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BACKGROUND: We isolated tumour endothelial cells (TECs), demonstrated their abnormalities, compared gene expression profiles
of TECs and normal endothelial cells (NECs) by microarray analysis and identified several genes upregulated in TECs. We focused
on the gene encoding biglycan, a small leucine-rich repeat proteoglycan. No report is available on biglycan expression or function
in TECs.
METHODS: The NEC and TEC were isolated. We investigated the biglycan expression and function in TECs. Western blotting analysis
of biglycan was performed on sera from cancer patients.
RESULTS: Biglycan expression levels were higher in TECs than in NECs. Biglycan knockdown inhibited cell migration and caused
morphological changes in TECs. Furthermore, immunostaining revealed strong biglycan expression in vivo in human tumour vessels, as
in mouse TECs. Biglycan was detected in the sera of cancer patients but was hardly detected in those of healthy volunteers.
CONCLUSION: These findings suggested that biglycan is a novel TEC marker and a target for anti-angiogenic therapy.
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Tumour blood vessels have been recognised as an important target
for cancer therapy after (Folkman, 1971) proposed that tumour
growth depends on angiogenesis. Growing tumours produce
growth factors and cytokines that are responsible for the
remodelling of the pre-existing vascular network by angiogenic
sprouting and neovascularisation (Bergers and Benjamin, 2003;
Wang et al, 2010). In addition, these vessels function as
gatekeepers for tumour cells to metastasise to other organs
(Folkman, 2002). Therefore, inhibiting tumour angiogenesis is a
promising strategy for cancer treatment.

Tumour blood vessels differ from their normal counterparts in
several ways, such as changes in morphology, altered blood flow
and enhanced leakiness (McDonald and Baluk, 2002; Morikawa
et al, 2002; Jain, 2003). In addition, gene expression profiles of
tumour endothelial cells (TECs) differ from those of normal
endothelial cells (NECs) (St Croix et al, 2000; McDonald and Baluk,
2002; Morikawa et al, 2002). The TECs grow faster and migrate
better than NECs (Matsuda et al, 2010).

The TECs are more sensitive to certain drugs, such as cyclo-
oxygenase-2 inhibitors and the polyphenol epigallocatechin-3 gallate
in green tea (Ohga et al, 2009; Muraki et al, 2012). Furthermore, TECs
are cytogenetically abnormal (Hida et al, 2004; Akino et al, 2009).

The currently used anti-angiogenic therapies have been reported
to cause side effects such as haemoptysis and intestinal perforation
(Johnson et al, 2004; Kindler et al, 2005; Keedy and Sandler, 2007;
Saif et al, 2007). Many of these therapies block important angio-
genic factors or their signalling, including vascular endothelial
growth factor (VEGF), which are required for the maintenance
of normal endothelium. These therapies occasionally damage
NECs. To develop a novel target for anti-angiogenic therapy that is
specific for TECs, we performed DNA microarray analysis and
found that biglycan was upregulated more than about 100-fold in
TECs compared with NECs.

Biglycan belongs to the family of small leucine-rich proteogly-
cans and consists of a core protein of 331 amino acids covalently
bound to two chondroitin sulphate- or dermatan sulphate-
containing glycosaminoglycan side chains (Bianco et al, 1990).
Biglycan is strongly expressed in inflammatory and fibrotic tissue
(Westermann et al, 2008; Babelova et al, 2009; Mohan et al, 2010),
and it induces cytoskeletal changes in lung fibroblast that results in
increased cell migration (Tufvesson and Westergren-Thorsson,
2003).

A recent study has shown that the proteoglycans contribute to
tumour progression (Yang et al, 2007). However, there are few reports
on biglycan expression and function in the tumour microenvironment.

In this study, we investigated biglycan expression and function
in tumour blood vessels and addressed the possibility that it can be
a novel TEC marker.
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MATERIALS AND METHODS

Chemicals

Biglycan was purchased from Sigma Chemical Co (St Louis,
MO, USA). Fluorescein Isothiocyanate (FITC)-conjugated lectin
Bandeiraea simplicifolia isolectin B4 (BS1-B4) was purchased from
Vector Laboratories (Burlingame, CA, USA).

Cell line and culture conditions

Super-metastatic human melanoma cells (A375SM cells), kindly
gifted by Dr Isaiah J Fidler (MD Anderson Cancer Center, Houston,
TX, USA), were cultured as described previously (Ohga et al, 2012).

Antibodies

The following antibodies were used: goat anti-mouse biglycan from
Abcam (Cambridge, UK); mouse anti-human vinculin antibody
(Sigma Chemical Co.); rat anti-mouse CD31 antibody from
eBioscience (San Diego, CA, USA) and FITC-anti-mouse CD31
antibody (eBioscience); PE-anti-mouse CD31 antibody from BD
Pharmingen (San Diego, CA, USA), anti-mouse CD105 antibody
(BD Pharmingen) and rat anti-mouse CD144 antibody (BD
Pharmingen); Alexa Fluor 594 goat anti-rat IgG antibody from
Invitrogen (Tokyo, Japan), Alexa Fluor 488 donkey anti-goat IgG
antibody (Invitrogen) and Alexa Fluor 594 goat anti-rabbit IgG
antibody (Invitrogen) and monoclonal anti-b-actin (AC-15) anti-
body from Sigma-Aldrich (St Louis, MO, USA).

Isolation of TECs and NECs

As described previously, TECs were isolated from human tumour
xenografts (melanoma) in nude mice and NECs (skin) were
isolated from the dermis of the nude mice as controls (Hida et al,
2004; Kurosu et al, 2011; Akiyama et al, 2012; Ohga et al, 2012). All
procedures for animal experiments were approved by the local
animal research authorities, and animal care was performed in
accordance with institutional guidelines.

Flow cytometry

The cells were analysed on a FACSAria II obtained from Becton
Dickinson (San Jose, CA, USA), using the FITC-conjugated BS1-B4
lectin and antibodies against CD31, CD105 and CD144. Repre-
sentative data were analysed using FlowJo software obtained from
Treestar (Ashland, OR, USA).

Microrray gene expression analysis

Total RNA was isolated from three types of TECs (melanoma-
derived ECs, renal carcinoma-derived ECs and oral carcinoma-
derived ECs) and NECs with TRIzol (Invitrogen), according to the
manufacturer’s standard protocol. The quality of RNA was tested
by electrophoresis using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Total RNA was labeled with
Cyanin-5 CTP by linear amplification using a Low RNA Input
Fluorescent Linear Amplification Kit (Agilent Technologies) as
specified by the manufacturer. The quality and size distribution of
labeled cRNA were determined by 2100 Bioanalyzer (Agilent
Technologies) and quantified using a NanoDrop microscale
spectrophotometer purchased from NanoDrop Technologies
(Rockland, DE, USA). A set of 5 mg fluorescent-labeled cRNA
targets from each sample was assembled into a hybridisation
reaction on the Mouse Oligo Microarray (Agilent Technologies)
using the In Situ Hybridization Kit Plus (Agilent Technologies).
Washing, signal scanning, image analysis and data extraction was
performed as described previously (Ishibashi et al, 2005).

Reverse transcription – PCR (RT –PCR) and quantitative
real-time RT—PCR

Total RNA was extracted and first-strand complementary
DNA was synthesised using the RNeasy Micro Kit obtained
from Qiagen (Valencia, CA, USA) from each EC type. Real-time
RT–PCR was performed as described previously (Kurosu et al,
2011). The primers used for RT– PCR are indicated in
Supplementary Figure S1.

Tube formation assay

ECs were seeded at a density of 1� 105 cells per well and incubated
at 371C on Matrigel (BD Biosciences, San Jose, CA, USA) as
described previously (Kurosu et al, 2011). Tube formation was
observed using an inverted microscope by measuring the length of
tubes. For inhibition experiments, TECs were preincubated for
8 h at 371C with anti-TLR2, anti-TLR4 blocking (BioLegend,
San Diego, CA, USA) and isotype control antibodies (IgG2a;
BioLegend).

Western blotting

Western blotting was performed using antibodies specific to
biglycan and b-actin, and an HRP-conjugated secondary antibody
as described previously (Ohga et al, 2009; Kurosu et al, 2011). The
level of biglycan was normalised to that of b-actin by scanning
densitometry using Image J software from NIH (Bethesda, MD,
USA). Experiments were performed three times.

Immunocytochemistry and immunohistochemistry

Tumour endothelial cells and NECs were fixed in cold methanol
and immunostained with the anti-biglycan antibody and then with
the secondary antibody. Mouse tumour tissues were dissected from
killed mice. Human tissue samples were obtained at Hokkaido
University Hospital. Informed consent was obtained from all patients
before the samples were used. Frozen sections were prepared as
described previously, (Ohga et al, 2012) and were double stained
using anti-CD31 and anti-biglycan to show the colocalisation of CD31
and biglycan in ECs. All immunostained samples were counterstained
with DAPI (Roche Diagnostics, Mannheim, Germany) and
visualised using an Olympus FluoView FV1000 confocal micro-
scope (Olympus, Tokyo, Japan).

Biglycan knockdown

Biglycan siRNA was transfected using Lipofectamine transfection
reagent (Invitrogen) according to the manufacturer’s instructions.
The sequence of the biglycan siRNA was 50-AAACCCUUCUGCUC
AAAGGGCAAGG-30, and the control siRNA was a non-targeting
control (Qiagen).

Cell migration assay

Cell migration towards VEGF was analysed using a Boyden chamber
(Neuro Probe Inc., Gaithersburg, MD, USA), as previously described
with modifications (Ohga et al, 2009; Muraki et al, 2012). Vascular
endothelial growth factor-A (10 ng ml�1) was added to the lower
chambers as a chemoattractant. TECs were treated with the control
siRNA (10 mM) or biglycan siRNA (10mM) in EGM-2MV for 72 h. In
total, 1.5 � 104 cells were seeded in the upper chambers and
incubated for 4 h at 371C.

Cell proliferation assay

The TECs were treated with control siRNA (10 mM) and biglycan
siRNA (10mM). After siRNA transfection for 24 h, 1� 103 cells per
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well were seeded into 96 dishes in EBM-2 with 0.5% FBS. Cell
proliferation was measured every day for 3 days by MTS assay.

Supernatant condensation

The supernatants were collected and concentrated B 120-fold
using Amicon Ultra-15 30K centrifugal filter units obtained from
Millipore (Billerica, MA, USA) and Amicon Ultra 0.5 ml 30K
centrifugal filters (Millipore). The concentrates were analysed by
western blotting.

Glycoprotein extraction in human serum

Glycoproteins in human serum were enriched using Glycoprotein
Enrichment Resin (Clontech, Palo Alto, CA, USA), and biglycan
expression was analysed by western blotting.

Statistical analysis

Differences between experimental groups were evaluated using the
Mann– Whitney U-test. Po0.05 was considered significant, and
Po0.01 was considered highly significant.

RESULTS

Isolation and characterisation of TECs and NECs

The TECs were isolated from A375SM xenografts in nude mice,
and NECs (skin ECs) were isolated from the dermal tissue of the
nude mice (Hida et al, 2004).

According to flow cytometric analysis, the binding of lectin
BS1-B4 and expression of CD31, CD105 and CD144 indicated the
high purity of isolated ECs (Figure 1A). Furthermore, RT–PCR
revealed expression of the following endothelial markers in TECs
and NECs: CD31, CD105, CD144, VEGFR-1 and VEGFR-2 (Figure 1B).
Isolated ECs were negative for the monocyte marker CD11b and
haematopoietic marker CD45. Human cells expressed human
HB– EGF. No human HB–EGF mRNA expression was detected in
mouse TECs, demonstrating that these TECs were not contami-
nated with human tumour cells. These results excluded the
possibility that isolated and cultured ECs were contaminated with
non-ECs.

In addition, cultured ECs formed tubes on Matrigel-coated
plates (BD Biosciences) (Figure 1C). The cultured TECs and NECs
maintained the properties of EC after isolation.
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Figure 1 Characterisation of isolated TECs and NECs. (A) The binding of lectin BS1-B4 and expression of CD31, CD105 and CD144 (blue line)
indicated the high purity of isolated TECs and NECs. The isotype control is shown as a red line. (B) Cultured TECs and NECs were positive for
CD31, CD105, CD144, VEGFR-1 and VEGFR-2 by RT–PCR. Mouse tumour stromal CD31 (�) cells were also included in the samples. TECs and
NECs were negative for the monocyte marker CD11b and haematopoietic marker CD45. Human HB–EGF expression was detected in human tumour
cells but not in TECs or NECs. Abbreviations: NCT¼ negative control template. (C) Isolated and cultured ECs formed tubes on matrigel-coated plates.
Scale bar, 10mm.
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Biglycan is specifically expressed in TECs

The DNA microarray showed that about 70 genes were upregulated
in TECs compared with NECs. Biglycan mRNA expression level was
4100-fold higher in TECs than in NECs (Supplementary Figure S2).

Real-time PCR revealed that biglycan mRNA expression was
upregulated in TEC than in NEC (Figure 2A). Immunocyto-
chemical staining revealed that biglycan was expressed in TEC
but not in NEC (Figure 2B). As biglycan is very similar to other
proteoglycans, we checked the specificity of RT– PCR for biglycan.
Any other proteoglycans were not amplified by the RT–PCR
protocol (Supplementary Figure S3). PCR product for human
decorin by biglycan primer should be theoretically 779 bp;
however, this size of product was not detected.

In addition, western blotting revealed that the biglycan protein
was specifically expressed in TEC (Figure 2C). These findings

suggested that biglycan expression was upregulated in TEC at both
the mRNA and protein levels.

To analyse biglycan expression in tumour blood vessels
in vivo, immunofluorescent double staining was performed
using cryosections of the human tumour xenografts, from
which TECs were isolated, and mouse normal dermis and
kidney tissues. Immunostaining clarified the colocalisation
of CD31 and biglycan. Biglycan was stained in tumour blood
vessels, but not or weakly stained in normal blood vessels
(Figure 2D).

To explore whether biglycan is secreted by TECs, EC super-
natants were collected and analysed by western blotting. The
biglycan protein was detected in the TEC supernatant, but was
hardly detected in the NEC supernatant (Figure 2E).

These results suggested that biglycan is specifically expressed in
mouse TECs in vitro and in vivo.
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Figure 2 Biglycan is specifically expressed in mouse TECs. (A) The relative expression of biglycan to that of GAPDH in TECs and NECs was measured
using quantitative real-time RT–PCR (**Po0.01). (B) Biglycan protein expression was analysed by fluorescent immunocytochemistry. Biglycan was detected
in TECs but not in NECs. Blue: DAPI, Red: biglycan. Scale bar, 25 mm. (C) Western blotting revealed that biglycan protein expression was upregulated in
TECs than in NECs. Representative data are shown from one of three experiments. The level of biglycan was normalised to that of b-actin and was analysed
by scanning densitometry using Image J software from NIH (**Po0.01). (D) Biglycan expression in tumour tissues dissected from mice xenografted human
tumour cells (A375SM), normal dermal tissue and normal kidney tissue. Fluorescent immunohistochemical staining with the biglycan antibody revealed
biglycan (green stain) predominantly in the tumour vessels of mice xenografted human tumour cells. Scale bar, 50 mm. (E) Western blotting revealed that
biglycan expression was detected in the TEC supernatant but hardly detected in the NEC supernatant. Representative data are shown from one of
three experiments.
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Biglycan knockdown inhibits TEC migration and tube
formation

To analyse the role of biglycan in TECs, TECs were subjected to
RNAi using biglycan siRNA to silence biglycan mRNA expression.
Biglycan knockdown in TECs was confirmed at the mRNA level by
real-time PCR (Figure 3A), and at the protein level by western
blotting and densitometry analysis (Figure 3B). In addition,
immunocytochemistry confirmed biglycan knockdown in TECs
(Figure 3C).

To analyse the effects of biglycan knockdown on the proangio-
genic properties of TECs, cell migration towards VEGF was

analysed using the Boyden chamber. Biglycan knockdown
significantly inhibited TEC migration towards VEGF (Figure 3D).
The number of migrated cells was restored by treatment with
the biglycan protein (20 nM) (Figure 3D). Biglycan enhanced
cell migration in a dose-dependent manner (Supplementary
Figure S4). The data suggested that biglycan promotes the
migration of TECs.

To analyse another effect of biglycan knockdown on angiogenic
properties of TECs, we performed tube formation assay. Repre-
sentative data and a quantitative analysis of tube length are shown
(Figure 3E). The ability to form capillary-like structures was
impaired by biglycan knockdown in TEC. The tube formation in
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TEC was restored by treatment with biglycan, suggesting that
biglycan has an important role for TEC tube formation. However,
biglycan knockdown did not influence cell proliferation
(Figure 3F).

Biglycan knockdown caused morphological changes in
TECs

The cell morphology and cytoskeleton are involved in cell
migration (Small, 1981). To analyse the morphological changes
in TECs with biglycan knockdown, the cells were stained with
anti-phalloidin antibody that reveals F-actin. After biglycan
mRNA expression was silenced in TECs, their shape became
more spread (Figure 4A). The ratio of cell length to cell width was
lower in TECs with biglycan knockdown than in control TECs
(Figure 4B).

Cell migration is coordinated by a complex of proteins that
localises to the sites of the cell– matrix interaction, the focal
adhesions (Humphries et al, 2007). The adaptor protein vinculin is
a key regulator of focal adhesions and its overexpression
suppresses cell migration (Coll et al, 1995). Biglycan knockdown
resulted in increased vinculin expression in TECs (Figures 4A
and C). These results suggested that biglycan contributes to cell
morphology and cell migration in TECs.

Biglycan activated NEC migration and tube formation

To analyse the involvement of biglycan for acquisition of
angiogenic phenotypes in TEC, NECs were treated with biglycan
(20 nM) for 24 h. The number of migrated cells and tube length in
NEC increased by treatment with biglycan protein (Figures 5A
and B). These data suggested that biglycan induces the angio-
genic phenotypes in NEC.

Biglycan acts in an autocrine manner in TEC through TLR2
and TLR4

Because biglycan protein reversed the biglycan knockdown-
mediated suppression of cell migration and tube formation, it was

speculated that ECs express biglycan receptors. TLR2 and TLR4 are
the receptors of biglycan (Schaefer et al, 2005). The expression of
TLR2 and TLR4 was detected in TECs by RT–PCR (Figure 5C).

To analyse the role of TLR2 and TLR4 in proangiogenic
responses of biglycan, we tested the anti-TLR2 and anti-TLR4
antibodies. TLR2 and TLR4 antibodies suppressed TEC migration
and tube formation (Figures 6A and C). Furthermore, the biglycan-
induced migration and tube formation was cancelled by anti-TLR2
and anti-TLR4 antibodies in biglycan knockdown TEC (Figures 6B
and D) and NEC (Supplementary Figure S5). These results
suggested that biglycan acts in an autocrine manner in TEC
through TLR2 and TLR4.

Human TECs expressed higher levels of biglycan in vitro
and in vivo

To analyse biglycan expression in human TECs and NECs, we
isolated TECs from human renal cell carcinoma tissue and NECs
from normal renal tissue in the same patients.

Tumour endothelial cells and NECs were obtained from six
patients. Real-time RT–PCR revealed that the biglycan expression
levels were significantly higher in four of the six TEC samples than
in the corresponding NEC samples (Figure 7A).

To analyse in vivo biglycan expression in TECs, we performed
immunofluorescent double staining with anti-CD31 and anti-
biglycan antibodies in the frozen sections of 11 human malignant
tumours; 6 from kidneys, 3 from lungs, 1 from colon and 1 from
liver. Although biglycan was hardly expressed in normal blood
vessels, it was strongly expressed in tumour blood vessels
(Figure 7B and Supplementary Figure S6).

To analyse whether biglycan is detected in the blood of cancer
patients, glycoprotein in sera was concentrated and analysed
by western blotting. Biglycan was detected in the sera from
nine of cancer patients but was hardly detected in those of
four healthy volunteers, and the representative results are
shown (Figure 7C). The results of quantitative analysis of serum
biglycan levels in each case (n¼ 13) are shown (Figure 7D). Serum
biglycan levels were higher in cancer patients than in healthy
volunteers.
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DISCUSSION

In this study, we detected the specific expression of biglycan in TECs
isolated from xenografted tumours in mouse and human clinical
cancers. We previously reported that TECs have different features
than NECs in many aspects. Tumour endothelial cells exhibit a
higher migratory potential than NECs (Matsuda et al, 2010). We, for
the first time, demonstrated that biglycan, which was upregulated in
TECs, might contribute to the high motility of TECs.

The retention of lipoproteins by biglycan is established as a
mechanism leading to atherosclerosis (Thompson et al, 2011).
Many of these regions have chronic inflammation. Biglycan is
strongly expressed in inflammatory tissues and regulates inflam-
mation responses via TLRs (Schaefer et al, 2005). We reported that
TEC upregulates inflammatory molecule including COX-2 and
PGE-2 (Kurosu et al, 2011; Muraki et al, 2012). These results
suggest that TEC is present in chronic inflammatory environment.
There seems to be a common mechanism of gene upregulation
between these molecules and biglycan in TEC.

Biglycan knockdown significantly inhibited TEC migration
towards VEGF, and migration was restored by exogenous biglycan
treatment. Biglycan is involved in TEC migration. We have
previously reported that TECs were more sensitive to VEGF with
upregulation of its receptor, VEGFR (Matsuda et al, 2010). Because
VEGFR expression did not change by biglycan knockdown (data
not shown), it was suggested that biglycan knockdown inhibited
TEC migratory activity independent of VEGF/VEGFR signalling.
Cell migration increased in NECs after biglycan protein treatment.
TLR2 and TLR4, which are reported as biglycan receptors,
were expressed in TECs. Anti-TLR2 and anti-TLR4 antibodies

suppressed biglycan-induced angiogenic phenotypes such as
cell migration and tube formation. Because TLR2 and TLR4
are expressed on the endothelium and implicated in angiogenesis
independent of VEGF, biglycan might stimulate tumour angio-
genesis through TLR2 and TLR4 activation (Grote et al, 2010;
West et al, 2010). Taken together, it was suggested that
biglycan acts as an angiogenic factor stimulating TEC migration
and tube formation in an autocrine manner through TLR2 and
TLR4.

Many cancer cells such as A375SM cells, which were used to
create the tumour xenografts that were the source of TECs in this
study, were reported to express a low level of biglycan (Clark et al,
2000). Biglycan expression is either absent or undetectable in
several human tumour cell lines including the epithelial carcinoma
cell line A431, pancreatic adenocarcinoma cell line Miapaca2 and
melanoma cell line A375SM (data not shown). We also found that
biglycan mRNA was hardly expressed in human tumour stromal
cells, which were negative for CD31 in a human fibroblast cell line,
BJ-6, (data not shown). In in vivo tumour tissues, biglycan was
stained in tumour blood vessels but was not or weakly stained in
tumour cells and CD31-negative stromal cells including fibroblasts.
It was suggested that biglycan is expressed specifically in tumour
blood vessels. Furthermore, serum biglycan levels were higher in
cancer patients than in healthy volunteers. These results suggested
that biglycan is specifically expressed in human and mouse TECs.
Biglycan secreted from TEC into blood flow might be of diagnostic
value in various malignant tumours.

We analysed the effect of biglycan on vinculin, which is a key
regulator of focal adhesions and participates in cell migration.
Although the signalling pathway connecting biglycan and vinculin
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has not been elucidated, there is a report on the influence of
biglycan on vinculin. Vinculin mRNA and protein expression were
significantly upregulated in bgn�/� fibroblasts (Melchior-Becker
et al, 2011). We also found that TECs with biglycan knockdown
were spread that was correlated with increased vinculin expres-
sion. This might be a mechanism by which cell migration was
inhibited in TECs with biglycan knockdown.

For the first time, we demonstrated that biglycan might be a novel
marker of TECs and is activated during tumour angiogenesis. It
could be a novel target for anti-angiogenic therapy. Biglycan was
highly expressed in both mouse and human TECs, and biglycan
knockdown inhibited TEC migration. It might be possible to target
tumour blood vessels specifically without injuring normal blood
vessels using biglycan-targeted drugs in future.
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