ps−1 friction coefficient.
The heated structure was then equilibrated at 300 K for 2 ns

using Langevin dynamics with a friction coefficient of 10 ps−1

with 0.1 kcal/mol·Å−2 positional restraints on the backbone.
We then ran 500 ns of pH-REMD, attempting to change
protonation states every 10 fs and attempting replica exchanges
every 20 fs. We used 14 replicas spanning the pH range 1−7.5
with a 0.5 pH-unit spacing between adjacent replicas. No
nonbonded cutoff was used for any implicit solvent simulation.

3.2. Model Compounds. Absolute pKa values are very
difficult to calculate in solution; they are impossible using
classical force fields. As a result, every physics-based CpHMD
method uses the idea of a model compound whose experimental
pKa is easy to measure with a high level of accuracy. An
empirical parameterthe reference energyis then added so
that CpHMD reproduces the experimental pKa values of these
compounds. The reference energy must be set for the solvation
model that is used during the simulations, which was the same
GBOBC model that Mongan et al. used in their study.7

The model compounds have the residue sequence ACE-X-
NME, where ACE is a neutral acetyl capping residue, X is the
titratable residue, and NME is a neutral methyl amine capping
residue.7 The available titratable residues in AMBER are
aspartate (AS4), glutamate (GL4), histidine (HIP), lysine
(LYS), tyrosine (TYR), and cysteine (CYS), which are all
defined as described by Mongan et al.7 A 10 Å TIP3P39 solvent
buffer was added in a truncated octahedron around each model
compound that we simulated. The aspartate model compound
was also simulated with larger box sizes15 Å and 20 Å
buffersto determine if it had any effect on the calculated pKa.
After the system topologies were generated, each system was

minimized using 100 steps of steepest-descent minimization
followed by 900 steps of conjugate gradient minimization. They
were then heated at constant pressure, varying the target
temperature linearly from 50 to 300 K over 200 ps. The
solvated model compounds were then run for 2 ns at constant
temperature and pressure.
Each model compound system was simulated at constant pH

and volume for 2 ns, setting τrlx = 200fs. Each simulation
employed pH-REMD using six replicas with the solution pH set
to pKa ± 0.1, pKa ± 0.2, and pKa ± 1.2. To evaluate the effect of
the solvent relaxation time, the cysteine model compound was
run with τrlx set to 10 fs, 40 fs, 100 fs, 200 fs, and 2 ps.

3.3. ACFCA. A pentapeptide with the sequence Ala-Cys-Phe-
Cys-Ala (ACFCA) was solvated with a 15 Å buffer of TIP3P
molecules around the solute in a truncated octahedron.
The system was minimized using 100 steps of steepest

descent minimization followed by 900 steps of conjugate
gradient. The minimized structure was heated by varying the
target temperature linearly from 50 to 300 K over 200 ps at
constant pressure. The resulting structure was then simulated at
300 K at constant temperature and pressure to stabilize the
system density and equilibrate the solvent distribution around
the small peptide.
The resulting structure was then used in simulations at six

different solution pH values7.1, 8.1, 8.3, 8.7, 8.9, and 9.9.
These pH values were chosen because the pKa of the cysteine
model compound is 8.5, so the two cysteines of ACFCA were
expected to titrate in this pH range. To demonstrate the effect
that pH-REMD had on the titration of ACFCA, two sets of
simulations were runCpHMD with no exchanges and pH-
REMDwith each replica being run for 2 ns.

3.4. Hen Egg White Lysozyme. We used the structure
solved in PDB code 3LZT as the starting structure for our
simulations.40 All eight aspartate residues were renamed AS4,
both glutamate residues were renamed GL4, and histidine 15
was renamed HIP in preparation for the pH-REMD
simulations.
All disulfide bonds were added manually in tleap, and the

system was solvated with a 10 Å TIP3P water buffer
surrounding the protein in a truncated octahedron. We added
26 sodium ions and 11 chloride ions in random locations in the
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simulation cell to provide an ionic atmosphere and neutralize
the system in its initial, default protonation states.
The system was minimized using 1000 steps of steepest

descent minimization followed by 4000 steps of conjugate
gradient, with 10 kcal/mol·Å2 positional restraints applied to
the backbone. The structures were then heated at constant
volume, varying the target temperature linearly from 10 to 300
K over 400 ps using Langevin dynamics with a 5 ps−1 friction
coefficient. The heated structures were then equilibrated for 4
ns at constant temperature and pressure using Langevin
dynamics with a 2 ps−1 friction coefficient to maintain the
temperature and 2 ps−1 coupling constant for the Berendsen
barostat. The system was then subjected to 112 ns of
equilibration MD at constant volume and temperature using
Langevin dynamics with a 2 ps−1 friction coefficient to maintain
a constant temperature of 300 K.
Following the setup stages of the simulations, two sets of pH-

REMD simulations were carried out for 122 and 150 ns with 12
replicas spanning the pH range from −3 to 8 at 1 pH-unit
intervals to characterize the acidic-range titration behavior of
HEWL.
3.5. Simulation Details. All systems were parametrized

using the AMBER FF10 force field, which is equivalent to the
AMBER FF99SB force field for proteins.19 The tleap program
of the AmberTools 12 program suite was used to build the
model compound and ACFCA molecules, to add hydrogen
atoms HEWL and to solvate each system that was run in
explicit solvent.
All simulations were performed using either the sander or

pmemd module of a development version of AMBER 12.41

Langevin dynamics was used in every simulation to maintain
constant temperature with collision frequencies varying from 1
ps−1 to 5 ps−1, and the random seed was set from the computer
clock to avoid synchronization artifacts.42,43 The Berendsen
barostat was used to maintain constant pressure for the
equilibration dynamics with a coupling constant of 1 ps−1.
All molecular dynamics, including the solvent relaxation

dynamics, are run with a 2 fs time step, constraining bonds
containing hydrogen using SHAKE.44,45 Replica exchange

attempts between adjacent replicas were made every 200 fs
for all pH-REMD simulations. Protonation state changes were
attempted every 200 fs for all constant pH simulations.
Long-range electrostatic interactions were treated with the

particle-mesh Ewald method46,47 using a direct-space and van
der Waals cutoff of 8 Å. Defaults were used for the remaining
Ewald parameters. The GB model proposed by Onufriev et al.,
indicated by the parameter igb = 2 in sander,31 was used to
evaluate the protonation state change attempts to be consistent
with the original implementation in implicit solvent.7 The
intrinsic solvent radius of the carboxylate oxygen atoms was
reduced from the standard value of 1.5 Å to 1.3 Å to
compensate for the effect of having 2 dummy protons present
on each oxygen in the syn- and anti-positions in the explicit
solvent simulations.7

The deprotonation fraction ( fd) and pH for each
simulationand each window of the running averageswas
fitted to the Hill equation (eq 4) using the Levenberg−
Marquardt nonlinear least-squares algorithm implemented in
SciPy to compute the pKa and Hill coefficient (n). All pKa
values reported for titratable residues in this paper correspond
to the value computed by fitting fd from the simulations at every
pH to eq 4 over the specified time interval.

=
+ −f

1
1 10n Kd (p pH)a (4)

4. RESULTS AND DISCUSSION

First, we will analyze the long simulations in implicit solvent
that demonstrate the weaknesses of implicit solvent models.
Next, we will analyze our proposed CpHMD and pH-REMD
methods as well as ways to optimize its overall performance.
We will start by discussing the behavior of the model
compounds when the size of the unit cell and the length of
the relaxation dynamics (τrlx) is varied. We will follow this
discussion with a similar analysis on a slightly larger system
ACFCAbefore discussing the application of our proposed
method to HEWL.

Figure 2. RMSD compared to the 1AKI crystal structure for the ensembles at pH 1, 4, and 7. The time series is shown on the left with the
normalized histograms shown on the right.
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4.1. Long GB Simulations. Long simulations are required
to observe rare events or phenomena that occur on long time
scales, but often expose deficiencies in a computational model
that are frequently missed in shorter simulations.48 Therefore,
we ran CpHMD GB simulations of HEWL for 600 nsmore
than an order of magnitude longer than what has previously
been publishedto determine if these calculations were stable
and could be used to study the dynamical behavior of proteins
over long time scales.
The backbone RMSD with respect to the starting crystal

structure, shown in Figure 2 for the replicas at pH 1, 4, and 7,
reaches as much as 10 Å at lower pH values, suggesting that the
native state is unstable in GB implicit solvent at long time
scales. As the lysozyme is active at the lysosomal pH around
4.5, CpHMD simulations near this pH should reflect this
stability. As the backbone RMSD from the crystal structure
increases, the predicted pKa value worsens. We computed the
root mean squared error (RMSE) of the computed acidic
residue pKa values compared to experiment. The predicted pKa
was computed for each residue by taking a running average
with a 10 ns window of the deprotonation fraction for each
residue at each pH in the pH-REMD simulation. The RMSE of
the calculated pKa values from experiment averaged over all
titratable residues is shown in Figure 3.

4.2. Explicit Solvent Simulations. 4.2.1. Box Size Effects.
To study the effect that the unit cell size has on titrations in our
proposed method, we prepared three simulations of the
aspartate model compound with different TIP3P solvent
buffers surrounding it. We prepared systems with a 10 Å, 15
Å, and 20 Å TIP3P solvent buffer around the model aspartate.
Because protonation state sampling takes place in GB solvent

without periodic boundary conditions, any effect of the box size
on calculated pKa values can only arise due to alterations of the

structural ensembles induced by artifacts from the box size. The
calculated pKa values of the three systems were 4.02 ± 0.07,
4.05 ± 0.08, and 4.12 ± 0.07 for the 10 Å, 15 Å, and 20 Å
solvent buffer systems, respectively. To estimate the un-
certainties we divided each simulation into 100 ps chunks
and took the standard deviation of the set of 20 pKa values
calculated from those segments.
To further demonstrate the insensitivity of box size to pH-

REMD titrations, we plotted the solvent radial distribution
functions (RDFs) around the center of mass of the carboxylate
functional group in Figure 4. The insensitivity of the pKa and
solvent structure with respect to the model compound provides
strong evidence that no undue care is necessary when choosing
the size of the solvent buffer for these types of simulations.

4.2.2. Effect of Solvent Relaxation Time (τrlx). An important
approximation in the proposed method is that the protonation
state sampling ρ′ from eq 2 can be replaced using an implicit
solvent model followed by relaxation MD to generate the
relaxed solvent positions and momenta. The question then
becomes how long this relaxation dynamics should be run.
To address this, 2 ns of constant protonation molecular

dynamics simulations were run on the model cysteine
compound in both protonation statesprotonated and
deprotonatedafter the same minimization and heating
protocols were used as for the other model compound
simulations. The protonation state was then swapped for the
final structures of both simulations, and MD was performed
while constraining the solute position for 20 ns, equivalent to
the relaxation dynamics protocol in our proposed method.
The optimum value for τrlx is the time after which the energy

of the relaxation trajectory stabilizes and the simulation loses all
memory of its initial configuration. To be truly equivalent to
having been chosen at random, the final, relaxed solvent
distribution must be completely uncorrelated from the initial
distribution at the time the protonation state was changed.
To probe the necessary time scales for these relaxation

dynamics, the energy of each snapshot in the relaxation
trajectory is plotted alongside the autocorrelation function of
that energy in Figure 5 to clearly demonstrate the ‘appropriate’
value of τrlx for this model system.
We chose the cysteine model compound for this test for two

reasons. First, the model compounds are fully solvent-exposed
due to their small size, which results in a worst-case scenario in
terms of the number of water molecules that must be
reorganized during the relaxation dynamics. The optimum τrlx
value for model compounds is expected to be an upper-bound
on the values required for larger systems. Second, cysteine is
the smallest and simplest of the titratable amino acids,
eliminating potential complications from tautomeric states
compared to aspartate, glutamate, and histidine.
The relaxation energies plotted in Figure 5 begin to stabilize

after 4 to 6 ps of relaxation dynamics and are largely
uncorrelated within that same time scale. However, because 4
ps of MDcorresponding to 2000 steps of dynamics with a 2
fs time stepadds dramatically to the cost of CpHMD
simulations in explicit solvent, we will analyze the approx-
imation of using a significantly smaller value for τrlx.
Both the relaxation energies and autocorrelations drop very

sharply at the start of the relaxation dynamics, so the majority
of the benefit gained by relaxing the solvent is realized within
the first few steps.
For both simulations, the first 200 fs of relaxation dynamics

resulted in 70% of the total relaxation energy in calculations.

Figure 3. RMSE of all acidic titratable residue pKa values compared to
experiment49 during the course of the simulation. A 10 ns window was
used for the running average of the computed pKa.
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Figure 4. Radial distribution functions (RDFs) of solvent oxygen atoms (O) and hydrogen atoms (H) with different unit cell sizes. The shown
measurements10, 15, and 20 Årepresent the size of the solvent buffer surrounding the solute. RDF plots for three different pHs are shown,
highlighting the pH dependence of the solvent structure around the carboxylate of the aspartate model compound and its invariance to box size.

Figure 5. The relaxation of the protonated state, starting from the protonated trajectory, is shown in blue with its autocorrelation function shown in
purple. The relaxation of the deprotonated state from an equilibrated snapshot from the protonated ensemble is shown in red with its
autocorrelation function shown in green. Here, PR and DR stand for Protonated-Relaxation and Deprotonated-Relaxation, respectively.
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The correlation of the relaxation energy decays similarly, so the
assumption that the relaxed solvent distribution is uncorrelated
from its starting point is a reasonable approximation.
To validate the use of a shorter τrlx, we titrated the aspartate

model compound using pH-REMD with five different values
for τrlx10 fs, 40 fs, 100 fs, 200 fs, and 2 ps. The calculated pKa

for each simulation was 4.10, 4.08, 4.07, 4.10, and 4.05,
respectively, for the listed relaxation times. Furthermore,

comparing the solvent radial distribution functions of the
different solvent relaxation times (Figure 6) shows little

dependence of the solvent distribution on the value of τrlx.

Figure 6. RDFs of water oxygen atoms (O) and hydrogen atoms (H) around the center-of-mass of the carboxylate group of the model aspartate
molecule at different solution pHs.

Figure 7. Titration curves of Cys-2 and Cys-4 in the ACFCA pentapeptide. Results from CpHMD (no replica exchange attempts) and pH-REMD
are shown in the plots on the left and right, respectively.
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4.2.3. ACFCA: CpHMD vs pH-REMD. The small peptide
chain ACFCA, described in section 3.3, was chosen as a test
due to its small size and predictable titration behavior. The
simplicity of the system makes it an ideal test; its small size
mitigates the conformational sampling problem, and the simple
titrating behavior of cysteine further simplifies protonation state
sampling. Unlike aspartate and glutamate, which have the four
defined tautomeric states defined by anti- and syn-protonation
on each of two carboxylate oxygens, and histidine which has
two tautomeric states on the imidazole, cysteine has only one
protonated and one deprotonated state, presenting fewer
degrees of freedom that must be exhaustively sampled.
Each cysteine is in a slightly different microenvironment due

to the different charges of the N- and C-termini. Due to its
proximity to the N-terminus, Cys-2 is expected to experience a
negative pKa shift with respect to the model compound due to
the electrostatic interactions with the positively charged
terminus. Cys-4, on the other hand, is expected to experience
a pKa shift in the opposite direction due to the electrostatic
interactions with the negatively charged C-terminus.
We ran simulations at pH 7.1, 8.1, 8.3, 8.7, 8.9, and 9.9 to

sufficiently characterize the titration behavior of both cysteine
residues around their pKa values. One set of replicas was run
with pH-REMD while the other set was run using CpHMD
(i.e., without attempting exchanges between the replicas). The
titration curves for both sets of simulations, shown in Figure 7,
demonstrate the importance of using pH-REMD in constant
pH simulations in explicit solvent. As expected, the pH-REMD
simulations revealed pKa shifts of −0.2 pK units for Cys 2 and
+0.9 pK units for Cys 4 with respect to the model Cys
compound.
Even for a simple system such as ACFCA, using pH-REMD

on top of standard CpHMD simulations results in a drastic
improvement in titration curve fita result of improved
protonation state sampling. The residual sum of squares (RSS),
a quantity that measures how well an equation fits a data set,
shows drastic improvement using pH-REMD. The RSS for
Cys-2 and Cys-4 using CpHMD was 9 × 10−2 and 7 × 10−3,

respectively. For the pH-REMD simulations, on the other hand,
the RSS was reduced by several orders of magnitude to 7 ×
10−5 and 9 × 10−6 for Cys-2 and Cys-4, respectively.

4.2.4. Hen Egg White Lysozyme. HEWL is a common
benchmark for pKa calculations because it has been studied
extensively both experimentally49−51 and theoreti-
cally,7,9,24,26,34,52 and it has a large number of titratable
residuessome with a marked pKa shift compared to the
isolated model compound.
The simulations run in explicit solvent revealed far more

stable trajectories over all pH values than their analogs run in
implicit solvent over the 150 ns time scale of the explicit solvent
simulations. In Figure 8, the plots of backbone RMSDs are
bounded below 3.5 Å for the duration of the ca. 150 ns
simulation. The RMSD distributions from the second 120 ns
simulation are very similar.
The predicted pKa values for the titratable residues,

summarized in Table 1 for both sets of simulations, show
good agreement to experiment. The agreement is significantly
better than the predictions from the implicit solvent
calculations over a similar time scale. With the exception of
aspartate 119 (and aspartate 52 in the 150 ns simulation), the
predicted pKa values of all residues were within 1 pK unit from
the experimental values given in ref 49.
Furthermore, the large fluctuations in the RMSE throughout

the course of the simulationbetween 0.70 and 1.25 seen in
Figure 9suggest that differences in reported RMSE around
0.1 pK units are statistically insignificant for short CpHMD and
pH-REMD simulations on the order of 10 ns. The standard
deviation of the pKa RMSE plotted in Figure 9 is 0.12 pK units
with a correlation time of roughly 25 ns. The standard error of
the mean, given by (σ/N)1/2 where σ is the variance and N is
the number of independent samples, is 0.05 pK units over 150
ns. Therefore, there is no statistically significant difference
between methods with reported pKa RMSEs within 0.10 pK
units of each other (±0.05 pK units for each simulation) over
150 ns.

Figure 8. Backbone RMSD distributions for HEWL simulations in explicit solvent with solution pH set to 1, 4, and 7. Time series are shown on the
left and histograms are shown on the right.
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Unlike the implicit solvent calculations, the quality of the
predicted pKa values in the proposed method does not appear
to degrade over time in long simulations. The deviation of each
residue compared to experiment and the total RMSE is shown
in Figure 9. The pKa at each time step is computed from a
running average of deprotonation fraction for replicas at each
pH using a window size of 5 ns and fitting to eq 4 the same way
as described for Figure 3.
The smaller backbone RMSD and drastically improved pKa

predictions are strong evidence that the current method
improves conformational sampling by employing an explicit

representation of the solvent. Because the protonation state
sampling is performed with the same GB potential in both the
original and proposed methods, any differences in the predicted
pKa values must be caused by differences in conformational
sampling. Given the rigorous nature of the experimental
measurements,49 this provides strong evidence that the
proposed method improves significantly upon the original by
improving conformational sampling with an explicit solvent
representation.

5. CONCLUSION

We have extended the constant pH molecular dynamics
method developed by Mongan et al.7 so that the dynamics
can be run in explicit solvent. We tested a wide range of
parameters in our proposed method for their effect on the
conformational and protonation state sampling of small test
systems. Because these test systems are small and their
titratable sites are completely solvent-exposed, they likely
represent the highest level of sensitivity to these various
parameters.
In particular, we found that the box size of the unit cell had

no discernible effect on the titration behavior of the aspartate
model compound, given cell sizes that ranged from 20 Å in
diameterone of the smallest sizes permissible when using the
minimum image convention with an 8 Å cutoffto 40 Å in
diameter.
Another key aspect of the current method is the necessity to

relax the solvent around any new protonation state selected by
the MC moves carried out in GB. By analyzing the decay of the
potential energy in the solvent relaxation dynamics, we
determined that 4 ps of MD was sufficient to stabilize the
energy of the solvent distributions and generate relaxed solvent

Table 1. Calculated pKa Values for Acid-Range Titratable
Residues in HEWL Using the Proposed Method for a ca. 150
ns Simulation and a ca. 120 ns Simulationa

simulation

residue 150 ns 120 ns implicit experiment

Glu 7 3.37 3.31 3.85 2.6
His 15 6.38 6.32 5.79 5.5
Asp 18 2.83 2.89 2.49 2.8
Glu 35 6.27 6.32 3.65 6.1
Asp 48 2.31 1.92 2.47 1.4
Asp 52 2.24 2.63 3.37 3.6
Asp 66 1.87 1.81 1.50 1.2
Asp 87 2.02 2.06 2.98 2.2
Asp 101 4.36 4.25 2.32 4.5
Asp 119 1.53 1.53 1.74 3.5
RMSE 0.92 0.82 1.32

aExperimental values are taken from ref 49. Implicit solvent results are
shown for comparison. (Results are shown for the final 500 ns of the
600 ns implicit solvent simulation).

Figure 9. (left) Plot showing the RMSE of all acidic titratable residue pKa values compared to experiment49 during the course of the simulation. A 5
ns window was used for the running average of the computed pKa. (right) Plot showing the autocorrelation function of the RMSE time series,
showing that the correlation time between statistically independent samples is roughly 25 ns.
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conformations whose energies are uncorrelated from the initial
arrangements. However, given the expense of such a long
relaxation period, we investigated using fewer relaxation steps
to increase the simulation efficiency and found shorter times
down to 0.2 pshad no measurable effect on the calculated
pKa and very little effect on the solvent distribution around the
model cysteine compound.
Further tests on a small pentapeptide test system with two

titratable sites (ACFCA) showed the importance of using pH-
REMD over conventional CpHMD with the proposed method.
While we showed that the enhanced protonation state sampling
of pH-REMD results in smoother titration curves for complex
proteins in implicit solvent,24 even the simplest systems in
explicit solvent require pH-REMD to obtain a smooth titration
curve.
We tested the proposed method on HEWL, a very common

pKa benchmark system. We found that the proposed method of
using GB implicit solvent to evaluate protonation state changes
and explicit solvent to propagate dynamics yielded stable
trajectories whose predicted pKa values agreed well with
experiment. Our results show that using the proposed method
leads to a significant improvement in how systems are modeled
at constant pH compared to the original method that used GB
to propagate system dynamics.
Often, the most interesting titratable residues in biological

systems have a large pKa shift compared to the model
compound. These highly perturbed residues have environments
drastically different than the one provided by bulk solvent, and
the conformational sampling must be both accurate and
extensive to yield accurate pKa predictions. In future work we
will explore the use of enhanced sampling techniques in
conjunction with pH-REMD in an attempt to improve the
efficiency of the conformational sampling in explicit solvent,
such as accelerated MD and temperature-based REMD.
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