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ABSTRACT

The outbreak of the pandemic associated with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) led researchers to find new potential
treatments, including nonpharmacological molecules such as zinc (Zn2+). Specifically, the use of Zn2+ as a therapy for SARS-CoV-2 infection is based
on several findings: 1) the possible role of the anti-inflammatory activity of Zn2+ on the aberrant inflammatory response triggered by COronaVIrus
Disease 19 (COVID-19), 2) properties of Zn2+ in modulating the competitive balance between the host and the invading pathogens, and 3) the
antiviral activity of Zn2+ on a number of pathogens, including coronaviruses. Furthermore, Zn2+ has been found to play a central role in regulating
brain functioning and many disorders have been associated with Zn2+ deficiency, including neurodegenerative diseases, psychiatric disorders, and
brain injuries. Within this context, we carried out a narrative review to provide an overview of the evidence relating to the effects of Zn2+ on the
immune and nervous systems, and the therapeutic use of such micronutrients in both neurological and infective disorders, with the final goal of
elucidating the possible use of Zn2+ as a preventive or therapeutic intervention in COVID-19. Overall, the results from the available evidence showed
that, owing to its neuroprotective properties, Zn2+ supplementation could be effective not only on COVID-19–related symptoms but also on virus
replication, as well as on COVID-19–related inflammation and neurological damage. However, further clinical trials evaluating the efficacy of Zn2+ as
a nonpharmacological treatment of COVID-19 are required to achieve an overall improvement in outcome and prognosis. Adv Nutr 2022;13:66–79.

Statement of Significance: By summarizing the available literature on, and exploring the possible role of, zinc in SARS-CoV-2 infection, the
present review suggests how Zn2+ supplementation may be effective in COVID-19–related neurological complications.
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Introduction
Zinc (Zn2+) is an essential trace element in both humans and
animals, and it is implicated in a wide range of metabolic and
signaling pathways in the body (1). Among micronutrients,
Zn2+ is the second most abundant trace element in the

Supported by Fondazione Cariplo grant 2020-1366 (to PB), within the call to support research
into treatment, diagnosis, and detection of COVID-19 in partnership with the Lombardy Region
and Fondazione Veronesi.
Author disclosures: The authors report no conflicts of interest.
Address correspondence to PB (email: paolo.brambilla1@unimi.it).
GC and VC contributed equally to this work.
Abbreviations used: ACE-2, angiotensin-converting enzyme-2; AD, Alzheimer disease; CNS,
central nervous system; COVID-19, COronaVIrus Disease 19; CSF, cerebrospinal fluid; DC,
dendritic cell; HCQ, hydroxychloroquine; ICU, intensive care unit; MS, multiple sclerosis; MT,
metallothionein; NALT, nasopharynx-associated lymphoid tissue; PD, Parkinson disease; RCT,
randomized clinical trial; SARS-CoV, Severe Acute Respiratory Syndrome coronavirus.

human body and the effects of its deficiency have been known
since the 1960s (2). Scientific data reported that Zn2+ plays a
central role in the immune system and the brain (1).

Regarding its function in the immune system, several
studies have described Zn2+ as a crucial factor in the response
to pathogens, because it is an essential trace element not only
for the host’s immune defense but also for pathogens’ survival
and the propagation of virulence, all functions modulating
the competitive balance between the host and the invading
pathogens (3, 4).

Furthermore, Zn2+ has been found to play a central
role in brain functioning. Indeed, it represents one of the
most prevalent metal ions in the brain and participates
in the regulation of neurogenesis, neuronal migration, and
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differentiation, thereby determining cognitive development
and maintaining healthy brain function (5). For this reason,
Zn2+ deficiency during pregnancy can lead to specific
damage in the brain of the offspring, which has been
observed not only in animal models but also in humans (6).

Moreover, several strands of evidence have showed
that alteration in brain Zn2+ status has been involved in
different types of neuropsychiatric disorders, such as neu-
rodevelopmental diseases (e.g., autism spectrum disorders),
neurodegenerative disorders [e.g., Alzheimer disease (AD),
Parkinson disease (PD)] (7, 8), and mood disorders (9), as
well as neuronal damage associated with traumatic brain
injury, stroke, and seizure (10).

According to the WHO, Zn2+ deficiency affects about
one-third of the world’s population, representing the fifth
leading cause of mortality and morbidity in developing
countries (11). Worldwide, Zn2+ deficiency accounts for
∼16% of lower respiratory tract infections, 18% of malaria,
and 10% of diarrheal diseases (12). Although severe Zn2+ de-
ficiency is rare, mild to moderate deficiency is more common
worldwide (12). Subsequently, considering the importance of
Zn2+ for the immune and nervous system, a deficiency of
this element could lead to a worse outcome in the response
toward infection and sepsis and to an increased susceptibility
to the development of different neuropsychiatric diseases.

Since April 2020, the COronaVIrus Disease 19 (COVID-
19) pandemic, caused by Severe Acute Respiratory Syndrome
coronavirus 2 (SARS-CoV-2) (13), has led to >150 million
cases worldwide and >3 million deaths (14). Briefly, the
SARS-CoV-2 infection manifests itself with heterogeneous
clinical pictures, which can vary from asymptomatic or
low-symptomatic forms, up to severe forms of interstitial
pneumonia associated with the severe acute respiratory
syndrome and multiorgan failure. Moreover, mounting
evidence suggests the presence of long-term COVID-19–
related complications, including neurological and psychiatric
manifestations (15). Notably, the outbreak of a new pandemic
has caused researchers to conduct investigations on new
potential treatments against this RNA virus, including non-
pharmacological molecules. Specifically, in the worldwide
race toward the identification of a COVID-19 therapeutic
strategy, one of the first studies on the topic reported
the potential activity of Zn2+ against SARS-CoV-2, mainly
due to the immunomodulant and antiviral effects of this
micronutrient (16).

Nonetheless, although the possible role of Zn2+ in the
therapy of SARS-CoV-2 infection has also been studied
(17–19), no clinical trials have been conducted so far
on the possibility of using Zn2+ to prevent neurological
complications in COVID-19 patients. Indeed, alongside lung
involvement, several studies have described neurological
complications as a result of COVID-19 to include taste and
smell disturbances (20) as well as, in severe cases, alterations
of the state of consciousness, delirium (21), encephalitis (22),
and cerebrovascular events (23). All of these neurological
complications are because SARS-CoV-2 could have a neu-
rotoxic impact caused by different aspects, which include

the invasion of the central nervous system (CNS), both
through the sensory neurons of the olfactory mucosa, CNS
inflammation, autoimmune processes involving molecular
mimicry, or immunological cross-reactions, and a pro-
coagulative state. In this context, Zn2+ may not only show
antiviral and immunomodulant properties but also exert a
neuroprotective function. This hypothesis could represent
the basis for future trials, testing its efficacy as an agent
against the brain damage underlying common neurologic
and behavioral symptoms of COVID-19 (24).

In this context, we aim to provide a narrative review
of existing data, by reporting the functions of Zn2+ in
different systems of the human body (in both physiologic and
pathologic conditions). Then, in the context of the COVID-
19 pandemic, we will analyze the role of Zn2+ both in patients
at risk of developing COVID-19 and in affected patients, thus
overviewing the antiviral and immunomodulatory effects of
Zn2+.

Current Status of Knowledge
Zinc status and human health
Zn2+ is a ubiquitous trace element that is present in the
human body in amounts of ∼2–3 g, therefore representing
the second most abundant trace metal in humans after
iron (2). Within the body, Zn2+ is distributed unequally
throughout different organs and tissues, because 90% of
Zn2+ is found in the muscles and bones (25). Although
Zn2+ is a prominent constituent of the human body, it
cannot be stored, therefore representing an essential nutrient
whose daily food intake is fundamental to achieving and
maintaining the adequate plasma and tissue concentrations
required to support all its functions. The current RDA [which
is the average daily amount of intake sufficient to meet
the nutrient requirements of nearly all (97%–98%) healthy
individuals] in adults is 8 mg/d for women and 11 mg/d for
men (26). Red meat is the richest source of Zn2+, followed by
seafood, legumes, and fowl. The Zn2+ found in plants is less
available for absorption, because phytates (which are present
in plant-based foods) bind it and inhibit its absorption (2).

Only 0.1% of the total Zn2+ is renewed daily, after
absorption by the small intestine. Later Zn2+ is distributed
by plasma, where it is bound entirely to proteins, such
as albumin, 2-macroglobulin (A2M), and transferrin (27).
Although dietary Zn2+ intake fluctuates, homeostasis mech-
anisms need to maintain constant intracellular and plasma
concentrations (within the reference range of 11–25 μmol/L
or 0.7–1.6 mg/L) to provide Zn2+-specific functions (28).
Despite the fact that plasma Zn2+ is <1% of the total body
content, it represents a primary source accessible to all
human cells. On the other hand, 99% of the total body Zn2+

is intracellular and it is distributed between cellular nuclei,
specific vesicles retaining Zn2+ (called zincosomes), and the
cytoplasm (27), which is largely bound by zinc-chelating
proteins [called metallothioneins (MTs)] (29).

Based on these data, over the years, several studies
explored Zn2+ functions in human physiology, describing its
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pre-eminent role in maintaining human health. More specif-
ically, Zn2+ plays 3 major biological roles in the organism:
catalytic, structural, and regulatory (30). Zn2+ has a catalytic
or structural function in 10% of human proteins, and it
reversibly binds other proteins, according to their roles in the
different processes of Zn2+ metabolism (regulation, trans-
port, transfer, sensing, signaling, and storage) (31). Zn2+ also
contributes to different cell functions, such as proliferation,
differentiation, survival (32), stabilization of the cell mem-
brane (33), redox regulation (34), and apoptosis (35).

From a nutritional point of view, Zn2+ deficiency is
the fifth largest health risk factor in developing countries
and the 11th largest in the world, being responsible for
a substantial proportion of the leading causes of death
and disability according to the WHO (11). In the early
1960s, for the first time Prasad reported the existence of
Zn2+ deficiency in humans; nowadays, the most important
cause of Zn2+ deficiency is malnutrition, which affects
>17% of the world population (36). In addition, other
less frequent causes of Zn2+ deficiency are represented by
1) inadequate intake due to gastrointestinal diseases (e.g.,
Crohn disease or acrodermatitis enteropathica) or pancreatic
diseases (alcoholic pancreatitis, cystic fibrosis); 2) reduced
absorption; 3) increased losses of biological fluids (such
as gastrointestinal fluid, skin losses, wound exudate, urine,
dialysate); 4) increased need owing to a systemic illness
resulting in increased oxidative stress (e.g., infection); 5)
aging; and 6) drugs and intravenous fluids with effects
on Zn2+ homeostasis, in particular steroids, penicillamine,
EDTA, ethambutol, and certain antibiotics (37).

Adverse effects on health can emerge not only from Zn2+

deficiency but also from deficiency of copper secondary to
Zn2+ excess. Supplementing Zn2+ is a major determining
factor of toxicity, especially if the form of Zn2+ in the
supplement is readily bioavailable (2). Considering that
different Zn2+ supplements contain varying concentrations
of elemental Zn2+ (Zn2+ citrate is ∼34% Zn2+ in weight,
Zn2+ sulfate is ∼22% Zn2+ in weight, and Zn2+ gluconate
is ∼13% Zn2+ in weight), Zn2+ intake should probably not
exceed 20 mg Zn2+daily in adults (2).

Finally, Zn2+ has a critical effect on human homeostasis,
immune function, oxidoreductive balance, cellular apoptosis,
and aging. Therefore, it is not surprising that Zn2 + is
associated with significant disorders of great public health
interest. Indeed, in many chronic diseases including cardio-
vascular diseases (38), several malignancies (in particular
prostate, mammary, and pancreatic gland cancers) (39,
40), age-related neurological degenerative disorders (41),
chronic liver diseases (42), and autoimmune diseases (43),
the concurrent Zn2+ deficiency may complicate the clinical
picture, thus affecting immunological status, increasing ox-
idative stress, and leading to the generation of inflammatory
cytokines.

Zinc and the immune system
The maintenance of Zn2+ homeostasis is essential for
the overall functioning of the immune system. During

inflammation, an adequate status is essential in acute-
phase responses, because Zn2+ is momentarily transferred
from serum into organs (especially the liver), possibly
causing transient serum hypozincemia (44). The transient
intracellular transferring of Zn2+ constitutes a defensive
mechanism against Zn2+-dependent extracellular microor-
ganisms. Moreover, Zn2+ is important in the maintenance
of the structural and functional integrity of mucosal cells
in innate barriers (45), thus Zn2+ deficiency has been
specifically found to cause failure in the intestinal epithelial
cell barrier, which in turn can be responsible for numerous
downstream effects (e.g., diarrhea) and also lead to gut
flora translocation and, finally, to sensitization to sepsis
(46).

Zn2+ deficiency affects innate immunity in different
ways. It reduces polymorphonuclear cell chemotaxis and
phagocytosis (47), monocyte adhesion, and maturation of
macrophages (48), natural killer cells (49), and dendritic cells
(DCs). Zn2+ deficiency is reported to influence cytokine
release, affecting the generation of cytokines such as IL-2,
IL-6, and TNF-α (50). On the other hand, with regards to
adaptive immunity, Zn2+ deficiency causes thymic atrophy
with subsequent T-cell lymphopenia, reduced differentiation
of T-cells, increased pre-T-cell death (51), an unpaired
balance between Th1 (decreased) and Th2 (less affected)
(49), as well as a reduced Th17 subset (52). B-cell maturation
and antibody production are less affected by Zn2+ deficiency
(53).

Zinc and neuronal and blood–brain barrier modulation
Zn2+ plays a fundamental role in brain functioning, in the
formation and migration of neurons as well as the formation
of neuronal synapses (54). In particular, there are several
homeostatic systems (Zn2+ transporters, Zn2+-importing
proteins, MTs, lysosomes, and mitochondria) permitting
neurons to maintain extracellular and intracellular Zn2+ at
concentrations that are nontoxic in different brain regions,
comprising those implicated in the physiopathology of
depression (e.g., hippocampus, amygdala, and the whole
cerebral cortex) (55). Moreover, owing to its essential role
in regulating brain functions, many disorders have been
associated with Zn2+ deficiency, including neurological
diseases, such as AD (7), PD (8), multiple sclerosis (MS)
(56), and ischemic brain injury (10), as well as psychiatric
disorders, such as depression (9, 57) and schizophrenia
(58).

Furthermore, Zn2+ is known to be a neuroactive sub-
stance detectable in specific regions of the CNS (i.e., the
olfactory bulb and the hippocampus) (59). It is especially
localized in synaptic terminals (where Zn2+ can lead to mem-
brane depolarization), acting in different conditions both
as an excitatory and an inhibitory modulator (60). Several
evidence-based studies showed a potential neurotoxic action
of an excessive concentration of Zn2+ both in vitro and
in vivo, with a role in neuronal damage associated with
cerebral ischemia, epilepsy, and trauma (61). Interestingly,
besides this literature describing that Zn2+ overload is clearly
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related to adverse neurological outcomes, some studies
reported the crucial role of Zn2+ in the maintenance of brain
homeostasis and physiology by also showing that the lack of
this micronutrient could be associated with brain damage.
Indeed, after a traumatic brain injury, patients are at risk
of a moderate to severe Zn2+ deficiency, which determines
an increase in urinary Zn2+ excretion and consequently a
low serum Zn2+ (62). In support of the hypothesis that
Zn2+ deficiency might have a pathogenetic role in neuronal
damage, rat models have shown that a moderate Zn2+

deficiency significantly correlates with cell death at the site
of cortical injury for both necrosis and apoptosis, persisting
≤4 wk after the trauma (63).

Addressing the question concerning the role of Zn2+

in the maintenance of brain homeostasis, a significant
chapter is represented by the studies that describe the
blood–brain barrier (BBB) modulatory function of Zn2+.
The BBB is a fundamental anatomical structure, ensuring
protection to the brain from undesired substances circulating
in the bloodstream. The BBB may break down in certain
conditions like convulsive seizures and other CNS insults
(i.e., ischemia) (64). At the state of the art, the relation
between Zn2+ homeostasis and BBB-permeability regulation
remains unclear.

However, recent results suggest a fine regulation between
Zn2+ and the BBB, postulating that Zn2+ concentrations in
the CNS controlled by the BBB may lead to changes in the
BBB itself, especially regarding permeability.

Specifically, a study carried out by Yorulmaz et al. (65)
found that the administration of Zn2+ treatment in murine
models had a proconvulsant effect and increased BBB
permeability, possibly changing the prooxidant/antioxidant
balance and neuronal excitability during seizures. Similar
results were obtained in cellular studies, where a Zn2+

overload exacerbated BBB permeability in cultured cells
modeling a BBB under ischemia (66), which could be caused
by damage of tight junctions and intercellular structures
essential for BBB integrity (67).

Moreover, some results suggested that Zn2+ deficiency
might increase BBB permeability. In an MRI study on male
rats under Zn2+ deficiency, a more permeable BBB was
present, leading to higher amounts of MRI-visible free water
and thus edema (68). Consistent results were found in a study
carried out by Song et al. (69), which showed that Zn2+

protects the integrity of the BBB by inhibiting the decline of
occludin and F-actin in endothelial cells in rats exposed to
aluminum (69).

In conclusion, overall the results highlight that neither an
excess nor a lack of Zn2+ is desirable in the brain and that
both conditions may lead to a brain insult, possibly resulting
in higher BBB permeability.

However, future studies are needed to explore the role of
systemic Zn2+ supplementation or central Zn2+ chelation
in CNS damage (70). In this perspective, the development
of new therapeutic strategies for the treatment of CNS
insults should take into account Zn2+ as a new therapeutic
target.

Zinc and neuropsychiatric disorders
Nowadays, most of the studies investigating the correlation
between Zn2 status and mental disorders have been focused
on depression, whereas the relation between Zn2+ and
other psychiatric disorders is still uncertain (71). Indeed,
since the late 1980s, Zn2+ deficiency was mainly found
to be correlated with depression in animal and human
samples (72) and several brain homeostatic systems have
been linked to the maintenance of extra- and intracellular
Zn2+ at nontoxic concentrations, including in brain regions
involved in the physiopathology of depression (73). More-
over, to verify the hypothesis of Zn2+ deficiency relating
to the pathogenesis of depression, peripheral blood Zn2+

concentrations have been measured in numerous studies of
depressed and nondepressed subjects. A meta-analysis of 17
observational studies found that blood Zn2+ concentrations
were lower in depressed subjects than in control subjects (9).
In addition, a systematic review summarizing the results of
just 4 randomized clinical trials (RCTs) reported that, overall,
the results showed that Zn2+ as an adjunct to antidepressant
treatment might result in more rapid or more effective
symptomatic improvement (57). However, despite this evi-
dence, the potential mechanisms underlying the association
between low serum Zn2+ and depression remain unclear,
although they may involve the regulation of endocrine (74,
75), neurotransmitter (76–78), and neurogenesis (79–81)
pathways.

Importantly, studies have also been performed on other
psychiatric disorders, although to a much lesser extent.
Specifically, a recent meta-analysis found significantly lower
serum Zn2+ concentrations in schizophrenic patients than in
controls (58). Moreover, a study found a higher prevalence of
Zn2+ deficiency in patients with other psychiatric diagnoses,
such as psychosis, than in patients with depression (71).

The role of Zn2+ has also been studied in different
neurological disorders. Indeed, it has been reported that
Zn2+ could be fundamental in the pathogenesis of different
neurodegenerative diseases, such as AD (7) and PD (8).
Specifically, the role of Zn2+ in the pathogenesis of AD
is still controversial because it has been found that Zn2+

may act as a contributor of AD pathogenesis, inducing
the oligomerization of AβP (β-amyloid protein), and as a
protector, limiting AβP-induced neurotoxicity (82). More-
over, although a meta-analysis indicated that serum Zn2+

concentrations were significantly decreased in AD patients
compared with healthy controls, no significant difference
in Zn2+ concentrations between AD patients and healthy
controls was observed when only the age-matched studies
were considered (41). With regards to PD patients, different
meta-analyses showed that both serum and cerebrospinal
fluid (CSF) Zn2+ concentrations were significantly lower in
these patients than in healthy controls (8, 83, 84). Although
low serum Zn2+ concentrations could be considered a risk
factor for PD by increasing oxidative stress (which has
been linked to the pathogenesis of PD) (8), Zn2+ deficiency
could also be a consequence of this disease, because Zn2+

concentrations inversely correlated with PD duration (83).
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TABLE 1 In vitro studies on zinc assessing the antiviral efficacy on Coronaviridae1

Coronavirus Antiviral effect Zinc Reference

Feline infectious peritonitis virus
(FIPV)

Inhibition of viral polyprotein
cleavage

Zn2+ Wang et al. (111)

Mouse hepatitis virus (MHV) Inhibition of viral polyprotein
cleavage

ZnCl2 Denison et al. (105)

Inhibition of viral polyprotein
cleavage

ZnCl2 Shi et al. (106)

Severe acute respiratory syndrome
coronavirus (SARS-CoV)

Inhibition of viral polyprotein
cleavage

Zn2+ , N-ethyl-N-phenyldithiocarbamic acid
Zn, hydroxypyridine-2-thione Zn

Han et al. (107)

Inhibition of viral polyprotein
cleavage

Zn2+ , 1-hydroxypyridine-2-thione Zn Hsu et al. (108)

Inhibition of RdRp activity by
affecting template binding

ZnOAc2 + PT te Velthuis et al. (109)

Transmissible gastroenteritis virus
(TGEV)

Inhibition of viral replication
after viral adsorption

ZnCl2, ZnSO4 Wei et al. (110)

1PT, pyrithione; RdRp, RNA-dependent RNA polymerase.

Finally, an altered Zn2+ homeostasis has also been
linked with the pathogenesis of MS, a chronic inflammatory
immune-mediated disease of the CNS. Specifically, a meta-
analysis showed lower concentrations of Zn2+ in the plasma
of MS patients than in controls, although just 1 study
(of the 6 studies measuring CSF Zn2+ concentrations
included in the meta-analysis) found a significant difference
between patients with MS and controls (56). Therefore, these
findings point toward the hypothesis that local alterations
of Zn2+ may be actively involved in the pathogenesis of
MS, ultimately suggesting the need for further studies to
investigate the relation between plasma Zn2+ concentrations
and different MS subtypes.

Zinc and infectious diseases
Starting from the observation that Zn2+ deficiency could
provoke a disruption in both the humoral and cell-mediated
immune responses, consequently increasing the susceptibil-
ity to infection, numerous studies have been carried out to
disentangle the role of Zn2+ in infectious diseases. Specifi-
cally, the results of such studies showed that in both animal
models and humans, Zn2+ supplementation during sepsis
had conflicting outcomes, whereas prophylactic administra-
tion proved to have positive effects (3). Contrarily, several
studies exploring adjunctive Zn2+ supplementation for the
treatment of pneumonia (85) and diarrhea (86) (performed
especially in children) showed no beneficial effects. The
contrasting results could be explained by the fact that Zn2+

is an essential element not only for the host but also for the
pathogen; in fact, this ion is fundamental for the survival,
propagation, and disease establishment of several microbes.
Moreover, the redistribution of Zn2+ during the acute phase
of sepsis is probably essential to ensure transcription and
translation of the acute-phase proteins, and to protect from
oxidative stress and inflammation, supporting the hypothesis
of the association between a lack of Zn2+ and a worse
outcome of infectious diseases (3). Therefore, the decision
to administer Zn2+ during an infection must consider the

risks of creating a Zn2+ microenvironment that is favorable
for pathogen growth (3). Conversely, different shreds of
evidence can explain the beneficial effects of prophylactic
administration of Zn2+. First, Zn2+ deficiency, which is
hard to define just by its serum concentrations, increases
susceptibility to infections that, under normal circumstances,
the host would be less vulnerable to. Most notably, inadequate
Zn2+ intake is associated with new-onset upper respiratory
tract and gastrointestinal tract infections in children (87,
88). Moreover, there is substantial evidence that Zn2+

supplementation is beneficial for the prevention of acute
and persistent diarrhea (89), and of respiratory infections in
children with Zn2+ deficiency (90, 91). Furthermore, Zn2+

has been shown to exert direct inhibitory effects against a
variety of viruses (92), including human rhinovirus (93–95)
and other picornaviruses (96), herpes simplex virus (97–99),
HIV-1 (100), hepatitis C virus (101), hepatitis E virus (102),
respiratory syncytial virus (103), and vaccinia virus (104).
This effect is also evident in different coronaviruses (19), such
as mouse hepatitis virus (105, 106), SARS-CoV (107–109),
transmissible gastroenteritis virus (110), and feline infectious
peritonitis virus (111) (Table 1). Notably, the use of zinc-
ionophores, such as hinokitol, pyrrolidine dithiocarbamate,
and pyrithione, can stimulate cellular import of Zn2+, thus
increasing its intracellular concentrations while reducing the
extracellular concentrations and, consequently, the systemic
adverse effects. This can be explained considering that, in cell
culture studies, high Zn2+ concentrations and the addition
of zinc-ionophores were found to inhibit the replication of
various RNA and DNA viruses (112–119). This evidence was
also confirmed for coronavirus in the study of te Velthuis
et al. (109). These findings are not surprising because the
association of Zn2+ and a zinc-ionophore, by stimulating
Zn2+ uptake, may efficiently inhibit the viral replication,
while not causing detectable cytotoxicity. This mechanism
may be considered relevant for further studies exploring
the activity of Zn2+ against SARS-CoV-2, especially in light
of the zinc-ionophoric activity of chloroquine (120), which
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in the first phase of the pandemic represented one of the
most used, yet controversial, molecules in the treatment of
COVID-19.

Zinc and COVID-19
SARS-CoV-2 infection, called COVID-19, occurs with het-
erogeneous clinical manifestations, ranging from asymp-
tomatic cases to severe interstitial pneumonia with severe
acute respiratory syndromes and multiorgan failure (121).
The outbreak of the pandemic associated with SARS-CoV-
2 has caused researchers worldwide to search for new
potential treatments against such RNA viruses. In one of
the first reviews of the literature (16), Zn2+ was cited as
one of the potential nonpharmacological agents, based on its
immunomodulant and antiviral properties. Subsequently, the
hypothesis of using Zn2+ as a therapeutic option for SARS-
CoV-2 infection has been explored by further scientific data
(17–19), which outlined the mechanisms of action by which
Zn2+ might exert therapeutic activity in COVID-19. From
an immunologic point of view, 1 in vitro study showed
that 50 μM ZnCl2, in the presence of Ca2+, could increase
ciliary beat frequency, consequently boosting mucociliary
clearance and therefore the elimination of bacterial and
viral particles (122). Moreover, considering the key role that
the aberrant inflammatory response plays in COVID-19
pathogenesis (123), the well-recognized anti-inflammatory
activity of Zn2+ (47) may be an additional benefit from a
therapeutic perspective.

Some further specific biological activities of Zn2+ may
explain its efficacy for the treatment of COVID-19 and its
complications. Angiotensin-converting enzyme-2 (ACE-2)
is now considered the gateway receptor of SARS-CoV-2
infection in humans (124), and an in vitro study (125)
highlighted that in the presence of 100 μM zinc acetate, the
metabolism of an artificial substrate of ACE-2 in rat’s lungs
by recombinant human angiotensin-converting enzyme 2
(rhACE2) was significantly decreased compared with 0 or
10 μM zinc acetate. Moreover, another RCT which tried to
assess the effect of zinc supplementation on the immune
response to the heptavalent pneumococcal protein conjugate
(PNC) vaccine found that a 29-wk supplementation of 5 mg
zinc acetate per day enhanced the immune response to 1 of
the serotypes (126). This ultimately suggests a protective
role of Zn2+ supplementation in COVID-19 patients, for
whom a high risk of Streptococcus pneumoniae co-infection
has been recently documented (equivalent to 59.5%)
(127).

As for antiviral activity, previous in vitro studies described
inhibitory activity of Zn2+ against SARS-CoV (107–109) and
other coronaviruses (105, 106, 110, 111), which seems to
be exerted via various hypothetical mechanisms of action
(Table 1). Moreover, the association of Zn2+ and a zinc-
ionophore might improve this activity (109), which could be
of extreme interest especially in light of the zinc-ionophoric
activity of chloroquine (109). This conclusion is based on an
in vitro study that showed significantly elevated intracellular
Zn2+ concentrations when chloroquine and ZnCl2 were

added for 1 h to the cell culture medium at various
concentrations (109). It was proposed that 1) chloroquine-
mediated Zn2+ influx may enhance chloroquine anticancer
activity, improving the inhibition of autophagy and the
induction of apoptosis by chloroquine; and 2) increasing
intracellular Zn2+ concentration may mediate chloroquine’s
antiviral effects (109). Therefore, it was proposed that the
supplementation of Zn2+ with chloroquine could represent
a possible therapeutic association (18). It is important to
underline that the current guidelines recommend against
the use of chloroquine (128), based on different findings
that do not support the use of hydroxychloroquine (HCQ)
for treatment of COVID-19 among hospitalized adults (129,
130).

Furthermore, it should be noted that different meta-
analyses have reported that Zn2+ supplementation could
modulate some of the major risk factors for COVID-
19–related mortality (131), such as diabetes, obesity, and
atherosclerosis. Indeed, it has been found that 1) several
glycemic indicators are significantly reduced by Zn2+ supple-
mentation, particularly fasting glucose (132); 2) Zn2+ sup-
plementation may decrease circulating leptin concentrations
(133); and 3) Zn2+ supplementation could exert positive
effects on plasma lipid parameters, reducing total cholesterol,
LDL cholesterol, and triglycerides (134). Therefore, its pre-
ventive administration in selected high-risk patients might
improve the clinical prognosis of the infection.

Finally, just a few studies are now available on the use
of Zn2+ as a therapeutic option in COVID-19 (Table 2).
A retrospective observational study (135) was performed
on 411 patients taking 220 mg zinc sulfate twice daily in
addition to HCQ and azithromycin and 521 patients taking
HCQ and azithromycin alone, matched for age, race, sex,
tobacco use, and relevant comorbidities. The study revealed
that the addition of zinc sulfate increased the probability of
patients being discharged from the hospital (OR: 1.53; 95%
CI: 1.12, 2.09) and decreased mortality or transfer to hospice
for patients who did not require intensive care unit (ICU)
treatment (OR: 0.449; 95% CI: 0.271, 0.744), after adjusting
for the time at which zinc sulfate was added to the protocol.
A multicenter cohort study on 3473 hospitalized adult
patients was performed to evaluate the impact of Zn2+ on
outcome in hospitalized COVID-19 patients (136). Rates of
in-hospital mortality were significantly lower among patients
(29%) who received Zn2+ and an ionophore (HCQ) than
among those who did not (12% died compared with 17%).
Similarly, rates of discharge were significantly higher among
patients who received this combination (72% compared
with 67%). Just 1 RCT is currently available evaluating
the effect of combining chloroquine/HCQ and zinc in the
treatment of 191 COVID-19 patients (137). In this study,
zinc supplements did not enhance the clinical efficacy
of HCQ, with no significant effect on clinical outcomes
(recovery within 28 d, the need for mechanical ventilation,
and death). Overall, such results support the start of RCTs
investigating the use of Zn2+ as a therapeutic option in
COVID-19.

Zinc as a neuroprotective nutrient for COVID-19 71



TABLE 2 Clinical studies assessing the antiviral efficacy of zinc on Severe Acute Respiratory Syndrome coronavirus 21

Reference Study design Zinc
Statistical

significance Main results

Carlucci et al. (135) Retrospective observational study Zinc sulfate 220 mg PO BID + HCQ
400 mg once followed by 200 mg
PO BID + azithromycin 500 mg
once daily

− Decreased length of
hospitalization

− Decreased duration of
ventilation

− Decreased ICU duration
+ Increased rates of

discharge home
+ Reduced risk of

in-hospital mortality
or transfer to hospice
for non-ICU patients

Frontera et al. (136) Multicenter cohort study Zinc sulfate 220 mg (50 mg Zn) PO
once daily or BID + HCQ (400 mg
BID for 1 d then 200 mg BID for 4 d)

+ Increased rates of
discharge home

+ Reduced risk of
in-hospital mortality

− Decreased length of
hospitalization

− Decreased duration of
ventilation

Abd-Elsalam et al. (137) Randomized clinical trial Zinc sulfate 220 mg (50 mg Zn) PO
BID + HCQ (400 mg BID for 1 d
then 200 mg BID for 5 d)

− Decreased need for
mechanical
ventilation

− Decreased length of
hospitalization

− Reduced risk of
in-hospital mortality

1BID, bis in die; HCQ, hydroxychloroquine; ICU, intensive care unit; PO, per os.

Neuropsychiatric complications of COVID-19
Human respiratory coronaviruses have been shown to
have neuroinvasive propensity (138), with SARS-CoV viri-
ons being found in neurons of the human brain (139,
140). Because SARS-CoV-2 has significant genetic ho-
mology with SARS-CoV and Middle East respiratory
syndrome coronavirus (MERS-CoV) (79% and 50%, re-
spectively), it seems fair to hypothesize that the novel
coronavirus may possess a similar neuroinvasive potential
(141).

According to the most recent literature, the neuronal
retrograde route might represent a main neuroinvasive
mechanism of SARS-CoV-2. Following this hypothesis, after
the infection of the olfactory neurons of the nasal mucosa,
SARS-CoV-2 would be able to reach the olfactory bulb and
then the CNS through retrograde axonal transport (142).
In particular, neuroepithelial invasion by SARS-CoV-2 may
be explained by the high tropism for the sustentacular cells,
a cell subpopulation highly expressing the SARS-CoV-2
entry proteins ACE-2 and transmembrane serine protease
2 (TMPRSS2) (143). Other potential neuronal routes of
infection are those represented by backpropagation through
the trigeminal or vagal nerve fibers. Moreover, the virus
has been also hypothesized to reach the brain through
a hematogenous route, either via the penetration of a

disrupted BBB or through the transmigration of infected
peripheral immune cells (144). Various pathophysiologic
mechanisms have also been postulated to explain the neu-
ronal manifestations associated with CNS infection. In a
series of 18 brain autopsies in COVID-19 patients, the only
evident neuropathological features were those associated
with hypoxic damage, thus supporting the notion of car-
diorespiratory failure being the major cause of neurological
alterations in such patients (145). On the other hand, another
series of histopathological examinations of brain specimens
performed in 6 patients found evidence consistent with
damage of the brain stem nuclei, pan-encephalitis, and
meningitis, suggesting a primary CNS involvement of the
coronavirus (146). Another possible mechanism through
which SARS-CoV-2 could cause neurological manifestations
is through the modulation of the cholinergic system. In fact,
it has been suggested that the spike protein may have an
affinity for the α7 nicotinic acetylcholine receptors (147),
which are highly expressed in the olfactory bulb and vagus
nerve terminals, 2 putative brain entry points for the virus
(148, 149). Thus, involvement of the cholinergic system
might explain both the viral neuroinvasion and the associated
neuropsychiatric manifestations, because cholinergic activity
is a major modulator of inflammatory and coagulative
activity (147).
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The hypothesis of brainstem invasion and damage by
SARS-CoV-2 has been advocated by many authors who
noted a discrepancy between the degree of pulmonary
involvement and the severity of respiratory insufficiency in
some patients (150); therefore, they questioned whether the
respiratory failure could be mediated, at least partially, by the
impairment of the cardiorespiratory centers located in the
brainstem (151).

The literature is rich in clinical records of neurological
complications during the course of COVID-19. One of the
earliest reports is by Mao et al. (24), who carried out a cohort
study in which the incidence of neurological manifestations
and complications was registered. The authors reported that
in their sample 36.4% of patients showed ≥1 neurological
feature, with the most common being dizziness, headache,
and impaired consciousness.

Notably, taste and smell disturbances are the most com-
monly reported neurological complications, ranging from
34% (20) to 86% (152). When olfactory and gustatory
functions were measured through psychophysical tests in
a sample of 60 COVID-19 patients, all but 1 of them had
some degree of measured olfactory dysfunction (153). As
previously stated, the occurrence of olfactory disturbances
in COVID-19 may be because of the high tropism of SARS-
CoV-2 for the olfactory neuroepithelium, potentially leading
to a rapid and massive disruption of both peripheric and
central olfactory structures, through the retrograde axonal
route. Furthermore, a recent review suggests that the early
disruption of the olfactory mucosa of SARS-CoV-2 invasion
might be a crucial determinant of the further systemic
immune response against viral invasion (154). Indeed, the
nasopharynx-associated lymphoid tissue (NALT) constitutes
the first defense against airborne pathogens, making the
nasopharyngeal mucosa not only a local defense barrier
but also a gateway between the innate and the adaptive
immune response, which enables it to rapidly induce the
systemic immune response against pathogens (155). More
specifically, NALT is rich in antigen-presenting cells, such as
DCs, macrophages, and microfold cells that, together with
nasal epithelial ciliated and goblet cells, promptly stimulate
the generation of Th1 and Th2 cells and IgA-producing
B cells after recognizing pathogenic antigens (154). The
ability of NALT to protect against the spread of different
pathogens by triggering the systemic immune response is
also supported by the evidence of a specific role of the NALT
against CNS invasion by neurotropic viruses (156). Therefore
both the SARS-CoV-2 neuroinvasivity and the damage to
the olfactory mucosa, which leads to the failure of NALT
induction of an efficacious systemic immune response, may
be complementary mechanisms at the basis of the olfactory
disturbances (157) and of other COVID-19 neuropsychiatric
complications.

Indeed, multiple reports have described the presence
of CNS inflammation in the context of SARS-CoV-2
infection, with encephalitis (22), rhombencephalitis (158),
myelitis (159), acute disseminated encephalomyelitis (160),
and meningoencephalitis (161) being the most common

neurological complications. These findings fit well with the
now well-known notion that a major feature of COVID-19
is represented by the vigorous inflammatory response caused
by the viral infection, with high inflammatory indexes and
abundant cytokine production (162). Brain involvement in
the context of an abnormal cytokine release may be mediated
by a profound alteration in the BBB (163), with subse-
quent proinflammatory activation of neurons and glial cells
(164).

However, neuropsychiatric complications of COVID-19
are not solely the consequence of the massive systemic
inflammatory response documented in these patients. In
this regard, other relatively common neurological conditions
described in COVID-19 patients include disorders such
as the Guillain-Barré (165–169) and the Miller Fisher
syndrome (170). The pathogenetic mechanism most prob-
ably involved in the occurrence of such disorders is an
autoimmune process involving molecular mimicry or im-
munological cross-reactions. However, additional preclinical
and clinical studies are needed to verify this pathogenetic
hypothesis.

In addition, the clinical course of COVID-19 has been
associated with a procoagulative state (171) such that
antithrombotic prophylaxis is often started in hospitalized
patients. Several reports can be found about COVID-19
being complicated by cerebrovascular events, in particular,
stroke due to large vessel occlusion. Of note, in a significant
number of cases, the age of affected patients was significantly
lower than the average age for this condition in the general
population. Specifically, in the case series by Tiwari et al.
(23) the patients had a median age of 48 y; similarly, Oxley
et al. (172) described 5 cases of large-vessel ischemic stroke
occurring in young COVID-19 patients in their 30s or 40s
(age range: 33–49 y).

Moreover, delirium is reported to be a common mani-
festation of SARS-CoV-2 infection. In a multicenter cohort
study (21) (including 817 older adults with COVID-19
presented to US emergency departments), delirium was a
common finding (28%). Interestingly, among the patients
with delirium, 16% had delirium as a primary symptom and
37% had no typical COVID-19 symptoms or signs. Several
other studies reported that delirium represented a common
complication of COVID-19 in hospitalized patients. In a
study (173) on 852 hospitalized patients, the prevalence of
delirium was 11% and delirium resulted in a marker of
severe disease course. In a multicentric retrospective cohort
study (174), delirium was present in 25% of 821 patients
aged ≥70 y; in another study, delirium was present in
33% of hospitalized patients aged 50 y and older (175).
Also, delirium was associated with poor hospital outcomes
and death, particularly in the intensive care setting, with a
percentage of patients as high as 65% showing the presence of
delirium when measured through the Confusion Assessment
Method for the ICU (CAM-ICU) (176). All these data suggest
the clinical importance of including delirium on checklists
of presenting signs and symptoms of COVID-19 that guide
screening, testing, and evaluation.
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Finally, recent findings support that COVID-19 could be
associated with psychiatric sequelae. In a recent study on
402 adults surviving COVID-19, 56% were scored in the
pathological range in ≥1 clinical dimension and the indexes
of inflammation were positively associated with depression
and anxiety at follow-up (177). A recent meta-analysis
also suggested that, in the longer term, neuropsychiatric
syndromes may be particularly pronounced in COVID-19
patients (178).

Individuals suffering from various neuropsychiatric con-
ditions have been shown to have an increased risk of
developing serious infections owing to several factors that
hinder the integrity of the immune system, including
lifestyle, immunosuppressive therapies, and socioeconomic
conditions (179). For example, it has been shown that
long-term immunosuppressant treatments of MS confer
an increased risk of infection with SARS-CoV-2 (180).
Also, severe psychiatric conditions such as schizophrenia,
known to be associated with immunity dysregulations (181),
increased the risk of dying from COVID-19 (182).

Zinc neuroprotective rationale in COVID-19
neuropsychiatric complications
As already reported in the previous paragraph, COVID-19
is frequently complicated by heterogeneous neuropsychiatric
manifestations, whose severity often negatively influences
the disease prognosis, in terms of survival rate and neu-
ropsychiatric sequelae (183). In this regard, a retrospective
study on a large cohort of COVID-19 survivors found
that about one-third of subjects had ≥1 neurological or
psychiatric consequence 6 mo after SARS-CoV-2 infection,
with a higher hazard risk for the severe forms of COVID-19
than for the mild ones (15). Based on these epidemiologic
data, the identification of specific treatments that are able
to prevent and treat acute and chronic manifestations
of neurological and psychiatric disorders occurring after
COVID-19 infection appears to be an urgent medical need
(184).

However, to date, little is known about the pathogenesis
of neuropsychiatric complications of SARS-CoV-2 infection,
but the rapidly increasing number of studies published on
this topic seems to identify some mechanisms which could
explain the CNS’s involvement in SARS-CoV-2 infection
(163, 185). Interestingly, an imbalanced Zn2+ status, in the
case of either Zn2+ deficit or excess, could play a role in
most of the pathogenic mechanisms described so far (47, 50),
suggesting a preventive and therapeutic potential of Zn2+

status in balancing both SARS-CoV-2 infection and COVID-
19 neuropsychiatric manifestations. Concerning the risk of
infection and its severity, in the previous paragraphs, we
have outlined a dual role of Zn2+, because we reported that
its deficiency can either reduce the efficacy of the systemic
immune response against pathogens’ spread during sepsis
(3) or increase the risk of airborne pathogen infection,
with a parallel reduced risk of infection observed in clinical
studies testing Zn2+ supplementation in populations with
Zn2+ deficiency (90, 91). However, some lines of evidence

seem to indicate excessive Zn2+ concentrations as a favoring
condition for pathogen replication (3). Similarly, Zn2+ affects
brain homeostasis by exerting a dual modulation of BBB
permeability, which could be altered both by a deficit and
by an excess of Zn2+ (67). The most recent evidence
on SARS-CoV-2 infection recognized in BBB disruption
a relevant mechanism of brain damage in the course of
the infection, potentially inducing neuroinflammation. In
fact, the increased BBB permeability fostered the passage
from the bloodstream to the brain tissues of the proinflam-
matory cytokines overproduced in the so-called “cytokine
storm,” considered a critical consequence of the aberrant
hyperinflammatory response that occurs in the most severe
forms of COVID-19 (186). Moreover, a recent animal study
demonstrated the capacity of the SARS-CoV-2 spike protein
S1 subunit to pass the BBB and reach the brain parenchyma,
further supporting the role of BBB integrity in the protection
against the CNS viral spread (187). Considering the role
of Zn2+ in preserving the integrity of the BBB and the
anti-inflammatory activity of Zn2+, it seems reasonable to
suppose a neuroprotective role of a balanced Zn2+ status
in the prevention of neuropsychiatric manifestations of
COVID-19. Also, the capacity of Zn2+ to preserve the in-
tegrity of mucosa (45) might represent a possible therapeutic
indication for the use of Zn2+ in the early phase of COVID-
19, possibly weakening the disruption of the nasal mucosa
and thus enforcing the adaptive immune response induced
by NALT (155). This may, in turn, counter the viral systemic
spread. In this perspective, Zn2+ supplementation in healthy
subjects with a documented laboratory Zn2+ deficiency
should be tested in clinical trials with the aim to prevent
SARS-CoV-2 infections and the development of severe
COVID-19.

Furthermore, based on the well-demonstrated anti-
inflammatory activity of Zn2+ also exerted by reducing the
production of proinflammatory cytokines involved in the
cytokine storm (50, 162), further clinical studies should
consider different dosages of Zn2+ supplementation as a
therapeutic option, at least in subjects with a documented
Zn2+ deficiency. Finally, future clinical research should
evaluate Zn2+ supplementation therapy not only in COVID-
19 patients with neurological and psychiatric complications
but also in healed subjects manifesting neuropsychiatric
long-term consequences.

Conclusions
In the current narrative review, among the nutritional
interventions proposed for the treatment and prevention
of COVID-19, we focused on Zn2+, whose effects on the
immune and nervous systems are well known, encompassing
several neuropsychiatric manifestations. According to the
aforementioned findings, Zn2+ may have 2 different applica-
tions in COVID-19: a preventive and a therapeutic one.

Regarding the preventive potential, because Zn2+ is
fundamental in maintaining a correct balance of the immune
system, its deficiency could be considered a predisposing
factor to infection. Indeed, many scientific data have so
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far demonstrated the association between individual Zn2+

status and a predisposition to viral diseases, in particular
respiratory tract infections. In this perspective, a Zn2+ sup-
plementation may be useful to reduce the risk of COVID-19
infection, especially in a specific population at high risk, such
as the elder population, immunosuppressed subjects, and
cardiovascular disease patients. Interestingly, these categories
at higher risk of COVID-19 are the same ones that have
shown Zn2+ deficiency. With regards to its therapeutic
potential, in vitro studies showed that Zn2+ could exert a
direct antiviral effect against coronaviruses, such as SARS-
CoV and equine arteritis virus. This micronutrient may
therefore represent a suitable add-on treatment to the drugs
currently administered for COVID-19, in consideration
of its specific inhibitory effect on SARS-CoV intracellular
replication.

Finally, thanks to its neuroprotective properties, Zn2+

may have significant effects on COVID-19–related neu-
rological damage and the symptoms of the disease that
are increasingly raising interest. Moreover, considering the
aforementioned evidence, Zn2+ supplementation might have
a role as a neuroprotective agent in COVID-19 patients
through several mechanisms, including 1) its systemic anti-
inflammatory activity, potentially dampening the aberrant
and uncontrolled cytokine release that often accompanies
the disease course; 2) its ability to modulate BBB function,
preventing the increase in permeability seen in COVID-
19 patients; and 3) its capacity to preserve the integrity of
mucosal cells, weakening the disruption of the nasal mucosa
and thus enforcing the adaptive immune response induced
by NALT.
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